Modeler: Classes and Methods for Training and Using Binary Prediction Models

Defines classes and methods to learn models and use them to predict binary outcomes. These are generic tools, but we also include specific examples for many common classifiers.

Version: 3.4.2
Depends: R (≥ 2.10), ClassDiscovery, ClassComparison, oompaBase
Imports: methods, stats, class, rpart, TailRank, e1071, randomForest, nnet, neuralnet
Suggests: Biobase
Published: 2017-07-13
Author: Kevin R. Coombes
Maintainer: Kevin R. Coombes <krc at>
License: Apache License (== 2.0)
NeedsCompilation: no
Materials: NEWS
CRAN checks: Modeler results


Reference manual: Modeler.pdf
Vignettes: Modeler
Package source: Modeler_3.4.2.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X El Capitan binaries: r-release: Modeler_3.4.2.tgz
OS X Mavericks binaries: r-oldrel: Modeler_3.4.2.tgz

Reverse dependencies:

Reverse depends: CrossValidate


Please use the canonical form to link to this page.