EstimateGroupNetwork: Perform the Joint Graphical Lasso and Selects Tuning Parameters

Can be used to simultaneously estimate networks (Gaussian Graphical Models) in data from different groups or classes via Joint Graphical Lasso. Tuning parameters are selected via information criteria (AIC / BIC / eBIC) or crossvalidation.

Version: 0.1.2
Imports: parallel, igraph, qgraph
Suggests: mvtnorm, JGL, psych
Published: 2017-03-20
Author: Giulio Costantini, Sacha Epskamp
Maintainer: Giulio Costantini <giulio.costantini at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: EstimateGroupNetwork results


Reference manual: EstimateGroupNetwork.pdf
Package source: EstimateGroupNetwork_0.1.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: EstimateGroupNetwork_0.1.2.tgz
OS X Mavericks binaries: r-oldrel: EstimateGroupNetwork_0.1.2.tgz


Please use the canonical form to link to this page.