GAparsimony: Searching Parsimony Models with Genetic Algorithms

Methodology that combines feature selection, model tuning, and parsimonious model selection with Genetic Algorithms (GA) proposed in {Martinez-de-Pison} (2015) <doi:10.1016/j.asoc.2015.06.012>. To this objective, a novel GA selection procedure is introduced based on separate cost and complexity evaluations.

Version: 0.9-1
Depends: R (≥ 3.0), methods, foreach, iterators
Imports: stats, graphics, grDevices, utils
Suggests: parallel, doParallel, doRNG (≥ 1.6), knitr (≥ 1.8), lhs, MASS, caret, mlbench, e1071, nnet, kernlab
Published: 2017-08-03
Author: F.J. Martinez-de-Pison [aut, cre]
Maintainer: F.J. Martinez-de-Pison <fjmartin at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: GAparsimony results


Reference manual: GAparsimony.pdf
Package source: GAparsimony_0.9-1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: GAparsimony_0.9-1.tgz
OS X Mavericks binaries: r-oldrel: GAparsimony_0.9-1.tgz


Please use the canonical form to link to this page.