GenAlgo: Classes and Methods to Use Genetic Algorithms for Feature Selection

Defines classes and methods that can be used to implement genetic algorithms for feature selection. The idea is that we want to select a fixed number of features to combine into a linear classifier that can predict a binary outcome, and can use a genetic algorithm heuristically to select an optimal set of features.

Version: 2.1.4
Depends: R (≥ 3.0)
Imports: methods, stats, MASS, oompaBase (≥ 3.0.1), ClassDiscovery
Suggests: Biobase, xtable, knitr, Umpire
Published: 2018-05-18
Author: Kevin R. Coombes
Maintainer: Kevin R. Coombes <krc at silicovore.com>
License: Apache License (== 2.0)
URL: http://oompa.r-forge.r-project.org/
NeedsCompilation: no
Materials: NEWS
CRAN checks: GenAlgo results

Downloads:

Reference manual: GenAlgo.pdf
Vignettes: Genetic Algorithm and Feature Selection
OOMPA GenAlgo
Package source: GenAlgo_2.1.4.tar.gz
Windows binaries: r-devel: GenAlgo_2.1.4.zip, r-release: GenAlgo_2.1.4.zip, r-oldrel: GenAlgo_2.1.4.zip
OS X binaries: r-release: GenAlgo_2.1.4.tgz, r-oldrel: GenAlgo_2.1.4.tgz
Old sources: GenAlgo archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=GenAlgo to link to this page.