AdaptGauss: Gaussian Mixture Models (GMM)

Multimodal distributions can be modelled as a mixture of components. The model is derived using the Pareto Density Estimation (PDE) for an estimation of the pdf. PDE has been designed in particular to identify groups/classes in a dataset. Precise limits for the classes can be calculated using the theorem of Bayes. Verification of the model is possible by QQ plot, Chi-squared test and Kolmogorov-Smirnov test. The package is based on the publication of Ultsch, A., Thrun, M.C., Hansen-Goos, O., Lotsch, J. (2015) <doi:10.3390/ijms161025897>.

Version: 1.3.3
Depends: R (≥ 2.10)
Imports: shiny, caTools, methods, ggplot2
Suggests: mclust, grid
Published: 2017-03-15
Author: Michael Thrun, Onno Hansen-Goos, Rabea Griese, Catharina Lippmann, Florian Lerch, Jorn Lotsch, Alfred Ultsch
Maintainer: Florian Lerch <lerch at mathematik.uni-marburg.de>
License: GPL-3
URL: https://www.uni-marburg.de/fb12/datenbionik/software-en
NeedsCompilation: no
CRAN checks: AdaptGauss results

Downloads:

Reference manual: AdaptGauss.pdf
Package source: AdaptGauss_1.3.3.tar.gz
Windows binaries: r-devel: AdaptGauss_1.3.3.zip, r-release: AdaptGauss_1.3.3.zip, r-oldrel: AdaptGauss_1.3.3.zip
OS X El Capitan binaries: r-release: AdaptGauss_1.3.3.tgz
OS X Mavericks binaries: r-oldrel: AdaptGauss_1.3.3.tgz
Old sources: AdaptGauss archive

Reverse dependencies:

Reverse suggests: DatabionicSwarm

Linking:

Please use the canonical form https://CRAN.R-project.org/package=AdaptGauss to link to this page.