GADAG: A Genetic Algorithm for Learning Directed Acyclic Graphs

Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <>).

Version: 0.99.0
Depends: igraph, MASS
Imports: Rcpp (≥ 0.12.5)
LinkingTo: Rcpp, RcppArmadillo
Published: 2017-04-11
Author: Magali Champion, Victor Picheny and Matthieu Vignes
Maintainer: Magali Champion <magali.champion at>
License: GPL-2
NeedsCompilation: yes
CRAN checks: GADAG results


Reference manual: GADAG.pdf
Package source: GADAG_0.99.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: GADAG_0.99.0.tgz
OS X Mavericks binaries: r-oldrel: GADAG_0.99.0.tgz


Please use the canonical form to link to this page.