CDSeq: A Complete Deconvolution Method using Sequencing Data

Estimate cell-type-specific gene expression profiles and sample-specific cell-type proportions simultaneously using bulk sequencing data. Kang et al. (2019) <doi:10.1371/journal.pcbi.1007510>.

Version: 1.0.8
Depends: R (≥ 3.6.0)
Imports: Rcpp (≥ 1.0.3), MASS, foreach, doParallel, dirmult, RcppThread, iterators, parallel, qlcMatrix, gplots, grDevices, clue, Biobase, Seurat, ggplot2, magrittr, dplyr, rlang, Matrix, matrixStats, ggpubr
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2021-02-10
Author: Kai Kang [aut, cre, cph], Caizhi Huang [aut], Qian Meng [ctb], Igor Shats [ctb], Melissa Li [ctb], David Umbach [ctb], Leping Li [aut, cph], Yuanyuan Li [ctb], Xiaoling Li [ctb]
Maintainer: Kai Kang <kangkai0714 at>
License: GPL-3
NeedsCompilation: yes
Citation: CDSeq citation info
Materials: README NEWS
CRAN checks: CDSeq results


Reference manual: CDSeq.pdf
Vignettes: CDSeq: a complete deconvolution method using sequencing data
Package source: CDSeq_1.0.8.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: CDSeq_1.0.8.tgz, r-oldrel: CDSeq_1.0.8.tgz


Please use the canonical form to link to this page.