ConsRank: Compute the Median Ranking(s) According to the Kemeny's Axiomatic Approach

Compute the median ranking according to the Kemeny's axiomatic approach. Rankings can or cannot contain ties, rankings can be both complete or incomplete. The package contains both branch-and-bound algorithms and heuristic solutions recently proposed. The package also provide some useful utilities for deal with preference rankings. Essential references: Emond, E.J., and Mason, D.W. (2002) <doi:10.1002/mcda.313>; D'Ambrosio, A., Amodio, S., and Iorio, C. (2015) <doi:10.1285/i20705948v8n2p198>; Amodio, S., D'Ambrosio, A., and Siciliano R. (2016) <doi:10.1016/j.ejor.2015.08.048>; D'Ambrosio, A., Mazzeo, G., Iorio, C., and Siciliano, R. (2017) <doi:10.1016/j.cor.2017.01.017>.

Version: 2.0.1
Depends: proxy, rgl, gtools
Published: 2017-04-28
Author: Antonio D'Ambrosio, Sonia Amodio, Giulio Mazzeo
Maintainer: Antonio D'Ambrosio <antdambr at>
License: GPL-3
NeedsCompilation: no
CRAN checks: ConsRank results


Reference manual: ConsRank.pdf
Package source: ConsRank_2.0.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: ConsRank_2.0.1.tgz
OS X Mavericks binaries: r-oldrel: ConsRank_2.0.1.tgz
Old sources: ConsRank archive


Please use the canonical form to link to this page.