Package ‘GeneNet’

February 19, 2015

Version 1.2.12
Date 2015-01-20
Title Modeling and Inferring Gene Networks
Author Juliane Schaefer, Rainer Opgen-Rhein, and Korbinian Strimmer.
Maintainer Korbinian Strimmer <strimmerlab@gmail.com>
Depends R (>= 2.15.1), corpcor (>= 1.6.7), longitudinal (>= 1.1.10), fdrtool (>= 1.2.13), igraph (>= 0.6)
Suggests
Description GeneNet is a package for analyzing gene expression (time series) data with focus on the inference of gene networks. In particular, GeneNet implements the methods of Schaefer and Strimmer (2005a,b,c) and Opgen-Rhein and Strimmer (2006, 2007) for learning large-scale gene association networks (including assignment of putative directions).
License GPL (>= 3)
URL http://strimmerlab.org/software/genenet/
NeedsCompilation no
Repository CRAN
Date/Publication 2015-01-21 00:48:38

R topics documented:

GeneNet-package .. 2
arth800 ... 2
cor0.test ... 3
coli ... 5
ggm.estimate.pcor ... 6
ggm.make.igraph ... 7
ggm.simulate.data .. 9
ggm.simulate.pcor .. 11
The GeneNet package

Description
GeneNet is a package for analyzing gene expression (time series) data with focus on the inference of gene networks. In particular, GeneNet implements the methods of Sch"afer and Strimmer (2005a,b,c) and Opgen-Rhein and Strimmer (2006, 2007) for learning large-scale gene association networks (including assignment of putative directions).

Author(s)
Juliane Sch"afer, Rainer Opgen-Rhein, and Korbinian Strimmer (http://strimmerlab.org/)

References
See website: http://strimmerlab.org/software/GeneNet/

See Also
ggm.estimate.pcor, network.test.edges, extract.network, network.make.dot.

Time Series Expression Data for 800 Arabidopsis Thaliana Genes

Description
This data set describes the temporal expression of 800 genes of *A. thaliana* during the diurnal cycle. The 800 genes are a subset of the data presented in Smith et al. (2004) and were selected for periodicity according to the method implemented in the R package GeneCycle (http://cran.r-project.org/web/packages/GeneCycle/).

Usage
data(arth800)
Format

arth800.expr is a *longitudinal* object with repetitions, and contains the log2 transformed expression data.

arth800.mexpr is a *longitudinal* object, and contains the mean expression levels of arth800.expr.

arth800.descr, arth800.name, arth800.probe, arth800.symbol are vectors containing additional information about each gene.

Source

The microarray experiments were performed in the laboratory of S. Smith (Edinburgh). The data are available from the NASCArrays database http://affymetrix.arabidopsis.info/ under experiment reference number NASCARRAYS-60.

References

Examples

```r
# load Genenet library
library("Genenet")

# load data set
data(arth800)

is.longitudinal(arth800.expr)
summary(arth800.expr)

# plot first nine time series
plot(arth800.expr, 1:9)
```

cor0.test Test of Vanishing (Partial) Correlation

Description

`cor0.test` computes a p-value for the two-sided test with the null hypothesis H0: rho == 0 versus the alternative hypothesis HA: rho != 0.

If method="student" is selected then the statistic \(t = r * \sqrt{\frac{(kappa-1)}{(1-r^2)}} \) is considered which under H0 is student-t distributed with df=kappa-1. This method is exact.

If method="dcorP" is selected then the p-value is computed directly from the distribution function `pcorP`. This method is also exact.

If method="ztransform" is selected then the p-value is computed using the z-transform (see `z.transform`), i.e. using a suitable chosen normal distribution. This method returns approximate p-values.
Usage

cor0.test(r, kappa, method=c("student", "dcor0", "ztransform"))

Arguments

r observed correlation
kappa degree of freedom of the null-distribution
method method used to compute the p-value

Value

A p-value.

Author(s)

See Also

dcor0, kappa2n, z.transform.

Examples

load GeneNet library
library("GeneNet")

covariance matrix
m.cov <- rbind(
 c(3,1,1,0),
 c(1,3,0,1),
 c(1,0,2,0),
 c(0,1,0,2)
)

compute partial correlations
m.pcor <- cor2pcor(m.cov)
m.pcor

corresponding p-values
assuming a sample size of 25, i.e. kappa=22
kappa2n(22, 4)
cor0.test(m.pcor, kappa=22)
cor0.test(m.pcor, kappa=22) < 0.05

p-values become smaller with larger r
cor0.test(0.7, 12)
cor0.test(0.8, 12)
cor0.test(0.9, 12)

comparison of various methods
cor0.test(0.2, 45, method="student")
Description

This data set describes the temporal expression of 102 genes of *E. Coli* after induction of the expression of SOD (recombinant human superoxide dismutase).

Usage

data(ecoli)

Format

caulobacter is a longitudinal object containing the data from the Schmidt-Heck et al. (2004) experiment. Essentially, this is a matrix with with 102 columns (=genes) and 9 rows (=time points). All expression levels are given in log2-ratios with respect to the first time point (i.e. the induction at time 0).

Source

The microarray experiment was performed at the Institute of Applied Microbiology, University of Agricultural Sciences of Vienne. The data and the experiment is described in Schmidt-Heck et al. (2004).

References

Examples

```r
# load GeneNet library
library("GeneNet")

# load data set
data(ecoli)
is.longitudinal(ecoli)

# how many samples and how many genes?
dim(ecoli)
summary(ecoli)
get.time.repeats(ecoli)
```
ggm.estimate.pcor

Description

ggm.estimate.pcor offers an interface to two related shrinkage estimators of partial correlation. Both are fast, statistically efficient, and can be used for analyzing small sample data.

The default method "statics" employs the function pcor.shrink whereas the "dynamic" method relies on dyn.pcor. The difference between the two estimators is that the latter takes the spacings between time points into account if the input are multiple time course data (these must be provided as longitudinal object).

Usage

ggm.estimate.pcor(x, method = c("static", "dynamic"), ...)

Arguments

x data matrix (each rows corresponds to one multivariate observation)
method method used to estimate the partial correlation matrix. Available options are "static" (the default) and "dynamic" - both are shrinkage methods.
... options passed to pcor.shrink and to dyn.pcor.

Details

For details of the shrinkage estimators we refer to Opgen-Rhein and Strimmer (2006a,b) and Sch"afer and Strimmer (2005), as well as to the manual pages of pcor.shrink and dyn.pcor.

Previously, this function offered several further options. The old option called "shrinkage" corresponds to the present "static" option. The other old options "observed.pcor", "partial.bagged.cor", and "bagged.pcor" are now considered obsolete and have been removed.

Value

An estimated partial correlation matrix.

Author(s)

References

See Also

ggm.simulate.data, ggm.estimate.pcor, pcor.shrink, and dyn.pcor.

Examples

```r
## Not run:

# load GeneNet library
library("GeneNet")

# generate random network with 40 nodes
# it contains 780=40*39/2 edges of which 5 percent (=39) are non-zero
true.pcor <- ggm.simulate.pcor(40)

# simulate data set with 40 observations
m.sim <- ggm.simulate.data(40, true.pcor)

# simple estimate of partial correlations
estimated.pcor <- cor2pcor( cor(m.sim) )

# comparison of estimated and true values
sum((true.pcor-estimated.pcor)^2)

# a slightly better estimate ...
estimated.pcor.2 <- ggm.estimate.pcor(m.sim)
sum((true.pcor-estimated.pcor.2)^2)

## End(Not run)
```
Description

ggm.make.igraph converts an edge list as obtained by `ggm.test.edges` into an igraph object. network.make.igraph is just an alias to network.make.igraph.
ggm.make.dot converts an edge list as obtained by `ggm.test.edges` into a "dot" file that can directly be used for plotting the network with graphviz. network.make.dot is just an alias to ggm.make.dot.

Usage

```r
ggm.make.igraph(edge.list, node.labels, show.edge.labels=FALSE)
network.make.igraph(edge.list, node.labels, show.edge.labels=FALSE)
ggm.make.dot(filename, edge.list, node.labels, main=NULL, show.edge.labels=FALSE)
network.make.dot(filename, edge.list, node.labels, main=NULL, show.edge.labels=FALSE)
```

Arguments

- `filename` name of file containing the "dot" commands for graphviz
- `edge.list` a data frame, as obtained by `ggm.test.edges`, listing all edges to be included in the graph
- `node.labels` a vector with labels for each node (will be converted to type character)
- `main` title included in plot
- `show.edge.labels` show partial correlation as edge labels (default: FALSE)
- `...` options passed to `plot` functions

Details

`ggm.make.dot` and `network.make.dot` produce 'dot' files for use with the graphviz software - see http://www.graphviz.org.

In the resulting plots, dotted lines indicate negative partial correlation. The strength of the partial correlation is visualized by the line width and the color of the edge: the strongest 20 percent of all edges are shown with thick black lines, whereas the weakest 20 percent are shown in thin grey lines.

Value

- `ggm.make.dot` produces a "dot" network description file that can directly be fed into the 'graphviz' in order to produce a plot of a network.
- `ggm.make.igraph` returns a graph object, suitable for plotting with functions from the igraph R package.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).
See Also

```
ggm.test.edges, plot.igraph.
```

Examples

```r
# load GeneNet library
library("GeneNet")

# generate random network with 20 nodes and 10 percent edges (=19 edges)
true.pcor <- ggm.simulate.pcor(20, 0.1)

# convert to edge list
data.frame(node1 = rownames(true.pcor)[1:19], node2 = colnames(true.pcor)[1:19])
data.frame(node1 = rownames(true.pcor)[1:19], node2 = colnames(true.pcor)[1:19])

# use igraph R package produce a plot

igr1 <- ggm.make.igraph(data.frame(node1 = rownames(true.pcor)[1:19], node2 = colnames(true.pcor)[1:19]),
plot(igr1, main = "A Random Graph")

igr2 <- ggm.make.igraph(data.frame(node1 = rownames(true.pcor)[1:19], node2 = colnames(true.pcor)[1:19]),
plot(igr2, main = "A Random Graph with Partial Correlations")

# igraph allows to fine-tune the plot
# e.g. smaller edge labels and red nodes:
plot(igr2, main = "A Random Graph with Partial Correlations",
    edge.label.cex=0.7, vertex.color="red")

# uncomment for actual use!

# nlab <- LETTERS[1:20]
# ggm.make.dot(filename="randomnet.dot", edge.list, nlab, main = "A graph")
# system("fdp -T svg -o randomnet.svg randomnet.dot") # SVG format
# system("fdp -T jpg -o randomnet.jpg randomnet.dot") # JPG format
```

ggm.simulate.data

Graphical Gaussian Models: Simulation of Data

Description

`ggm.simulate.data` takes a positive definite partial correlation matrix and generates an i.i.d. sample from the corresponding standard multinormal distribution (with mean 0 and variance 1). If the input matrix `pcor` is not positive definite an error is thrown.
Usage

ggm.simulate.data(sample.size, pcor)

Arguments

sample.size sample size of simulated data set
pcor partial correlation matrix

Value

A multinormal data matrix.

Author(s)

References

See Also

ggm.simulate.pcor, ggm.estimate.pcor.

Examples

```r
# load GeneNet library
library("GeneNet")

# generate random network with 40 nodes
# it contains 780=40*39/2 edges of which 5 percent (=39) are non-zero
true.pcor <- ggm.simulate.pcor(40)

# simulate data set with 40 observations
m.sim <- ggm.simulate.data(40, true.pcor)

# simple estimate of partial correlations
estimated.pcor <- cor2pcor( cor(m.sim) )

# comparison of estimated and true values
sum(((true.pcor-estimated.pcor)^2)

# a slightly better estimate ...
estimated.pcor.2 <- ggm.estimate.pcor(m.sim)
sum(((true.pcor-estimated.pcor.2)^2)
```
Description

`ggm.simulate.pcor` generates a random matrix of partial correlations that corresponds to a GGM network of a given size (`num.nodes`) with a specified fraction of non-zero edges.

Usage

```r
ggm.simulate.pcor(num.nodes, eta=0.05)
```

Arguments

- `num.nodes`: number of nodes in the network
- `eta`: fraction of edges with non-zero partial correlation (default: 0.05)

Details

The output of `ggm.simulate.pcor` is always positive definite. This is ensured by using diagonally dominant matrices when generating the random GGM model. For the full algorithm see Sch"afer and Strimmer (2005).

Value

A positive definite partial correlation matrix.

Author(s)

Juliane Sch"afer and Korbinian Strimmer (http://strimmerlab.org).

References

See Also

- `ggm.simulate.data.ggm.estimate.pcor`

Examples

```r
## Not run:

# load GeneNet library
library("GeneNet")

# generate random network with 40 nodes
```
ggm.test.edges

Graphical Gaussian Models: Assess Significance of Edges (and Directions)

Description

ggm.test.edges returns a data frame containing all edges listed in order of the magnitude of the partial correlation associated with each edge. If fdr=TRUE then in addition the p-values, q-values and posterior probabilities (=1 - local fdr) for each potential edge are computed.

network.test.edges is the same function as ggm.test.edges.

extract.network returns a data frame with a subset of significant edges.

Usage

ggm.test.edges(r.mat, fdr=TRUE, direct=FALSE, plot=TRUE, ...)
network.test.edges(r.mat, fdr=TRUE, direct=FALSE, plot=TRUE, ...)
extract.network(network.all, method.ggm=c("prob", "qval","number"),
cutoff.ggm=0.8, method.dir=c("prob","qval","number", "all"),
cutoff.dir=0.8, verbose=TRUE)

Arguments

- **r.mat**: matrix of partial correlations
- **fdr**: estimate q-values and local fdr
- **direct**: compute additional statistics for obtaining a partially directed network
- **plot**: plot density and distribution function and (local) fdr values
- **...**: parameters passed on to fdrtool
network.all list with partial correlations and fdr values for all potential edges (i.e. the output of network.test.edges

method.ggm determines which criterion is used to select significant partial correlations (default: prob)

cutoff.ggm default cutoff for significant partial correlations

method.dir determines which criterion is used to select significant directions (default: prob)

cutoff.dir default cutoff for significant directions

verbose print information on the number of significant edges etc.

Details

For assessing the significance of edges in the GGM a mixture model is fitted to the partial correlations using fdrtool. This results in (i) two-sided p-values for the test of non-zero correlation, (ii) corresponding posterior probabilities (= 1-local fdr), as well as (iii) tail area-based q-values. See Sch"afer and Strimmer (2005) for details.

For determining putative directions on this GGM log-ratios of standardized partial variances reestimated, and subsequently the corresponding (local) fdr values are computed - see Opgen-Rhein and Strimmer (2007).

Value

ggm.test.edges and network.test.edges return sorted data frame with the following columns:

pcov	correlation (from r.mat)
node1	first node connected to edge
node2	second node connected to edge
pval	p-value
qval	q-value
prob	probability that edge is nonzero (= 1-local fdr
log.spvar	log ratio of standardized partial variance (determines direction)
pval.dir	p-value (directions)
qval.dir	q-value (directions)
prob.dir	1-local fdr (directions)

Each row in the data frame corresponds to one edge, and the rows are sorted according the absolute strength of the correlation (from strongest to weakest)

extract.network processes the above data frame containing all potential edges, and returns a dataframe with a subset of edges. If applicable, an additional last column (11) contains additional information on the directionality of an edge.

Author(s)

Rainer Opgen-Rhein, Juliane Sch"afer, Korbinian Strimmer (http://strimmerlab.org).
References

See Also

cor0.test, fdrtool, ggm.estimate.pcor.

Examples

```r
# load GenNet library
library("GenNet")

# ecoli data
data(ecoli)

# estimate partial correlation matrix
inferred.pcor <- ggm.estimate.pcor(ecoli)

# p-values, q-values and posterior probabilities for each potential edge
#
test.results <- ggm.test.edges(inferred.pcor)

# show best 20 edges (strongest correlation)
test.results[1:20,]

# extract network containing edges with prob > 0.9 (i.e. local fdr < 0.1)
et <- extract.network(test.results, cutoff.ggm=0.9)
net

# how many are significant based on FDR cutoff Q=0.05 ?
num.significant.1 <- sum(test.results$qval <= 0.05)
test.results[1:num.significant.1,]

# how many are significant based on "local fdr" cutoff (prob > 0.9) ?
num.significant.2 <- sum(test.results$prob > 0.9)
test.results[test.results$prob > 0.9,]

# parameters of the mixture distribution used to compute p-values etc.
c <- fdrtool(sm2vec(inferred.pcor), statistic="correlation")
c$params
```
kappa2n

Relationship Between Sample Size and the Degree of Freedom of Correlation Distribution

Description
The function kappa2n returns the sample size that corresponds to a given degree of freedom kappa, whereas n2kappa converts sample size to the corresponding degree of freedom.

Usage
kappa2n(kappa, p=2)
n2kappa(n, p=2)

Arguments
kappa degree of freedom
p number of variables (p=2 corresponds to simple correlation)
n sample size

Details
The degree of freedom kappa of the sample distribution of the empirical correlation coefficient depends both on the sample size n and the number p of investigated variables, i.e. whether simple or partial correlation coefficients are being considered. For p=2 (simple correlation coefficient) the degree of freedom equals kappa = n-1, whereas for arbitrary p (with p-2 variables eliminated in the partial correlation coefficient) kappa = n-p+1 (see also dcor0).

Value
The sample size n corresponding to a given kappa, or the degree of freedom kappa corresponding to a given p.

Author(s)

See Also
dcor0.

Examples
load GeneNet library
library("GeneNet")

sample sizes corresponding to kappa=7
kappa2n(7) # simple correlation
kappa2n(7, 40) # partial correlation with p=40 variables

degree of freedom corresponding to n=100
n2kappa(100)
n2kappa(100, 40)

Description

z.transform implements Fisher’s (1921) first-order and Hotelling’s (1953) second-order transformations to stabilize the distribution of the correlation coefficient. After the transformation the data follows approximately a normal distribution with constant variance (i.e. independent of the mean).

The Fisher transformation is simply \(z_{\text{transform}}(r) = \text{atanh}(r) \).

Hotelling’s transformation requires the specification of the degree of freedom kappa of the underlying distribution. This depends on the sample size n used to compute the sample correlation and whether simple or partial correlation coefficients are considered. If there are p variables, with p-2 variables eliminated, the degree of freedom is \(\kappa = n - p + 1 \). (cf. also *dcorP*).

Usage

```r
z.transform(r)
hotelling.transform(r, kappa)
```

Arguments

- `r` vector of sample correlations
- `kappa` degrees of freedom of the distribution of the correlation coefficient

Value

The vector of transformed sample correlation coefficients.

Author(s)

Korbinian Strimmer (http://strimmerlab.org).

References

z.transform

See Also
dcor0, kappa2n.

Examples

load GeneNet library
library("genenet")

small example data set
r <- c(-0.26074194, 0.47251437, 0.23957283,-0.02187209,-0.07699437,
 -0.03809433,-0.06010493, 0.01334491,-0.42383367,-0.25513041)

transformed data
z1 <- z.transform(r)
z2 <- hotelling.transform(r,7)
z1
z2
Index

*Topic **datasets**
 arth800, 2
 ecoli, 5

*Topic **hplot**
 ggm.make.igraph, 7

*Topic **htest**
 cor0.test, 3
 ggm.estimate.pcor, 6
 ggm.test.edges, 12

*Topic **multivariate**
 GeneNet-package, 2
 ggm.simulate.data, 9
 ggm.simulate.pcor, 11

*Topic **univar**
 kappa2n, 15
 z.transform, 16

arth800, 2

cor0.test, 3, 14

dcor0, 4, 15–17
dyn.pcor, 6, 7

ecoli, 5
extract.network, 2
extract.network(ggm.test.edges), 12

fdrtool, 12–14

GeneNet-package, 2
 ggm.estimate.pcor, 2, 6, 7, 10, 11, 14
 ggm.make.dot(ggm.make.igraph), 7
 ggm.make.igraph, 7
 ggm.simulate.data, 7, 9, 11
 ggm.simulate.pcor, 10, 11
 ggm.test.edges, 8, 9, 12

 hotelling.transform(z.transform), 16
kappa2n, 4, 15, 17

longitudinal, 3, 5, 6

n2kappa (kappa2n), 15
network.make.dot, 2
network.make.dot(ggm.make.igraph), 7
network.make.igraph(ggm.make.igraph), 7
network.test.edges, 2
network.test.edges(ggm.test.edges), 12

pcor.shrink, 6, 7
pcor0, 3

z.transform, 3, 4, 16