Package ‘FBFsearch’
February 19, 2015

Type Package
Title Algorithm for searching the space of Gaussian directed acyclic graphical models through moment fractional Bayes factors
Version 1.0
Date 2013-04-12
Author Davide Altomare, Guido Consonni and Luca La Rocca
Maintainer Davide Altomare <davide.altomare@gmail.com>
Description We propose an objective Bayesian algorithm for searching the space of Gaussian directed acyclic graphical models when the variables are assumed to satisfy a given ordering. The approach used is based on non-local parameter priors and thus it is suitable for learning sparse graphs. The algorithm is implemented in C++ using the open-source library Armadillo.
License GPL (>= 2)
Depends Rcpp (>= 0.9.13), RcppArmadillo (>= 0.3.2.4)
LinkingTo Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2013-04-13 06:39:46

R topics documented:

dataHuman ... 2
dataPub ... 2
dataSim100 .. 3
dataSim200 .. 4
dataSim50 .. 4
dataSim6 ... 5
dataSimHuman 6
FBF_GS .. 6
FBF_LS .. 8
FBF_RS .. 9
Index

dataHuman
Cell signalling pathway data

Description
Data on a set of flow cytometry experiments on signaling networks of human immune system cells. The dataset includes $p=11$ proteins and $n=7466$ samples.

Usage
`data(HumanPw)`

Format
`dataHuman` contains the following objects:

- **obs**
 Matrix (7466x11) with the observations.

- **perms**
 List of 5 matrices (1x11) each of which with a permutation of the nodes.

- **Tdag**
 Matrix (11x11) with the adjacency matrix of the known regulatory network.

Source

References

dataPub
Publishing productivity data

Description
Data on publishing productivity among academics.

Usage
`data(PubProd)`
dataSim100

Format

datapub contains the following objects:

Corr Matrix (7x7) with the correlation matrix of the variables.
nobs Scalar with the number of observations.

Source

References

datasim1PP

DAG model with 100 nodes and 100 edges

Description

datasim1PP is a list with the adjacency matrix of a randomly generated DAG with 100 nodes and 100 edges, 10 samples generated from the DAG and 5 permutations of the nodes.

Usage

data(SimDag100)

Format

datasim1PP contains the following objects:

obs List of 10 matrices (100x100) each of which with 100 observations generated from the DAG.
perms List of 5 matrices (1x100) each of which with a permutation of the nodes.
Tdag Matrix (100x100) with the adjacency matrix of the DAG.

Source

References

dataSim200

Description

`dataSim200` is a list with the adjacency matrix of a randomly generated DAG with 200 nodes and 100 edges, 10 samples generated from the DAG and 5 permutations of the nodes.

Usage

```r
data(SimDag200)
```

Format

`dataSim200` contains the following objects:

- **obs** List of 10 matrices (100x200) each of which with 100 observations simulated from the DAG.
- **perms** List of 5 matrices (1x200) each of which with a permutation of the nodes.
- **Tdag** Matrix (200x200) with the adjacency matrix of the DAG.

Source

References

dataSim50

Description

`dataSim50` is a list with the adjacency matrix of a randomly generated DAG with 50 nodes and 100 edges, 10 samples generated from the DAG and 5 permutations of the nodes.

Usage

```r
data(SimDag50)
```
Format

datasim6 contains the following objects:

<table>
<thead>
<tr>
<th>Obj</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obs</td>
<td>List of 10 matrices (100x50) each of which with 100 observations simulated from the DAG.</td>
</tr>
<tr>
<td>Perms</td>
<td>List of 5 matrices (1x50) each of which with a permutation of the nodes.</td>
</tr>
<tr>
<td>Tdag</td>
<td>Matrix (50x50) with the adjacency matrix of the DAG.</td>
</tr>
</tbody>
</table>

Source

References

dataSim6

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataSim6 is a list with the adjacency matrix of a randomly generated DAG with 6 nodes and 5 edges and 100 correlation matrices generated from the DAG.</td>
</tr>
</tbody>
</table>

Usage

data(SimDag6)

Format

dataSim6 contains the following objects:

<table>
<thead>
<tr>
<th>Obj</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corr</td>
<td>List of 100 matrices (6x6) each of which with a correlation matrix generated from the DAG.</td>
</tr>
<tr>
<td>Tdag</td>
<td>Matrix (6x6) with the adjacency matrix of the DAG.</td>
</tr>
</tbody>
</table>

References

DataSimHuman
Simulated cell signalling pathway data

Description
Data generated from the known regulatory network of human cell signalling data.

Usage
```r
data(SimHumanPw)
```

Format
`dataSimHuman` contains the following objects:
- `Obs` List of 100 matrices (100x11) each of which with 100 observations simulated from the known regulatory network.
- `Perms` List of 5 matrices (1x11) each of which with a permutation of the nodes.
- `TDag` Matrix (11x11) with the adjacency matrix of the known regulatory network.

Source

References

FBF_GS
Moment Fractional Bayes Factor Stochastic Search with Global Prior for Gaussian DAG Models

Description
Estimate the edge inclusion probabilities for a Gaussian DAG with q nodes from observational data, using the moment fractional Bayes factor approach with global prior.

Usage
```r
FBF_GS(Corr, nobs, G_base, h, C, n_tot_mod, n_hpp)
```
Arguments

- `Corr` qxq correlation matrix.
- `nobs` Number of observations.
- `G_base` Base DAG.
- `h` Parameter prior.
- `C` Constant who keeps the probability of all local moves bounded away from 0 and 1.
- `n_tot_mod` Maximum number of different models which will be visited by the algorithm, for each equation.
- `n_hpp` Number of the highest posterior probability models which will be returned by the procedure.

Value

An object of class list with:

- `M_q` Matrix (qxq) with the estimated edge inclusion probabilities.
- `M_G` Matrix (n*n_hpp)xq with the n_hpp highest posterior probability models returned by the procedure.
- `M_P` Vector (n_hpp) with the n_hpp posterior probabilities of the models in M_G.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

References

Examples

```r
data(SimDag6)
Corr=dataSim6$SimCorr[[1]]
nobs=50
q=ncol(Corr)
Gt=dataSim6$Tdag

Res_search=FBF_GS(Corr, nobs, matrix(0,q,q), 1, 0.01, 1000, 10)
M_q=Res_search$M_q
M_G=Res_search$M_G
M_P=Res_search$M_P

G_med=M_q
G_med[M_q>0.5]=1
G_med[M_q<0.5]=0 #median probability DAG
```
FBF_LS

Moment Fractional Bayes Factor Stochastic Search with Local Prior for DAG Models

Description

Estimate the edge inclusion probabilities for a directed acyclic graph (DAG) from observational data, using the moment fractional Bayes factor approach with local prior.

Usage

```r
FBF_LS(Corr, nobs, G_base, h, C, n_tot_mod)
```

Arguments

- **Corr**: qxq correlation matrix.
- **nobs**: Number of observations.
- **G_base**: Base DAG.
- **h**: Parameter prior.
- **C**: Constant who keeps the probability of all local moves bounded away from 0 and 1.
- **n_tot_mod**: Maximum number of different models which will be visited by the algorithm, for each equation.

Value

An object of class `matrix` with the estimated edge inclusion probabilities.

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

References

Examples

data(SimDag6)

Corr=dataSim6$SimCorr[[1]]
nobs=50
q=ncol(Corr)
Gt=dataSim6$TDag

M_q=FBF_LS(Corr, nobs, matrix(0,q,q), 0, 0.01, 1000)

G_med=M_q
G_med[M_q>0.5]=1
G_med[M_q<0.5]=0 #median probability DAG

sum(sum(abs(G_med-Gt))) #Structural Hamming Distance between the true DAG and the median probability DAG

FBF_RS

Moment Fractional Bayes Factor Stochastic Search for Regression Models

Description

Estimate the edge inclusion probabilities for a regression model, using the moment fractional Bayes factor approach.

Usage

FBF_RS(Corr, nobs, G_base, h, C, n_tot_mod, n_hpp)

Arguments

- **Corr**: qxq correlation matrix.
- **nobs**: Number of observations.
- **G_base**: Base model.
- **h**: Parameter prior.
- **C**: Costant who keeps the probability of all local moves bounded away from 0 and 1.
- **n_tot_mod**: Maximum number of different models which will be visited by the algorithm, for each equation.
- **n_hpp**: Number of the highest posterior probability models which will be returned by the procedure.
Value

An object of class list with:

- \(M_q \) Matrix (q \times q) with the estimated edge inclusion probabilities.
- \(M_G \) Matrix (n \times n_{hpp}) \times q with the n_{hpp} highest posterior probability models returned by the procedure.
- \(M_P \) Vector (n_{hpp}) with the n_{hpp} posterior probabilities of the models in \(M_G \).

Author(s)

Davide Altomare (<davide.altomare@gmail.com>).

References

Examples

data(SimDag6)

Corr=dataSim6$SimCorr[[1]]
nobs=50
q=ncol(Corr)
Gt=dataSim6$TDag

Regression of \(Y(q) \) on \(Y(q-1),...,Y(1) \)

Res_search=FBF_RS(Corr, nobs, matrix(0,1,(q-1)), 1, 0.01, 1000, 10)
M_q=Res_search$M_q
M_G=Res_search$M_G
M_P=Res_search$M_P

Mt=rev(matrix(Gt[(1:(q-1)),q],1,(q-1)))) #True Model

M_med=M_q
M_med[M_q>0.5]=1
M_med[M_q<0.5]=0 #median probability model

sum(sum(abs(M_med-Mt))) #Structural Hamming Distance between the true DAG and the median probability DAG
Index

*Topic **dag**
 FBF_GS, 6
 FBF_LS, 8
 FBF_RS, 9

*Topic **datasets**
 dataHuman, 2
 dataPub, 2
 dataSim100, 3
 dataSim200, 4
 dataSim50, 4
 dataSim6, 5
 dataSimHuman, 6

*Topic **models**
 FBF_GS, 6
 FBF_LS, 8
 FBF_RS, 9

*Topic **multivariate**
 FBF_GS, 6
 FBF_LS, 8
 FBF_RS, 9

*Topic **stochastic search**
 FBF_GS, 6
 FBF_LS, 8
 FBF_RS, 9

 dataHuman, 2
 dataPub, 2
 dataSim100, 3
 dataSim200, 4
 dataSim50, 4
 dataSim6, 5
 dataSimHuman, 6
 FBF_GS, 6
 FBF_LS, 8
 FBF_RS, 9