CoOL: Causes of Outcome Learning

Implementing the computational phase of the Causes of Outcome Learning approach as described in Rieckmann, Dworzynski, Arras, Lapuschkin, Samek, Arah, Rod, Ekstrom. 2022. Causes of outcome learning: A causal inference-inspired machine learning approach to disentangling common combinations of potential causes of a health outcome. International Journal of Epidemiology <doi:10.1093/ije/dyac078>. The optional 'ggtree' package can be obtained through Bioconductor.

Version: 1.1.2
Imports: Rcpp, data.table, pROC, graphics, mltools, stats, plyr, ggplot2, ClustGeo, wesanderson, grDevices
LinkingTo: Rcpp, RcppArmadillo
Suggests: ggtree, imager
Published: 2022-05-24
DOI: 10.32614/CRAN.package.CoOL
Author: Andreas Rieckmann [aut, cre], Piotr Dworzynski [aut], Leila Arras [ctb], Claus Thorn Ekstrom [aut]
Maintainer: Andreas Rieckmann <aric at>
License: GPL-2
NeedsCompilation: yes
Materials: README
CRAN checks: CoOL results


Reference manual: CoOL.pdf


Package source: CoOL_1.1.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): CoOL_1.1.2.tgz, r-oldrel (arm64): CoOL_1.1.2.tgz, r-release (x86_64): CoOL_1.1.2.tgz, r-oldrel (x86_64): CoOL_1.1.2.tgz
Old sources: CoOL archive


Please use the canonical form to link to this page.