DCEM: Clustering for Multivariate and Univariate Data Using Expectation Maximization Algorithm

Implements the Expectation Maximisation (EM) algorithm for clustering finite gaussian mixture models for both multivariate and univariate datasets. The initialization is done by randomly selecting the samples from the dataset as the mean of the Gaussian(s). This version improves the parameter initialization on big datasets. The algorithm returns a set of Gaussian parameters-posterior probabilities, mean, co-variance matrices (multivariate data)/standard-deviation (for univariate datasets) and priors. Reference: Hasan Kurban, Mark Jenne, Mehmet M. Dalkilic (2016) <doi:10.1007/s41060-017-0062-1>. This work is partially supported by NCI Grant 1R01CA213466-01.

Version: 0.0.2
Depends: R (≥ 3.5.0)
Imports: mvtnorm (≥ 1.0.7), matrixcalc (≥ 1.0.3), MASS (≥ 7.3.49)
Published: 2019-04-05
Author: Sharma Parichit [aut, cre, ctb], Kurban Hasan [aut, ctb], Jenne Mark [aut, ctb], Dalkilic Mehmet [aut]
Maintainer: Sharma Parichit <parishar at iu.edu>
BugReports: https://github.iu.edu/parishar/DCEM/issues
License: GPL-3
URL: https://github.iu.edu/parishar/DCEM
NeedsCompilation: no
Materials: README NEWS
CRAN checks: DCEM results


Reference manual: DCEM.pdf
Package source: DCEM_0.0.2.tar.gz
Windows binaries: r-devel: DCEM_0.0.2.zip, r-release: DCEM_0.0.2.zip, r-oldrel: DCEM_0.0.2.zip
OS X binaries: r-release: DCEM_0.0.2.tgz, r-oldrel: DCEM_0.0.2.tgz
Old sources: DCEM archive


Please use the canonical form https://CRAN.R-project.org/package=DCEM to link to this page.