FastImputation: Learn from Training Data then Quickly Fill in Missing Data

TrainFastImputation() uses training data to describe a multivariate normal distribution that the data approximates or can be transformed into approximating and stores this information as an object of class 'FastImputationPatterns'. FastImputation() function uses this 'FastImputationPatterns' object to impute (make a good guess at) missing data in a single line or a whole data frame of data. This approximates the process used by 'Amelia' <> but is much faster when filling in values for a single line of data.

Version: 2.0
Depends: R (≥ 2.10)
Imports: methods, Matrix
Suggests: testthat, caret, e1071
Published: 2017-03-12
Author: Stephen R. Haptonstahl
Maintainer: Stephen R. Haptonstahl <srh at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: FastImputation citation info
CRAN checks: FastImputation results


Reference manual: FastImputation.pdf
Package source: FastImputation_2.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: FastImputation_2.0.tgz
OS X Mavericks binaries: r-oldrel: FastImputation_2.0.tgz
Old sources: FastImputation archive


Please use the canonical form to link to this page.