GPvam: Maximum Likelihood Estimation of Multiple Membership Mixed Models Used in Value-Added Modeling

An EM algorithm, Karl et al. (2013) <doi:10.1016/j.csda.2012.10.004>, is used to estimate the generalized, variable, and complete persistence models, Mariano et al. (2010) <doi:10.3102/1076998609346967>. These are multiple-membership linear mixed models with teachers modeled as "G-side" effects and students modeled with either "G-side" or "R-side" effects.

Version: 3.0-4
Depends: R (≥ 3.0.0), Matrix
Imports: numDeriv, Rcpp (≥ 0.11.2), graphics, grDevices, methods, stats, utils
LinkingTo: Rcpp, RcppArmadillo
Published: 2017-03-15
Author: Andrew Karl, Yan Yang, and Sharon Lohr
Maintainer: Andrew Karl <akarl at>
License: GPL-2
NeedsCompilation: yes
Materials: NEWS
CRAN checks: GPvam results


Reference manual: GPvam.pdf
Package source: GPvam_3.0-4.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: GPvam_3.0-4.tgz
OS X Mavericks binaries: r-oldrel: GPvam_3.0-4.tgz
Old sources: GPvam archive


Please use the canonical form to link to this page.