Package ‘MuMIn’

January 7, 2016
Type Package
Title Multi-Model Inference
Version 1.15.6
Date 2015-12-21
Encoding UTF-8
Author Kamil Barton
Maintainer Kamil Bartori <kamil.barton@go2.pl>

Description Model selection and model averaging based on information criteria
(AICc and alike).

License GPL-2
Depends R (>=3.0.0)
Imports graphics, methods, Matrix, stats, stats4

Suggests lme4 (>= 1.1.0), nlme, mgev (>= 1.7.5), gamm4, MASS, nnet,
survival, geepack

Enhances aod, aods3, betareg, caper, coxme, cplm, gee, glmmML,
logistf, MCMCglmm, ordinal, pscl, spdep, splm, unmarked, geeM
>=0.7.5)

LazyData yes

ByteCompile yes

Repository CRAN

Repository/R-Forge/Project mumin
Repository/R-Forge/Revision 389
Repository/R-Forge/DateTimeStamp 2016-01-07 00:55:20
Date/Publication 2016-01-07 10:42:47

NeedsCompilation no

2

MuMIn-package

R topics documented:

MuMlIn-package 2
AICC . . . e 4
arm.glm . . . L 5
Beetle e 7
Cement e 9
dredge L e 10
eXprApply . . .o e 15
Formula manipulation 17
getmodels L e e e 18
GPA . . e 19
IMPOTTANCE v v v v v bt e e e e e e e e e e e e e e e e e 20
Information criteria Lo 21
merge.model.selection e 22
Model utilities L e 24
model.avg L e e e 25
model.sel e 29
model.selection.object L L 31
MuMIn-models e 32
nested e e e 33
PATAVE . o o o e e e e e e e e e e e 35
pdredge 36
plotmodel.selection 39
predict.averaging L 40
QAIC . . e 42
QIC . . e 44
rsquaredGLMM oL 46
rsquaredLRo 47
std.coef 49
Stdize 51
subset.model.selection Lo 54
updateable e 56
Weights e e e 59
Index 61
MuMIn-package Multi-model inference
Description

The package MuMIn contains functions to streamline information-theoretic model selection and
carry out model averaging based on the information criteria.

MuMIn-package 3

Details
The collection of functions includes:

dredge performs automated model selection with subsets of the supplied ‘global’ model, and op-
tional choices of other model properties (such as different link functions). The set of models
may be generated either with ‘all possible’ combinations, or tailored according to the condi-
tions specified.

pdredge does the same, but can parallelize model fitting process using a cluster.
model.sel creates a model selection table from hand-picked models.
model.avg calculates model averaged parameters, with standard errors and confidence intervals.

AICc calculates second-order Akaike information criterion.

For a complete list of functions, use library(help = "MuMIn").

By default, AIC, is used to rank the models and to obtain model weights, though any other infor-
mation criteria can be utilised. At least the following ones are currently implemented in R: AIC and
BIC in package stats, and QAIC, QAICc, ICOMP, CAICF, and Mallows’ Cp in MuMIn. There is also
DIC extractor for MCMC models, and QIC for GEE.

Most of R’s common modelling functions are supported, for a full inventory see list of supported
models.

Author(s)

Kamil Barton

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

See Also

AIC, step or stepAIC for stepwise model selection by AIC.

Examples
options(na.action = "na.fail”) # change the default "na.omit” to prevent models
from being fitted to different datasets in
case of missing values.
fml <- Im(y ~ ., data = Cement)

ms1 <- dredge(fm1)
Visualize the model selection table:

par(mar = c(3,5,6,4))
plot(ms1, labAsExpr = TRUE)

model.avg(ms1, subset = delta < 4)

4 AlCc

confset.95p <- get.models(ms1, cumsum(weight) <= .95)
avgmod.95p <- model.avg(confset.95p)

summary (avgmod. 95p)

confint(avgmod. 95p)

AICc Second-order Akaike Information Criterion

Description

Calculate Second-order Akaike Information Criterion for one or several fitted model objects (AIC,,
AIC for small samples).

Usage
AICc(object, ..., k = 2, REML = NULL)
Arguments
object a fitted model object for which there exists a logLik method, or a "logLik"
object.
optionally more fitted model objects.
k the ‘penalty’ per parameter to be used; the default k = 2 is the classical AIC.
REML optional logical value, passed to the loglLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.
Value

If just one object is provided, returns a numeric value with the corresponding AIC,; if more than
one object are provided, returns a data. frame with rows corresponding to the objects and columns
representing the number of parameters in the model (df) and AIC,.

Note

AIC, should be used instead AIC when sample size is small in comparison to the number of esti-
mated parameters (Burnham & Anderson 2002 recommend its use when n/K < 40).

Author(s)

Kamil Barton

arm.glm 5

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Hurvich, C. M. and Tsai, C.-L. (1989) Regression and time series model selection in small samples,
Biometrika 76: 297-307.
See Also

Akaike’s An Information Criterion: AIC

Other implementations: AICc in package AICecmodavg, AICc in package bbmle and aicc in pack-
age glmulti

Examples
#Model-averaging mixed models
options(na.action = "na.fail")
data(Orthodont, package = "nlme")
Fit model by REML
fm2 <- lme(distance ~ Sexxage, data = Orthodont,

random = ~ 1|Subject / Sex, method = "REML")

Model selection: ranking by AICc using ML
ms2 <- dredge(fm2, trace = TRUE, rank = "AICc", REML = FALSE)

(attr(ms2, "rank.call"))

Get the models (fitted by REML, as in the global model)
fmList <- get.models(ms2, 1:4)

Because the models originate from 'dredge(..., rank = AICc, REML = FALSE)',
the default weights in 'model.avg' are ML based:
summary (model.avg(fmList))

Not run:
the same result:

model.avg(fmList, rank = "AICc", rank.args = list(REML = FALSE))

End(Not run)

arm.glm Adaptive Regression by Mixing

Description

Combine all-subsets GLMs using the ARM algorithm.

6 arm.glm

Usage
arm.glm(object, R = 250, weight.by = c("aic", "loglik"), trace = FALSE)

Arguments
object a fitted “global” glm object.
R number of permutations.
weight.by indicates whether model weights should be calculated with AIC or log-likelihood.
trace if TRUE, information is printed during the running of arm.glm.
Details

For each of all-subsets of the “global” model, parameters are estimated using randomly sampled half
of the data. Log-likelihood given the remaining half of the data is used to calculate AIC weights.
This is repeated R times and mean of the weights is used to average all-subsets parameters estimated
using complete data.

Value
An object of class "averaging” contaning only “full” averaged coefficients. See model.avg for
object description.

Note
Number of parameters is limited to floor (nobs(object) / 2) - 1. All-subsets respect marginal-
ity constraints.

Author(s)

Kamil Barton

References

Yang Y. (2001) Adaptive Regression by Mixing. Journal of the American Statistical Association
96: 574-588.

Yang Y. (2003) Regression with multiple candidate models: selecting or mixing? Statistica Sinica
13: 783-810.

See Also

model.avg, par.avg

Other implementation: arms in (archived) package MMIX.

Examples

fm <- glm(y ~ X1 + X2 + X3 + X4, data = Cement)

summary (arm.glm(fm, R = 25))

Beetle 7

Beetle Flour beetle mortality data

Description

Mortality of flour beetles (Tribolium confusum) due to exposure to gaseous carbon disulfide CSa,
from Bliss (1935).

Usage

Beetle

Format

Beetle is a data frame with 5 elements.

Prop a matrix with two columns named nkilled and nsurvived
mortality observed mortality rate

dose the dose of CSs in mg/L

n.tested number of beetles tested

n.killed number of beetles killed.

Source

Bliss C. L. (1935) The calculation of the dosage-mortality curve. Annals of Applied Biology, 22:
134-167.

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Examples

"Logistic regression example”
from Burnham & Anderson (2002) chapter 4.11
Fit a global model with all the considered variables

globmod <- glm(Prop ~ dose + I(dose”2) + log(dose) + I(log(dose)*2),
data = Beetle, family = binomial, na.action = na.fail)
A logical expression defining the subset of models to use:
x either log(dose) or dose
x the quadratic terms can appear only together with linear terms
msubset <- expression(xor(dose, ‘log(dose)‘) &
dc(dose, ‘I(dose*2)‘) &
dc(“log(dose)®, “I(log(dose)*2)*))

Beetle

Table 4.6
Use 'varying' argument to fit models with different link functions
Note the use of 'alist' rather than 'list' in order to keep the
'family' objects unevaluated
varying.link <- list(family = alist(
logit = binomial("logit"),
probit = binomial("probit"),
cloglog = binomial("cloglog")
))

(ms12 <- dredge(globmod, subset = msubset, varying = varying.link,
rank = AIC))

Table 4.7 "models justifiable a priori”
(ms3 <- subset(ms12, has(dose, !‘I(dose”2)")))
The same result, but would fit the models again:
ms3 <- update(ms12, update(globmod, . ~ dose), subset =,
fixed = ~dose)
mod3 <- get.models(ms3, 1:3)
Table 4.8. Predicted mortality probability at dose 40.
calculate confidence intervals on logit scale
logit.ci <- function(p, se, quantile = 2) {
C. <- exp(quantile x se / (p * (1 - p)))
p/(p+ (1 -p)=*c(C., 1/C.))

mavg3 <- model.avg(mod3, revised.var = FALSE)

get predictions both from component and averaged models

pred <- lapply(c(component = mod3, list(averaged = mavg3)), predict,
newdata = list(dose = 40), type = "response”, se.fit = TRUE)

reshape predicted values

pred <- t(sapply(pred, function(x) unlist(x)[1:21))

colnames(pred) <- c("fit", "se.fit")

build the table
tab <- cbind(
c(Weights(ms3), NA),
pred,
matrix(logit.ci(pred[,"fit"], pred[,"se.fit"],
quantile = c(rep(1.96, 3), 2)), ncol = 2)

)
colnames(tab) <- c("Akaike weight"”, "Predicted(40)", "SE", "Lower CI",
"Upper CI")
rownames(tab) <- c(as.character(ms3$family), "model averaged")
print(tab, digits = 3, na.print = "")
Figure 4.3

newdata <- list(dose = seq(min(Beetle$dose), max(Beetle$dose), length.out = 25))

add model-averaged prediction with CI, using the same method as above
avpred <- predict(mavg3, newdata, se.fit = TRUE, type = "response”)

avci <- matrix(logit.ci(avpred$fit, avpred$se.fit, quantile = 2), ncol = 2)

Cement

matplot(newdata$dose, sapply(mod3, predict, newdata, type = "response”),
type = "1", xlab = quote(list("Dose of" ~ CS[2],(mg/L))),
ylab = "Mortality”, col = 2:4, 1ty = 3, 1lwd =1

)

matplot(newdata$dose, cbind(avpred$fit, avci), type = "1", add = TRUE,
lwd = 1, 1ty = c(1, 2, 2), col = 1)

legend("topleft”, NULL, c(as.character(ms3$family), expression(‘averaged®
%t=% CI)), 1ty = c(3, 3, 3, 1), col = c(2:4, 1))

Cement Cement hardening data

Description

Cement hardening data from Woods et al (1932).

Usage

Cement

Format

Cement is a data frame with 5 variables. x1-x4 are four predictor variables expressed as a percent-
age of weight.

y calories of heat evolved per gram of cement after 180 days of hardening
X1 calcium aluminate

X2 tricalcium silicate

X3 tetracalcium alumino ferrite

X4 dicalcium silicate.

Source

Woods H., Steinour H.H., Starke H.R. (1932) Effect of composition of Portland cement on heat
evolved during hardening. Industrial & Engineering Chemistry 24, 1207-1214.

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

10

dredge

dredge

Automated model selection

Description

Generate a set of models with combinations (subsets) of terms in the global model, with optional
rules for model inclusion.

Usage

dredge(global.model, beta = c("none”, "sd”, "partial.sd"), evaluate = TRUE,
rank = "AICc", fixed = NULL, m.lim = NULL, m.min, m.max, subset,

trace =

FALSE, varying, extra, ct.args = NULL, ...)

S3 method for class 'model.selection'
print(x, abbrev.names = TRUE, warnings = getOption("warn”) != -1L, ...)

Arguments

global.model
beta

evaluate

rank

fixed

a fitted ‘global’ model object. See ‘Details’ for a list of supported types.

indicates whether and how the coefficients estimates should be standardized,
and must be one of "none”, "sd” or "partial.sd”. You can specify just
the initial letter. "none” corresponds to unstandardized coefficients, "sd" and
"partial.sd” to coefficients standardized by SD and Partial SD, respectively.
For backwards compatibility, logical value is also accepted, TRUE is equivalent
to "sd" and FALSE to "none”. See std. coef.

whether to evaluate and rank the models. If FALSE, a list of unevaluated calls
is returned.

optional custom rank function (returning an information criterion) to be used
instead AICc, e.g. AIC, QAIC or BIC. See ‘Details’.

optional, either a single sided formula or a character vector giving names of
terms to be included in all models. See ‘Subsetting’.

m.lim, m.max, m.min

subset

trace

varying

optionally, the limits c(lower, upper) for number of terms in a single model
(excluding the intercept). An NA means no limit. See ‘Subsetting’. Specifying
limits as m.min and m.max is allowed for backward compatibility.

logical expression describing models to keep in the resulting set. See ‘Subset-
ting’.

if TRUE or 1, all calls to the fitting function are printed before actual fitting takes
place. If trace > 1, a progress bar is displayed.

optionally, a named list describing the additional arguments to vary between the
generated models. Item names correspond to the arguments, and each item pro-
vides a list of choices (i.e. list(argl = list(choicel, choice2, ...), ...)).

dredge 11

Complex elements in the choice list (such as family objects) should be either
named (uniquely) or quoted (unevaluated, e.g. using alist, see quote), other-
wise the result may be visually unpleasant. See example in Beetle.

extra optional additional statistics to include in the result, provided as functions, func-
tion names or a list of such (best if named or quoted). Similarly as in rank
argument, each function must accept fitted model object as an argument and
return (a value coercible to) a numeric vector. These can be e.g. additional in-
formation criterions or goodness-of-fit statistics. The character strings "R*2"
and "adjR*2" are treated in a special way, and will add a likelihood-ratio based
R? and modified-R? respectively to the result (this is more efficient than using
r.squaredLR directly).

X amodel.selection object, returned by dredge.
abbrev.names should printed term names be abbreviated? (useful with complex models).

warnings if TRUE, errors and warnings issued during the model fitting are printed below
the table (only with pdredge). To permanently remove the warnings, set the
object’s attribute "warnings” to NULL.

ct.args optional list of arguments to be passed to coefTable (e.g. dispersion param-
eter for glm affecting standard errors used in subsequent model averaging).

optional arguments for the rank function. Any can be an unevaluatec expres-
sion, in which case any x within it will be substituted with a current model.

Details

Models are fitted through repeated evaluation of modified call extracted from the global.model
(in a similar fashion as with update). This approach, while robust in that it can be applied to most
model types is not the most efficient and may be computationally-intensive.

Note that the number of combinations grows exponentially with number of predictors (2, less
when interactions are present, see below).

The fitted model objects are not stored in the result. To get (a subset of) models, use get.models
on the object returned by dredge.

For a list of model types that can be used as a global.model see list of supported models. Mod-
elling functions not storing call in their result should be evaluated via the wrapper function created
by updateable.

Information criterion: rank is found by a call to match. fun and may be specified as a function
or a symbol or a character string specifying a function to be searched for from the environment of
the call to dredge. The function rank must accept model object as its first argument and always
return a scalar.

Interactions: By default, marginality constraints are respected, so “all possible combinations”
include only those containing interactions with their respective main effects and all lower order
terms. However, if global.model makes an exception to this principle (e.g. due to a nested
design suchasa / (b + d)), this will be reflected in the subset models.

Subsetting: There are three ways to constrain the resulting set of models: setting limits to the
number of terms in a model with m.1im, binding term(s) to all models with fixed, and more

12

dredge

complex rules can be applied using argument subset. To be included in the selection table, the
model formulation must satisfy all these conditions.

subset can take either a form of an expression or a matrix. The latter should be a lower trian-
gular matrix with logical values, where columns and rows correspond to global.model terms.
Value subset["a"”, "b"] == FALSE will exclude any model containing both terms a and b.
demo(dredge. subset) has examples of using the subset matrix in conjunction with correlation
matrices to exclude models containing collinear predictors.

In the form of expression, the argument subset acts in a similar fashion to that in the function
subset for data. frames: model terms can be referred to by name as variables in the expression,
with the difference being that are interpreted as logical values (i.e. equal to TRUE if the term exists
in the model).

There is also . (x) and . (+x) notation indicating, respectively, any and all interactions including
a term x. It is only useful with marginality exceptions.

The expression can contain any of the global .model terms (getAllTerms(global.model) lists
them), as well as names of the varying argument items. Names of global.model terms take
precedence when identical to names of varying, so to avoid ambiguity varying variables in
subset expression should be enclosed in V() (e.g. subset = V(family) == "Gamma" assuming
that varying is something like list(family = c(..., "Gamma"))).

If item names in varying are missing, the items themselves are coerced to names. Call and sym-
bol elements are represented as character values (via deparse), and everything except numeric,
logical, character and NULL values is replaced by item numbers (e.g. varying = list(family =
list(..., Gamma) should be referred to as subset = V(family) == 2. This can quickly
become confusing, therefore it is recommended to use named lists. demo(dredge.varying) pro-
vides examples.

The subset expression can also contain variable “*nvar#*" (backtick-quoted), equal to number of
terms in the model (not the number of estimated parameters).

To make inclusion of a model term conditional on presence of another model term, the function
dc (“dependency chain”) can be used in the subset expression. dc takes any number of term
names as arguments, and allows a term to be included only if all preceding ones are also present
(e.g. subset = dc(a, b, c) allows for models a, a+b and a+b+c but not b, c, b+c or a+c).

subset expression can have a form of an unevaluated call, expression object, or a one sided
formula. See ‘Examples’.

Compound model terms (such as interactions, ‘as-is’ expressions within I() or smooths in gam)
should be enclosed within curly brackets (e.g. {s(x,k=2)3}), or backticks (like non-syntactic
names, e.g. “s(x, k = 2)7). Backticks-quoted names must match exactly (including whitespace)
the term names as given by getAllTerms.

subset expression syntax summary:

a & b indicates that model terms a and b must be present (see Logical Operators)

{log(x,2)}or ‘log(x, 2)° represent a complex model term log(x, 2)

V(x) represents a varying variable x

. (x) indicates that at least one term containing the term x must be present

. (+x) indicates that all the terms containing the term x must be present

dc(a, b, c,...) ‘dependency chain’: b is allowed only if a is present, and c only if both a
and b are present, etc.

‘xnvar*‘ number of terms.

dredge 13

To simply keep certain terms in all models, use of argument fixed is much more efficient. The
fixed formula is interpreted in the same manner as model formula and so the terms need not to
be quoted.

Missing values: Use of na.action = "na.omit"” (R’s default) or "na.exclude” in global .model
must be avoided, as it results with sub-models fitted to different data sets, if there are missing val-
ues. Error is thrown if it is detected.

It is a common mistake to give na.action as an argument in the call to dredge (typically resulting
in an error from the rank function to which the argument is passed through °...”), while the correct
way is either to pass na.action in the call to the global model or to set it as a global option.

Methods: There are subset and plot methods, the latter creates a graphical representation
of model weights and variable relative importance. Coefficients can be extracted with coef or
coefTable.

Value

An object of class c("model.selection”, "data.frame"), being a data.frame, where each row
represents one model. See model.selection.object for its structure.

Note

Users should keep in mind the hazards that a “thoughtless approach™ of evaluating all possible
models poses. Although this procedure is in certain cases useful and justified, it may result in
selecting a spurious “best” model, due to the model selection bias.

“Let the computer find out” is a poor strategy and usually reflects the fact that the researcher did
not bother to think clearly about the problem of interest and its scientific setting (Burnham and
Anderson, 2002).

Author(s)

Kamil Barton

See Also

pdredge is a parallelized version of this function (uses a cluster).
get.models, model.avg. model. sel for manual model selection tables.

Possible alternatives: glmulti in package glmulti and bestglm (bestglm). regsubsets in package
leaps also performs all-subsets regression.

Lasso variable selection provided by various packages, e.g. glmnet, lars or glmmLasso.
Examples

Example from Burnham and Anderson (2002), page 100:

prevent fitting sub-models to different datasets

options(na.action = "na.fail")

14

dredge

fml <- Im(y ~ ., data = Cement)
dd <- dredge(fm1)
subset(dd, delta < 4)

Visualize the model selection table:

par(mar = c(3,5,6,4))
plot(dd, labAsExpr = TRUE)

Model average models with delta AICc < 4
model.avg(dd, subset = delta < 4)

#or as a 95% confidence set:
model.avg(dd, subset = cumsum(weight) <= .95) # get averaged coefficients

#'Best' model
summary(get.models(dd, 1)[[1]1])

Not run:

Examples of using 'subset':

keep only models containing X3

dredge(fml, subset = ~ X3) # subset as a formula

dredge(fm1, subset = expression(X3)) # subset as expression object
the same, but more effective:

dredge(fml, fixed = "X3")

exclude models containing both X1 and X2 at the same time
dredge(fm1, subset = ! (X1 && X2))

Fit only models containing either X3 or X4 (but not both);

include X3 only if X2 is present, and X2 only if X1 is present.
dredge(fm1, subset = dc(X1, X2, X3) && xor(X3, X4))

the same as above, without "dc”

dredge(fm1, subset = (X1 | !X2) && (X2 | !X3) && xor(X3, X4))

Include only models with up to 2 terms (and intercept)
dredge(fm1, m.lim = c(0, 2))

End(Not run)

Add R*2 and F-statistics, use the 'extra' argument
dredge(fm1, m.lim = c(NA, 1), extra = c("R*2", F = function(x)
summary (x)$fstatistic[[1]1]1))

with summary statistics:
dredge(fm1, m.lim = c(NA, 1), extra = list(
"RA2", "%" = function(x) {
s <- summary(x)
c(Rsq = s$r.squared, adjRsq = s$adj.r.squared,
F = s$fstatistic[[1]1])
»
)

Add other information criterions (but rank with AICc):

exprApply 15

dredge(fm1, m.lim = c(NA, 1), extra = alist(AIC, BIC, ICOMP, Cp))

exprApply Apply a function to calls inside an expression

Description

Apply function FUN to each occurence of a call to what() (or a symbol what) in an unevaluated
expression. It can be used for advanced manipulation of expressions. Intended primarily for internal

use.
Usage
exprApply(expr, what, FUN, ..., symbols = FALSE)
Arguments
expr an unevaluated expression.
what character string giving the name of a function. Each call to what inside expr will
be passed to FUN. what can be also a character representation of an operator or
parenthesis (including curly and square brackets) as these are primitive functions
in R. Set what to NA to match all names.
FUN a function to be applied.
symbols logical value controlling whether FUN should be applied to symbols as well as
calls.
optional arguments to FUN.
Details

FUN is found by a call to match. fun and can be either a function or a symbol (e.g., a backquoted
name) or a character string specifying a function to be searched for from the environment of the call
to exprApply.

Value

A (modified) expression.

Note

If expr has a source reference information ("srcref” attribute), modifications done by exprApply
will not be visible when printed unless srcref is removed. However, exprApply does remove
source reference from any function expression inside expr.

Author(s)

Kamil Barton

16 exprApply

See Also

Expression-related functions: substitute, expression, quote and bquote.
Similar function walkCode exists in package codetools.

Functions useful inside FUN: as.name, as.call, call, match.call etc.

Examples

simple usage:
print all Y(...) terms in a formula (note that symbol "Y" is omitted):
exprApply(~ X(1) + Y(2 + Y(4)) + N(CY + Y(3)), "Y", print)

replace X() with log(X, base
exprApply (expression(A() + B()
expr[[2]] <- expr[[1]]

exprf[1]] <- as.name("log")
expr$base <- base
expr

}, base = 10)

n)
c()), c("A", "B", "C"), function(expr, base) {

+

fizizd

TASK: fit 1lm with two poly terms, varying the degree from 1 to 3 in each.
Im(y ~ poly(X1, degree = a) + poly(X2, degree = b), data = Cement)

for a ={1,2,3} and b = {1,2,3}

First we create a wrapper function for 1m. Within it, use "exprApply” to add
"degree"” argument to all occurences of "poly()" having "X1" or "X2" as the
first argument. Values for "degree" are taken from arguments "d1"” and "d2"

Impolywrap <- function(formula, d1 = NA, d2 = NA, ...) {
cl <- origCall <- match.call()
cl[[1]1] <- as.name("1m")
cl$formula <- exprApply(formula, "poly”, function(e, degree, x) {
i <- which(e[[2]1] == x)[1]
if(lis.na(i) && !is.na(degree[i])) e$degree <- degree[il]
e
}, degree = c(d1, d2), x = c("X1", "X2"))
cl$d1 <- cl$d2 <- NULL
fit <- eval(cl, parent.frame())
fit$call <- origCall # replace the stored call
fit
3

global model:
fm <- lmpolywrap(y ~ poly(X1) + poly(X2), data = Cement)

Use "dredge"” with argument "varying” to generate calls of all combinations of
degrees for poly(X1) and poly(X2). Use "fixed = TRUE" to keep all global model
terms in all models.

Since "dredge"” expects that global model has all the coefficients the
submodels can have, which is not the case here, we first generate model calls,
evaluate them and feed to "model.sel”

N

Formula manipulation 17

modCalls <- dredge(fm,
varying = list(dl = 1:3, d2 = 1:3),
fixed = TRUE,
evaluate = FALSE

)

model.sel(models <- lapply(modCalls, eval))

Note: to fit *allx submodels replace "fixed = TRUE" with:

"subset = (d1==1 || {poly(X1)}) && (d2==1 || {poly(X2)})"
This is to avoid fitting 3 identical models when the matching "poly()"” term is
absent.

Formula manipulation Manipulate model formulas

Description

simplify.formula rewrites a formula using shorthand notation. Currently only the factor crossing
operator * is applied, so that expanded expression such as a+b+a:b becomes a*b. expand. formula
does the opposite, additionally expanding other expressions, i.e. all nesting (/), grouping and *.

Usage

simplify.formula(x)
expand. formula(x)

Arguments
X a formula or an object from which it can be extracted (such as a fitted model
object).
Author(s)

Kamil Barton

See Also

formula

delete.response, drop.terms, and reformulate

Examples

simplify.formula(y ~ a + b + a:b + (c + b)*2)
simplify.formula(y ~ a + b + a:b + @)

expand.formula(~ a * b)

18 get.models

get.models Retrieve models from selection table

Description

Generate or extract a list of fitted model objects from a "model.selection” table, optionally using
parallel computation in a cluster.

Usage
get.models(object, subset, cluster = NA, ...)
Arguments
object object returned by dredge.
subset subset of models, an expression evaluated within the model selection table (see
‘Details’).
cluster optionally, a "cluster” object. If it is a valid cluster, models are evaluated
using parallel computation.
additional arguments to update the models. For example, in 1me one may want
to use method = "REML" while using "ML" for model selection.
Details

The argument subset must be explicitely provided. This is to assure that a potentially long list of
models is not fitted unintentionally. To evaluate all models, set subset to NA or TRUE.

If subset is a character vector, it is interpreted as names of rows to be selected.

Value

list of fitted model objects.

Note

pget.models is still available, but is deprecated.

Author(s)

Kamil Barton

See Also

dredge and pdredge, model . avg

makeCluster in packages parrallel and snow

GPA 19

Examples

Mixed models:

fm2 <- 1me(distance ~ age + Sex, data = Orthodont,
random = ~ 1 | Subject, method = "ML")
ms2 <- dredge(fm2)

Get top-most models, but fitted by REML:
(confset.d4 <- get.models(ms2, subset = delta < 4, method = "REML"))

Not run:
Get the top model:
get.models(ms2, subset = 1)[[1]]

End(Not run)

GPA Grade Point Average data

Description

First-year college Grade Point Average (GPA) from Graybill and Iyer (1994).

Usage
GPA

Format

GPA is a data frame with 5 variables. y is the first-year college Grade Point Average (GPA) and
x1-x4 are four predictor variables from standardized tests (SAT) administered before matriculation.

y GPA

x1 math score on the SAT
x2 verbal score on the SAT
x3 high school math

x4 high school English

Source

Graybill, FA. and Iyer, H.K. (1994). Regression analysis: concepts and applications. Duxbury
Press, Belmont, CA.

20 importance

References

Burnham, K. P. and Anderson, D. R (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

importance Relative variable importance

Description

Sum of ‘Akaike weights’ over all models including the explanatory variable.

Usage
importance(x)
Arguments
X either a list of fitted model objects, or a "model.selection” or "averaging"
object.
Value

a numeric vector of so called relative importance values, named as the predictor variables.

Author(s)

Kamil Barton

See Also

Weights

dredge, model.avg, model.sel

Examples

Generate some models
fml <- Im(y ~ ., data = Cement, na.action = na.fail)
ms1 <- dredge(fm1)

Importance can be calculated/extracted from various objects:
importance(ms1)

Not run:

importance(subset(model.sel(ms1), delta <= 4))
importance(model.avg(ms1, subset = delta <= 4))
importance(subset(ms1, delta <= 4))

importance(get.models(ms1, delta <= 4))

Information criteria 21

End(Not run)

Re-evaluate the importances according to BIC
note that re-ranking involves fitting the models again

'nobs' is not used here for backwards compatibility
lognobs <- log(length(resid(fm1)))

importance(subset(model.sel(ms1, rank = AIC, rank.args = list(k = lognobs)),
cumsum(weight) <= .95))

This gives a different result than previous command, because 'subset' is

applied to the original selection table that is ranked with 'AICc'

importance(model.avg(ms1, rank = AIC, rank.args = list(k = lognobs),
subset = cumsum(weight) <= .95))

Information criteria Various information criteria

Description

Calculate Mallows’ Cp and Bozdogan’s ICOMP and CAIFC information criteria.

Extract or calculate Deviance Information Criterion from MCMCglmm and merMod object.

Usage

Cp(object, ..., dispersion = NULL)

ICOMP(object, ..., REML = NULL)

CAICF(object, ..., REML = NULL)

DIC(object, ...)

Arguments

object a fitted model object (in case of ICOMP and CAICF, loglLik and vcov methods
must exist for the object). For DIC, an object of class "MCMCglmm"” or "merMod"”.
optionally more fitted model objects.

dispersion the dispersion parameter. If NULL, it is inferred from object.

REML optional logical value, passed to the loglLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Details

Mallows’ Cp statistic is the residual deviance plus twice the estimate of o times the residual de-
grees of freedom. It is closely related to AIC (and a multiple of it if the dispersion is known).

22 merge.model.selection

ICOMP (I for informational and COMP for complexity) penalizes the covariance complexity of the
model, rather than the number of parameters directly.

CAICEF (C is for ‘consistent’ and F denotes the use of the Fisher information matrix) includes with
penalty the natural logarithm of the determinant of the estimated Fisher information matrix.

Value

If just one object is provided, the functions return a numeric value with the corresponding IC;
otherwise a data. frame with rows corresponding to the objects is returned.

References

Mallows, C. L. (1973) Some comments on Cp. Technometrics 15: 661-675.

Bozdogan, H. and Haughton, D.M.A. (1998) Information complexity criteria for regression models.
Comp. Stat. & Data Analysis 28: 51-76.

Anderson, D. R. and Burnham, K. P. (1999) Understanding information criteria for selection among
capture-recapture or ring recovery models. Bird Study 46: 14-21.

Spiegelhalter, D.J., Best, N.G., Carlin, B.R., van der Linde, A. (2002) Bayesian measures of model
complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology 64:
583-616.

See Also

AIC and BIC in stats, AICc. QIC for GEE model selection. extractDIC in package arm, on which
the (non-visible) method extractDIC.merMod used by DIC is based.

merge.model.selection Combine model selection tables

Description

Combine two or more model selection tables.

Usage

S3 method for class 'model.selection'
merge(x, y, suffixes = c(".x", ".y"), ...)

S3 method for class 'model.selection'
rbind(..., deparse.level = 1, make.row.names = TRUE)

merge.model.selection

Arguments

X’ y}

suffixes

make.row.names

deparse.level

Value

23

model. selection objects to be combined. (...ignored in merge)

a character vector with two elements that are appended respectively to row
names of the combined tables.

logical indicating if unique and valid row. names should be constructed from the
arguments.

ignored.

A "model.selection” object containing models from all provided tables.

Note

Both A ;¢ values and Akaike weights are recalculated in the resulting tables.

Models in the combined model selection tables must be comparable, i.e. fitted to the same data,
however only very basic checking is done to verify that. The models must also be ranked by the
same information criterion.

Unlike the merge method for data. frame, this method appends second table to the first (similarly

to rbind).

Author(s)

Kamil Barton

See Also

dredge, model.sel, merge, rbind.

Examples

Not run:
require(mgcv)

ms1 <- dredge(glm(Prop ~ dose + I(dose”2) + log(dose) + I(log(dose)*2),
data = Beetle, family = binomial, na.action = na.fail))

fm2 <- gam(Prop ~ s(dose, k = 3), data = Beetle, family = binomial)

merge(ms1, model.sel(fm2))

End(Not run)

24 Model utilities

Model utilities Model utility functions

Description

These functions extract or calculate various values from provided fitted model objects(s). They are
mainly meant for internal use.

coeffs extracts model coefficients;
getAllTerms extracts independent variable names from a model object;

coefTable extracts a table of coefficients, standard errors and associated degrees of freedom when
possible;

get.response extracts response variable from fitted model object;

model.names generates shorthand (alpha)numeric names for one or several fitted models.

Usage

coeffs(model)

getAllTerms(x, ...)

S3 method for class 'terms'

getAllTerms(x, offset = TRUE, intercept = FALSE, ...)

coefTable(model, ...)

S3 method for class 'averaging'

coefTable(model, full = FALSE, adjust.se = TRUE, ...)

S3 method for class 'lme'

coefTable(model, adjustSigma, ...)

S3 method for class 'gee'

coefTable(model, ..., type = c("naive”, "robust"))

get.response(x, ...)

model.names(object, ..., labels = NULL, use.letters = FALSE)
Arguments

model a fitted model object.

object a fitted model object or a list of such objects.

X a fitted model object or a formula.

offset should ‘offset’ terms be included?

intercept should terms names include the intercept?

model.avg

full, adjust.se

adjustSigma
type

labels

use.letters

Details

25

logical, apply to "averaging” objects. If full is TRUE, the full model averaged
coefficients are returned, and subset-averaged ones otherwise. If adjust.se is
TRUE, inflated standard errors are returned. See ‘Details’ in par.avg.

See summary. lme.

for GEE models, the type of covariance estimator to calculate returned standard
errors on. Either "naive"” or "robust” (‘sandwich’).

optionally, a character vector with names of all the terms, e.g. from a global
model. model.names enumerates the model terms in order of their appearance
in the list and in the models. Therefore changing the order of the models leads
to different names. Providing labels prevents that.

for model.names, more fitted model objects. For coefTable arguments that are
passed to appropriate vcov or summary method (e.g. dispersion parameter for
glm may be used here). In other functions often not used.

logical, whether letters should be used instead of numeric codes.

The functions coeffs, getAllTerms and coefTable provide interface between the model object
and model.avg (and dredge). Custom methods can be written to provide support for additional

classes of models.

Note

coeffs’s value is in most cases identical to that returned by coef, the only difference being it returns
fixed effects’ coefficients for mixed models, and the value is always a named numeric vector.

Use of tTable is deprecated in favour of coefTable.

Author(s)

Kamil Barton

model.avg

Model averaging

Description

Model averaging based on an information criterion.

Usage

model.avg(object, ..., revised.var = TRUE)

Default S3 method:
model.avg(object, ..., beta = c("none”", "sd", "partial.sd"),

26 model.avg

rank = NULL, rank.args = NULL, revised.var = TRUE,
dispersion = NULL, ct.args = NULL)

S3 method for class 'model.selection'

model.avg(object, subset, fit = FALSE, ..., revised.var = TRUE)
Arguments
object a fitted model object or a list of such objects, or a "model.selection” object.

See ‘Details’.

for default method, more fitted model objects. Otherwise, arguments that are
passed to the default method.

beta indicates whether and how the component models’ coefficients should be stan-
dardized. See the argument’s description in dredge.

rank optionally, a rank function (returning an information criterion) to use instead of
AICc, e.g. BIC or QAIC, may be omitted if object is a model list returned by
get.models or a "model.selection” object. See ‘Details’.

rank.args optional 1list of arguments for the rank function. If one is an expression, an x
within it is substituted with a current model.

revised.var logical, indicating whether to use revised formula for standard errors. See par . avg.

dispersion the dispersion parameter for the family used. See summary.glm. This is used
currently only with glm, is silently ignored otherwise.

ct.args optional list of arguments to be passed to coefTable (besides dispersion).

subset see subset method for "model.selection” object.

fit if TRUE, the component models are fitted using get.models. See ‘Details’.
Details

model.avg may be used either with a list of models, or directly with a model.selection object
(e.g. returned by dredge). In the latter case, the models from the model selection table are not
evaluated unless the argument fit is set to TRUE or some additional arguments are present (such as
rank or dispersion). This results in much faster calculation, but has certain drawbacks, because
the fitted component model objects are not stored, and some methods (e.g. predict, fitted,
model.matrix or vcov) would not be available with the returned object. Otherwise, get.models
is called prior to averaging, and ... are passed to it.

For a list of model types that are accepted see list of supported models.

rank is found by a call to match. fun and typically is specified as a function or a symbol or a
character string specifying a function to be searched for from the environment of the call to lapply.
rank must be a function able to accept model as a first argument and must always return a numeric
scalar.

Several standard methods for fitted model objects exist for class averaging, including summary,
predict, coef, confint, formula, and vcov.

model.avg

27

coef, vcov, confint and coefTable accept argument full that if set to TRUE, the full model-
averaged coefficients are returned, rather than subset-averaged ones (when full = FALSE, being

the default).

logl ik returns a list of logL ik objects for the component models.

Value

An object of class "averaging” is a list with components:

msTable

coefficients

coefArray

importance

formula

call

a data. frame with log-likelihood, IC, Ajc and ‘Akaike weights’ for the com-
ponent models. Its attribute "term.codes"” is a named vector with numerical
representation of the terms in the row names of msTable.

a matrix of model-averaged coefficients. “full” coefficients in first row, “sub-
set” coefficients in second row. See ‘Note’

a 3-dimensional array of component models’ coefficients, their standard errors
and degrees of freedom.

object of class importance containing relative importance values of each term
(including interactions), calculated as a sum of the Akaike weights over all of the
models in which the term appears.

a formula corresponding to the one that would be used in a single model. The
formula contains only the averaged (fixed) coefficients.

the matched call.

The object has following attributes:

rank

modellList

beta
nobs

revised.var

Note

the rank function used.

optionally, a list of all component model objects. Only if the object was created
with model objects (and not model selection table).

Corresponds to the function argument.
number of observations.

Corresponds to the function argument.

The ‘subset’ (or ‘conditional’) average only averages over the models where the parameter appears.
An alternative, the ‘full’ average assumes that a variable is included in every model, but in some
models the corresponding coefficient (and its respective variance) is set to zero. Unlike the ‘subset
average’, it does not have a tendency of biasing the value away from zero. The ‘full’ average is
a type of shrinkage estimator and for variables with a weak relationship to the response they are
smaller than ‘subset’ estimators.

Averaging models with different contrasts for the same factor would yield nonsense results, cur-
rently no checking for contrast consistency is done.

print method provides a concise output (similarly as for 1m). To print more details use summary
function, and confint to get confidence intervals.

28 model.avg

Author(s)

Kamil Barton

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed. New York, Springer-Verlag.

Lukacs, P. M., Burnham K. P. and Anderson, D. R. (2009) Model selection bias and Freedman’s
paradox. Annals of the Institute of Statistical Mathematics 62(1): 117-125.

See Also

See par.avg for more details of model averaged parameter calculation.

dredge, get.models
AICc has examples of averaging models fitted by REML.

modavg in package AICcmodavg, and coef.glmulti in package glmulti also perform model av-
eraging.

Examples

Example from Burnham and Anderson (2002), page 100:
fml <- Im(y ~ ., data = Cement, na.action = na.fail)
(ms1 <- dredge(fm1))

#models with delta.aicc < 4
summary(model.avg(ms1, subset = delta < 4))

#or as a 95% confidence set:
avgmod.95p <- model.avg(ms1, cumsum(weight) <= .95)
confint(avgmod.95p)

Not run:

The same result, but re-fitting the models via 'get.models'
confset.95p <- get.models(ms1, cumsum(weight) <= .95)

model . avg(confset.95p)

Force re-fitting the component models

model.avg(ms1, cumsum(weight) <= .95, fit = TRUE)

Models are also fitted if additional arguments are given
model.avg(ms1, cumsum(weight) <= .95, rank = "AIC")

End(Not run)

Not run:

using BIC (Schwarz's Bayesian criterion) to rank the models

BIC <- function(x) AIC(x, k = log(length(residuals(x))))

model .avg(confset.95p, rank = BIC)

the same result, using AIC directly, with argument k

'x' in a quoted 'rank' argument is substituted with a model object

model.sel 29

(in this case it does not make much sense as the number of observations is
common to all models)
model.avg(confset.95p, rank = AIC, rank.args = alist(k = log(length(residuals(x)))))

End(Not run)

model.sel model selection table

Description

Build a model selection table.

Usage

model.sel(object, ...)

Default S3 method:

model.sel(object, ..., rank = NULL, rank.args = NULL,
beta = c("none”, "sd"”, "partial.sd"), extra)

S3 method for class 'model.selection'

model.sel(object, rank = NULL, rank.args = NULL, fit = NA,

., beta = c("none”, "sd", "partial.sd"), extra)
Arguments

object a fitted model object, a list of such objects, or a "model.selection” object.
more fitted model objects.

rank optional, custom rank function (returning an information criterion) to use instead
of the default AICc, e.g. QAIC or BIC, may be omitted if object is a model list
returned by get.models.

rank.args optional 1ist of arguments for the rank function. If one is an expression, an x
within it is substituted with a current model.

fit logical, stating whether the model objects should be re-fitted if they are not
stored in the "model.selection” object. Set to NA to re-fit the models only if
this is needed. See ‘Details’.

beta indicates whether and how the component models’ coefficients should be stan-
dardized. See the argument’s description in dredge.

extra optional additional statistics to include in the result, provided as functions, func-

tion names or a list of such (best if named or quoted). See dredge for details.

30 model.sel

Details

model. sel used with "model.selection” object will re-fit model objects, unless they are stored
in object (in attribute "modellList"”), if argument extra is provided, or the requested beta is
different than object’s "beta” attribute, or the new rank function cannot be applied directly to
logLik objects, or new rank.args are given (unless argument fit = FALSE).

Value

An object of class c("model.selection”, "data.frame”), being a data.frame, where each row
represents one model and columns contain useful information about each model: the coefficients,
df, log-likelihood, the value of the information criterion used, Ajc and ‘Akaike weight’. If any
arguments differ between the modelling function calls, the result will include additional columns
showing them (except for formulas and some other arguments).

See model.selection.object for its structure.

Author(s)

Kamil Barton

See Also

dredge, AICc, list of supported models.
Possible alternatives: ICtab (in package bbmle), or aictab (AICcmodavg).

Examples

Cement$X1 <- cut(Cement$X1, 3)
Cement$X2 <- cut(Cement$X2, 2)

fml <- glm(formula = y ~ X1 + X2 * X3, data = Cement)
fm2 <- update(fml, . ~ . - X1 - X2)
fm3 <- update(fml, . ~ . - X2 - X3)

ranked with AICc by default
(msAICc <- model.sel(fm1, fm2, fm3))

ranked with BIC

model.sel(fm1, fm2, fm3, rank = AIC, rank.args = alist(k = log(nobs(x))))
or

model.sel(msAICc, rank = AIC, rank.args = alist(k = log(nobs(x))))

or

update(msAICc, rank = AIC, rank.args = alist(k = log(nobs(x))))

model.selection.object

31

model.selection.object

Description of Model Selection Objects

Description

An object of class "model.selection” holds a table of model coefficients and ranking statistics. It
is a produced by dredge or model . sel.

Value

The object is a data. frame with additional attributes. Each row represents one model. The models
are ordered by the information criterion value specified by rank (lowest on top).

Data frame columns:

model terms

For numeric covariates these columns hold coeficent value, for factors their pres-
ence in the model. If the term is not present in a model, value is NA.

‘varying’ arguments

nqfn
"loglLik"”
rank
"delta”
"weight”
Attributes:

model.calls

global
global.call

terms

rank

beta

coefTables

nobs

optional. If any arguments differ between the modelling function calls (ex-
cept for formulas and some other arguments), these will be held in additional
columns (of class "factor").

Number of model parameters
Log-likelihood (or quasi-likelihood for GEE)
Information criterion value

Arc

‘Akaike weights’.

A list containing model calls (arranged in the same order as in the table). A
model call can be retrieved with getCall(x, i) where i is a vector of model
index or name (if given as character string).

The global.model object
Call to the global .model

A character string holding all term names. Attribute "interceptLabel” gives
the name of intercept term.

The rank function used

A character string, representing the coefficient standardizing method used. Fi-
ther "none”, "sd" or "partial.sd”

List of matrices of class "coefTable"” containing each model’s coefficents with
std. errors and associated df's

Number of observations

32 MuMIn-models

warnings optional (pdredge only). A list of errors and warnings issued by the modelling
function during the fitting, with model number appended to each.

Most attributes does not need (and should not) be accessed directly, use of extractor functions is
preferred. These functions include getCall for retrieving model calls, coefTable and coef for
coefficiens, and nobs. logLik extracts list of model log-likelihoods (as "loglLik" objects), and
Weights extracts ‘Akaike weights’.

The object has class c(”"model.selection”, "data.frame").

See Also

dredge, model . sel.

MuMIn-models List of supported models

Description

List of model classes accepted by model .avg, model.sel, and dredge.

Details

Fitted model objects that can be used with model selection and model averaging functions include
those produced by:

* 1m, glm (package stats);

e rlm, glm.nb and polr (MASS);

* multinom (nnet);

* 1lme, gls (nlme);

e lmer, glmer (Ime4);

* cpglm, cpglmm (cplm);

* gam, gamm* (mgcv);

o gamm4* (gamm4);

e glmmML (glmmML);

e glmmadmb (glmmADMB from R-Forge);

e MCMCglmm* (MCMCglmm);

* asreml (non-free commercial package asreml; allows only for REML comparisons);
* hurdle, zeroinfl (pscl);

* negbin, betabin (class "glimML"), package aod);
e aodml, aodql (aods3);

* betareg (betareg);

* brglm (brglm);

http://CRAN.R-project.org/package=MASS
http://CRAN.R-project.org/package=nnet
http://CRAN.R-project.org/package=nlme
http://CRAN.R-project.org/package=lme4
http://CRAN.R-project.org/package=cplm
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=gamm4
http://CRAN.R-project.org/package=glmmML
http://glmmadmb.r-forge.r-project.org/
http://CRAN.R-project.org/package=MCMCglmm
http://CRAN.R-project.org/package=pscl
http://CRAN.R-project.org/package=aod
http://CRAN.R-project.org/package=aods3
http://CRAN.R-project.org/package=betareg
http://CRAN.R-project.org/package=brglm

nested 33

* *sarlm models, spautolm (spdep);

* spml* (if fitted by ML, splm);

e coxph, survreg (survival);

e coxme, lmekin (coxme);

* rq (quantreg);

e clmand clmm (ordinal);

* logistf (logistf);

e crunch*, pgls (caper);

¢ maxlike (maxlike);

* functions from package unmarked (within the class "unmarkedFit");

» mark and related functions (class mark from package RMark). Currently dredge can only
manipulate formula element of the argument model.parameters, keeping its other elements
intact.

Generalized Estimation Equation model implementations: geeglm from package geepack, gee
from gee, geem from geeM, and yags from yags (from R-Forge) can be used with QIC as the
selection criterion.

Other classes are also likely to be supported, in particular if they inherit from one of the above
classes. In general, the models averaged with model.avg may belong to different types (e.g. glm
and gam), provided they use the same data and response, and if it is valid to do so. This applies also
to constructing model selection tables with model . sel.

Note

* In order to use gamm, gamm4, spml (> 1.0.0), crunch or MCMCglmm with dredge, an updateable
wrapper for these functions should be created.

See Also

model . avg, model.sel and dredge.

nested Identify nested models

Description

Find models that are ‘nested’ within each model in the model selection table.

Usage

nested(x, indices = c("none”, "numeric”, "rownames”), rank = NULL)

http://CRAN.R-project.org/package=spdep
http://CRAN.R-project.org/package=splm
http://CRAN.R-project.org/package=survival
http://CRAN.R-project.org/package=coxme
http://CRAN.R-project.org/package=quantreg
http://CRAN.R-project.org/package=ordinal
http://CRAN.R-project.org/package=logistf
http://CRAN.R-project.org/package=caper
http://CRAN.R-project.org/package=maxlike
http://CRAN.R-project.org/package=unmarked
http://CRAN.R-project.org/package=RMark
http://CRAN.R-project.org/package=geepack
http://CRAN.R-project.org/package=gee
http://CRAN.R-project.org/package=geeM
http://yags.r-forge.r-project.org/

34 nested
Arguments
X a "model.selection” object (result of dredge or model. sel).
indices if omitted or "none” then the function checks if, for each model, there are any
higher ranked models nested within it. If "numeric” or "rownames”, indices or
names of all nested models are returned. See “Value”.
rank the name of the column with the ranking values (defaults to the one before
“delta”). Only used if indices is "none".
Details

In model comparison, a model is said to be “nested” within another model if it contains a subset of
parameters of the latter model, but does not include other parameters (e.g. model ‘A+B’ is nested
within ‘A+B+C’ but not ‘A+C+D’).

This function can be useful in a model selection approach suggested by Richards (2008), in which
more complex variants of any model with a lower IC value are excluded from the candidate set.

Value

A vector of length equal to the number of models (table rows).

If indices = "none” (the default), it is a vector of logical values where i-th element is TRUE if any
model(s) higher up in the table are nested within it (i.e. if simpler models have lower IC pointed by
rank).

For indices other than "none”, the function returns a list of vectors of numeric indices or names
of models nested within each i-th model.

Note

This function determines nesting based only on fixed model terms, within groups of models sharing
the same ‘varying’ parameters (see dredge and example in Beetle).

Author(s)

Kamil Barton

References

Richards, S. A., Whittingham, M. J., Stephens, P. A (2011). Model selection and model averaging
in behavioural ecology: the utility of the IT-AIC framework. Behavioral Ecology and Sociobiology,
65: 77-89

Richards, S. A (2008) Dealing with overdispersed count data in applied ecology. Journal of Applied
Ecology 45: 218-227

See Also

dredge, model .sel

par.avg 35

Examples

fm <= Im(y ~ X1 + X2 + X3 + X4, data = Cement, na.action = na.fail)
ms <- dredge(fm)

filter out overly complex models according to the
"nesting selection rule”:
subset(ms, !nested(.)) # dot represents the ms table object

print model "4" and all models nested within it
nst <- nested(ms, indices = "row")
ms[c("4", nst[["4"11)]

ms$nested <- sapply(nst, paste, collapse = ",")
ms
par.avg Parameter averaging
Description

Average a coefficient with standard errors based on provided weights. This function is intended
chiefly for internal use.

Usage

par.avg(x, se, weight, df = NULL, level = 1 - alpha, alpha = 0.05,
revised.var = TRUE, adjusted = TRUE)

Arguments
X vector of parameters.
se vector of standard errors.
weight vector of weights.
df optional vector of degrees of freedom.

alpha, level significance level for calculating confidence intervals.
revised.var logical, should the revised formula for standard errors be used? See ‘Details’.

adjusted logical, should the inflated standard errors be calculated? See ‘Details’.

36 pdredge

Details

Unconditional standard errors are square root of the variance estimator, calculated either according
to the original equation in Burnham and Anderson (2002, equation 4.7), or a newer, revised formula
from Burnham and Anderson (2004, equation 4) (if revised.var = TRUE, this is the default). If
adjusted = TRUE (the default) and degrees of freedom are given, the adjusted standard error es-
timator and confidence intervals with improved coverage are returned (see Burnham and Anderson
2002, section 4.3.3).

Value

par.avg returns a vector with named elements:

Coefficient model coefficients
SE unconditional standard error

Adjusted SE adjusted standard error
Lower CI, Upper CI
unconditional confidence intervals.

Author(s)

Kamil Barton

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. 2nd ed.

Burnham, K. P. and Anderson, D. R. (2004) Multimodel inference - understanding AIC and BIC in
model selection. Sociological Methods & Research 33(2): 261-304.

See Also

model . avg for model averaging.

pdredge Automated model selection using parallel computation

Description

Parallelized version of dredge.

Usage

pdredge(global.model, cluster = NA,
beta = c("none”, "sd"”, "partial.sd"”), evaluate = TRUE, rank = "AICc",
fixed = NULL, m.lim = NULL, m.min, m.max, subset, trace = FALSE,
varying, extra, ct.args = NULL, check = FALSE, ...)

pdredge 37

Arguments

global.model, beta, evaluate, rank

see dredge.

fixed, m.lim, m.max, m.min, subset, varying, extra, ct.args,
see dredge.

trace displays the generated calls, but may not work as expected since the models are
evaluated in batches rather than one by one.

cluster either a valid "cluster” object, or NA for a single threaded execution.

check either integer or logical value controlling how much checking for existence and

correctness of dependencies is done on the cluster nodes. See ‘Details’.

Details

All the dependencies for fitting the global.model, including the data and any objects the modelling
function will use must be exported into the cluster worker nodes (e.g. via clusterExport). The re-
quired packages must be also loaded thereinto (e.g. via clusterEvalQ(..., library(package)),
before the cluster is used by pdredge.

If check is TRUE or positive, pdredge tries to check whether all the variables and functions used in
the call to global.model are present in the cluster nodes’ .GlobalEnv before proceeding further.
This causes false errors if some arguments of the model call (other than subset) would be evaluated
in data environment. In that case using check = FALSE (the default) is desirable.

If check is TRUE or greater than one, pdredge will compare the global.model updated at the cluster
nodes with the one given as argument.

Value

See dredge.

Author(s)

Kamil Barton

See Also

makeCluster and other cluster related functions in packages parallel or snow.

Examples

One of these packages is required:
Not run: require(parallel) || require(snow)

From example(Beetle)

Beetle100 <- Beetle[sample(nrow(Beetle), 100, replace = TRUE),]

38

pdredge

fml <- glm(Prop ~ dose + I(dose*2) + log(dose) + I(log(dose)*2),
data = Beetlel0@, family = binomial, na.action = na.fail)

msubset <- expression(xor(dose, ‘log(dose)‘) & (dose | !‘I(dose*2)")
& (“log(dose)’ | !“'I(log(dose)*2)"))

varying.link <- list(family = alist(logit = binomial("logit"),
probit = binomial("probit"”), cloglog = binomial("cloglog"”)))

Set up the cluster
clusterType <- if(length(find.package("snow”, quiet = TRUE))) "SOCK" else "PSOCK"
clust <- try(makeCluster(getOption("cl.cores”, 2), type = clusterType))

clusterExport(clust, "Beetlel00")

noticeable gain only when data has about 3000 rows (Windows 2-core machine)
print(system.time(dredge(fm1, subset = msubset, varying = varying.link)))
print(system.time(pdredge(fm1, cluster = FALSE, subset = msubset,
varying = varying.link)))
print(system.time(pdd <- pdredge(fml, cluster = clust, subset = msubset,
varying = varying.link)))

print(pdd)

Not run:

Time consuming example with 'unmarked' model, based on example(pcount).

Having enough patience you can run this with 'demo(pdredge.pcount)'.

library(unmarked)

data(mallard)

mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)

(ufm.mallard <- pcount(~ ivel + date + I(date”2) ~ length + elev + forest,
mallardUMF, K = 30))

clusterEvalQ(clust, library(unmarked))

clusterExport(clust, "mallardUMF")

'stats4' is needed for AIC to work with unmarkedFit objects but is not
loaded automatically with 'unmarked'.

require(stats4)

invisible(clusterCall(clust, "library"”, "stats4"”, character.only = TRUE))

#system.time(print(pddl <- pdredge(ufm.mallard,
subset = ‘p(date)* | !'p(I(date*2))*, rank = AIC)))

system.time(print(pdd2 <- pdredge(ufm.mallard, clust,
subset = ‘p(date)* | !‘p(I(date*2))*, rank = AIC, extra = "adjR"2")))

best models and null model
subset(pdd2, delta < 2 | df == min(df))

Compare with the model selection table from unmarked
the statistics should be identical:
models <- get.models(pdd2, delta < 2 | df == min(df), cluster = clust)

plot.model.selection 39

modSel (fitList(fits = structure(models, names = model.names(models,
labels = getAllTerms(ufm.mallard)))), nullmod = "(Null)")

End(Not run)

stopCluster(clust)

plot.model.selection Visualize model selection table

Description

Produces a graphical representation of model weights and relative variable importance.

Usage

S3 method for class 'model.selection'

plot(x, ylab = NULL, xlab = NULL,
labels = attr(x, "terms"), labAsExpr = FALSE,
col = c("SlateGray", "SlateGray2"), col2 = "white"”, border = par(”col"),
par.lab = NULL, par.vlab = NULL,

axes = TRUE, ann = TRUE, ...)
Arguments
X a "model.selection” object.
xlab, ylab labels for the x and y axis.
labels optional, a character vector or an expression containing model term labels (to

appear on top side of the plot). Its length must be equal to number of model
terms in the table. Defaults to model term names.

labAsExpr a logical indicating whether the character labels should be interpreted (parsed)
as R expressions.

col, col2 vector of colors for columns (if more than one col is given, columns will be
filled with alternating colors). If col2 is specified cells will be filled with gradi-
ent from col to col2. Set col2 to NA for no gradient.

border border color for cells and axes.

par.lab, par.vlab
optional lists or parameters for term labels (top axis) and model names (right
axis), respectively.

axes, ann logical values indicating whether the axis and annotation should appear on the
plot.

further graphical parameters to be set for the plot (see par).

40

Author(s)

Kamil Barton

See Also

predict.averaging

plot.default, par

For examples, see

MuMlIn-package’

predict.averaging

Predict method for averaged models

Description

Model-averaged predictions, optionally with standard errors.

Usage

S3 method for class 'averaging'

predict(object, newdata = NULL, se.fit = FALSE,
interval = NULL, type = NA, backtransform = FALSE, full = TRUE, ...)
Arguments

object an object returned by model. avg.

newdata optional data.frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit logical, indicates if standard errors should be returned. This has any effect only
if the predict methods for each of the component models support it.

interval currently not used.

type the type of predictions to return (see documentation for predict appropriate for
the class of used component models). If omitted, the default type is used. See
‘Details’.

backtransform if TRUE, the averaged predictions are back-transformed from link scale to re-
sponse scale. This makes sense provided that all component models use the
same family, and the prediction from each of the component models is calcu-
lated on the link scale (as specified by type. For glm, use type = "link"). See
‘Details’.

full if TRUE, the full model averaged coefficients are used (only if se.fit = FALSE

and the component objects are a result of 1m).

arguments to be passed to respective predict method (e.g. level for lme
model).

predict.averaging 41

Details

predicting is possible only with averaging objects with "modelList" attribute, i.e. those created
via model.avg from a model list, or from model.selection object with argument fit = TRUE
(which will recreate the model objects, see model. avg).

If all the component models are oridinary linear models, the prediction can be made either with
the full averaged coefficients (the argument full = TRUE this is the default) or subset-averaged
coefficients. Otherwise the prediction is obtained by calling predict on each component model
and weighted averaging the results, which corresponds to the assumption that all predictors are
present in all models, but those not estimated are equal zero (see ‘Note’ in model . avg). Predictions
from component models with standard errors are passed to par.avg and averaged in the same way
as the coefficients are.

Predictions on the response scale from generalized models can be calculated by averaging predic-
tions of each model on the link scale, followed by inverse transformation (this is achieved with
type = "link” and backtransform = TRUE). This is only possible if all component models use
the same family and link function. Alternatively, predictions from each model on response scale
may be averaged (with type = "response” and backtransform = FALSE). Note that this leads
to results differing from those calculated with the former method. See also predict.glm.

Value

If se.fit = FALSE, a vector of predictions, otherwise a list with components: fit containing the
predictions, and se. fit with the estimated standard errors.

Note

This method relies on availability of the predict methods for the component model classes (except
when all component models are of class 1m).

The package MuMIn includes predict methods for 1me, gls and 1mer (Ime4), all of which can
calculate standard errors of the predictions (with se.fit = TRUE). The former two enhance the
original predict methods from package nlme, and with se.fit = FALSE they return identical result.
MuMIn’s versions are always used in averaged model predictions (so it is possible to predict with
standard errors), but from within global environment they will be found only if MuMIn is before
nlme on the search list (or directly extracted from namespace as MuMIn: : :predict.lme).

predict method for mer models currently can only calculate values on the outermost level (equiv-
alent to level = 0@ in predict.1lme).

Author(s)

Kamil Barton

See Also

model.avg, and par . avg for details of model-averaged parameter calculation.

predict.lme, predict.gls

42

Examples

Example from Burnham and Anderson (2002), page 100:
fml <- Im(y ~ X1 + X2 + X3 + X4, data = Cement)

ms1 <- dredge(fm1)
confset.95p <- get.models(ms1, subset = cumsum(weight) <= .95)
avgm <- model.avg(confset.95p)

nseq <- function(x, len = length(x)) seq(min(x, na.rm = TRUE),
max(x, na.rm=TRUE), length = len)

New predictors: X1 along the range of original data, other
variables held constant at their means

newdata <- as.data.frame(lapply(lapply(Cement[, -1], mean), rep, 25))

newdata$X1 <- nseq(Cement$X1, nrow(newdata))

n <- length(confset.95p)

Predictions from each of the models in a set, and with averaged coefficients

pred <- data.frame(
model = sapply(confset.95p, predict, newdata = newdata),
averaged.subset = predict(avgm, newdata, full = FALSE),
averaged.full = predict(avgm, newdata, full = TRUE)
)
opal <- palette(c(topo.colors(n), "black”, "
matplot(newdata$X1, pred, type = "1",
lwd = c(rep(2,n),3,3), 1ty =1,
xlab = "X1", ylab = "y", col=1:7)

red”, "orange"))

For comparison, prediction obtained by averaging predictions of the component

models

pred.se <- predict(avgm, newdata, se.fit = TRUE)
y <- pred.se$fit

ci <- pred.se$se.fit =* 2

matplot(newdata$X1, cbind(y, y - ci, y + ci), add = TRUE, type="1",

1ty = 2, col = n + 3, 1lwd = 3)

legend("topleft”,
legend=c(lapply(confset.95p, formula),

paste(c("subset”, "full"), "averaged”), "averaged predictions + CI"),

1ty = 1, 1wd = c(rep(2,n),3,3,3), cex = .75, col=1:8)

palette(opal)

QAIC

QAIC Quasi AIC or AICc

QAIC 43

Description

Calculate a modification of Akaike’s Information Criterion for overdispersed count data (or its
version corrected for small sample, “quasi-AIC.”), for one or several fitted model objects.

Usage
QAIC(object, ..., chat, k = 2, REML = NULL)
QAICc(object, ..., chat, k = 2, REML = NULL)
Arguments

object a fitted model object.
optionally, more fitted model objects.

chat ¢, the variance inflation factor.

k the ‘penalty’ per parameter.

REML optional logical value, passed to the loglLik method indicating whether the re-
stricted log-likelihood or log-likelihood should be used. The default is to use the
method used for model estimation.

Value

If only one object is provided, returns a numeric value with the corresponding QAIC or QAIC,;
otherwise returns a data. frame with rows corresponding to the objects.

Note

¢ is the dispersion parameter estimated from the global model, and can be calculated by dividing
model’s deviance by the number of residual degrees of freedom.

In calculation of QAIC, the number of model parameters is increased by 1 to account for estimating
the overdispersion parameter. Without overdispersion, ¢ = 1 and QAIC is equal to AIC.

Note that glm does not compute maximum-likelihood estimates in models within the quasi- family.
In case it is justified, and with a proper caution, a workaround could be used by ‘borrowing’ the aic
element from the corresponding ‘non-quasi’ family (see ‘Example’).

Author(s)

Kamil Barton

See Also

AICc, quasi family used for models with over-dispersion

44 QIC

Examples

options(na.action = "na.fail")

Based on "example(predict.glm)"”, with one number changed to create
overdispersion
budworm <- data.frame(
ldose = rep(0:5, 2), sex = factor(rep(c("M", "F"), c(6, 6))),
numdead = c(10, 4, 9, 12, 18, 20, @, 2, 6, 10, 12, 16))
budworm$SF = cbind(numdead = budworm$numdead,
numalive = 20 - budworm$numdead)

budworm.lg <- glm(SF ~ sexxldose, data = budworm, family = binomial)
(chat <- deviance(budworm.lg) / df.residual(budworm.lg))

dredge(budworm.lg, rank = "QAIC", chat = chat)
dredge(budworm.lg, rank = "AIC")

Not run:
A 'hacked' constructor for quasibinomial family object, that allows for
ML estimation
x.quasibinomial <- function(...) {
res <- quasibinomial(...)
res$aic <- binomial(...)$aic
res

3
QAIC(update(budworm.lg, family = x.quasibinomial), chat = chat)

End(Not run)

QIC QIC and quasi-Likelihood for GEE

Description

Calculate quasi-likelihood under the independence model criterion (QIC) for Generalized Estimat-
ing Equations.

Usage
QIC(object, ..., typeR = FALSE)
QICu(object, ..., typeR = FALSE)

quasilLik(object, ...)

QIC 45

Arguments
object a fitted model object of class "gee”, "geepack”, "geem"” or "yags".
for QIC and QIC,,, optionally more fitted model objects.
typeR logical, whether to calculate QIC(R). QIC(R) is based on quasi-likelihood of a
working correlation R model. Defaults to FALSE, and QIC(I) based on indepen-
dence model is returned.
Value

If just one object is provided, returns a numeric value with the corresponding QIC; if more than one
object are provided, returns a data. frame with rows corresponding to the objects and one column
representing QIC or QIC,,.

Note

This implementation is based partly on (revised) code from packages yags (R-Forge) and ape.

Author(s)

Kamil Barton

References

Pan W. (2001) Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics 57:
120-125

Hardin J. W., Hilbe, J. M. (2003) Generalized Estimating Equations. Chapman & Hall/CRC

See Also

Methods exist for gee (package gee), geeglm (geepack), geem (geeM), and yags (yags on R-Forge).
yags and compar . gee from package ape both provide QIC values.

Examples

data(ohio)

fml <- geeglm(resp ~ age x smoke, id = id, data = ohio,

family = binomial, corstr = "exchangeable”, scale.fix = TRUE)
fm2 <- update(fml, corstr = "ar1")
fm3 <- update(fml, corstr = "unstructured")

model.sel(fm1, fm2, fm3, rank = QIC)

Not run:

same result:
dredge(fm1, m.lim = c(3, NA), rank = QIC, varying = list(
corstr = list("exchangeable”, "unstructured”, "ar1")

)

46 r.squaredGLMM

End(Not run)

r.squaredGLMM Pseudo-R-squared for Generalized Mixed-Effect models

Description
Calculate conditional and marginal coefficient of determination for Generalized mixed-effect mod-
els (RZ, var)-

Usage
r.squaredGLMM(x)

Arguments

X a fitted linear model object.

Details

For mixed-effects models, R? can be categorized into two types. Marginal RZ; ,,,, represents the
variance explained by fixed factors, and is defined as:

Conditional RZ, ,,,, is interpreted as variance explained by both fixed and random factors (i.e.
the entire model), and is calculated according to the equation:

B2 _ 0']2c + Y, 0t
CLMME) ™ o3 + 3L, 07 + 02 + oy

where 0]2C is the variance of the fixed effect components, and > 012 is the sum of all » variance
components (group, individual, etc.), o7 is the variance due to additive dispersion and o2 is the
distribution-specific variance.

Value

r.squaredGLMM returns a numeric vector with two values for marginal and conditional R% ,/,;-

Note

RZ \ras can be calculated also for fixed-effect models. In the simpliest case of OLS it reduces to
var(fitted) / (var(fitted) + deviance / 2). Unlike likelihood-ratio based R? for OLS,
value of this statistic differs from that of the classical R?.

Currently methods exist for classes: mer(Mod), 1me, glmmML and (g)1m.

See note in r.squaredLR help page for comment on using R? in model selection.

r.squaredLR 47

Author(s)

This implementation is based on R code from ‘Supporting Information’ for Nakagawa & Schielzeth
(2012), and its extension by Paul Johnson.

References

Nakagawa, S, Schielzeth, H. (2013). A general and simple method for obtaining ?? from General-
ized Linear Mixed-effects Models. Methods in Ecology and Evolution 4: 133142

Johnson, P.C.D. (2014) Extension Nakagawa & Schielzeth’s R%; ,,,, to random slopes models.
Methods in Ecology and Evolution 5: 44-946.

See Also

summary.1lm, r.squaredLR

Examples

data(Orthodont, package = "nlme")
fml <- lme(distance ~ Sex * age, ~ 1 | Subject, data = Orthodont)
r.squaredGLMM(fm1)

r.squaredLR(fm1)
r.squaredLR(fm1, null.RE = TRUE)

r.squaredLR Likelihood-ratio based pseudo-R-squared

Description

Calculate a coefficient of determination based on the likelihood-ratio test (R% R)-

Usage

r.squaredLR(x, null = NULL, null.RE = FALSE)

null.fit(x, evaluate = FALSE, RE.keep = FALSE, envir = NULL)

Arguments
X a fitted model object.
null a fitted null model. If not provided, null.fit will be used to construct it.

null.fit’s capabilities are limited to only a few model classes, for others the
null model has to be specified manually.

48

r.squaredLR
null.RE logical, should the null model contain random factors? Only used if no null
model is given, otherwise omitted, with a warning.
evaluate if TRUE evaluate the fitted model object else return the call.
RE . keep if TRUE, the random effects of the original model are included.
envir the environment in which the null model is to be evaluated, defaults to the envi-

ronment of the original model’s formula.

Details

This statistic is is one of the several proposed pseudo-R?’s for nonlinear regression models. It is
based on an improvement from null (intercept only) model to the fitted model, and calculated as

R =1 exp(~~ (log L(z) ~ og £(0)))

where log £(z) and log £(0) are the log-likelihoods of the fitted and the null model respectively. ML
estimates are used if models have been fitted by REstricted ML (by calling loglLik with argument
REML = FALSE). Note that the null model can include the random factors of the original model, in
which case the statistic represents the ‘variance explained’ by fixed effects.

For OLS models the value is consistent with classical R2. In some cases (e.g. in logistic regres-
sion), the maximum R? , is less than one. The modification proposed by Nagelkerke (1991)
adjusts the R? ,, to achieve 1 at its maximum: R? = R?,/max(R2y) where max(R2) =
1 — exp(2 log £(0)).

null.fit tries to guess the null model call, given the provided fitted model object. This would be
usually a glm. The function will give an error for an unrecognized class.

Value

r.squaredLR returns a value of R%R, and the attribute "adj.r.squared” gives the Nagelkerke’s
modified statistic. Note that this is not the same as nor equivalent to the classical ‘adjusted R
squared’.

null.fit returns the fitted null model object (if evaluate = TRUE) or an unevaluated call to fit a
null model.

Note

R? is a useful goodness-of-fit measure as it has the interpretation of the proportion of the variance
‘explained’, but it performs poorly in model selection, and is not suitable for use in the same way
as the information criterions.

References

Cox, D. R. and Snell, E. J. (1989) The analysis of binary data, 2nd ed. London, Chapman and Hall

Magee, L. (1990) R? measures based on Wald and likelihood ratio joint significance tests. Amer.
Stat. 44: 250-253

Nagelkerke, N. J. D. (1991) A note on a general definition of the coefficient of determination.
Biometrika 78: 691-692

std.coef 49

See Also

summary.1lm, r.squaredGLMM

std.coef Standardized model coefficients

Description

Standardize model coefficients by Standard Deviation or Partial Standard Deviation.

Usage

std.coef(x, partial.sd, ...)
partial.sd(x)

Deprecated:
beta.weights(model)

Arguments
X, model a fitted model object.
partial.sd logical, if set to TRUE, model coefficients are multiplied by partial SD, otherwise
they are multiplied by the ratio of the standard deviations of the independent
variable and dependent variable.
additional arguments passed to coefTable, e.g. dispersion.
Details

Standardizing model coefficients has the same effect as centring and scaling the input variables.

“Classical” standardized coefficients are calculated as 3; = §3; :X , Where [is the unstandardized
Y

coefficient, sy, is the standard deviation of associated depenent variable X; and s, is SD of the

response variable.

If the variables are intercorrelated, the standard deviation of X; used in computing the standardized
coefficients 8 should be replaced by a partial standard deviation of X; which is adjusted for the
multiple correlation of X; with the other X variables included in the regression equation. The partial
standard deviation is calculated as s, = sx, VIF(XZ-)*O'E’(Z—:;)O'E’, where VIF is the variance
inflation factor, n is the number of observations and p number of predictors in the model. Coefficient
is then transformed as 3] = f3;s,.

Value

A matrix with at least two columns for standardized coefficient estimate and its standard error.
Optionally, third column holds degrees of freedom associated with the coefficients.

50 std.coef

Author(s)

Kamil Bartori. Variance inflation factors calculation is based on function vif from package car
written by Henric Nilsson and John Fox.

References

Cade, B.S. (2015) Model averaging and muddled multimodel inferences. Ecology 96, 2370-2382.
Afifi A., May S., Clark V.A. (2011) Practical Multivariate Analysis, Fifth Edition. CRC Press.

Bring, J. (1994). How to standardize regression coefficients. The American Statistician 48, 209-
213.

See Also

partial.sd can be used with stdize.

coef or coeffs and coefTable for unstandardized coefficients.

Examples

Fit model to original data:
fm <- Im(y ~ x1 + x2 + x3 + x4, data = GPA)

Partial SD for the default formula: y ~ x1 + x2 + x3 + x4
psd <- partial.sd(lm(data = GPA))[-1] # remove first element for intercept

Standardize data:
zGPA <- stdize(GPA, scale = c(NA, psd), center = TRUE)
Note: first element of 'scale' is set to NA to ignore the first column 'y'

Coefficients of a model fitted to standardized data:
zapsmall(coefTable(stdizeFit(fm, data = zGPA)))

Standardized coefficients of a model fitted to original data:
zapsmall(std.coef (fm, partial = TRUE))

Standardizing nonlinear models:
fam <- Gamma("inverse")
fmg <- glm(log(y) ~ x1 + x2 + x3 + x4, data = GPA, family = fam)

psdg <- partial.sd(fmg)
ZGPA <- stdize(GPA, scale = c(NA, psdg[-1]1), center = FALSE)
fmgz <- glm(log(y) ~ z.x1 + z.x2 + z.x3 + z.x4, zGPA, family = fam)

Coefficients using standardized data:

coef(fmgz) # (intercept is unchanged because the variables haven't been
centred)

Standardized coefficients:

coef (fmg) * psdg

stdize 51

stdize Standardize data

Description

stdize standardizes variables by centring and scaling.

stdizeFit modifies a model call or existing model to use standardized variables.

Usage

Default S3 method:
stdize(x, center = TRUE, scale = TRUE, ...)

S3 method for class 'logical'

stdize(x, binary = c(”"center”, "scale”, "binary"”, "half"”, "omit"),
center = TRUE, scale = FALSE, ...)

also for two-level factors

S3 method for class 'data.frame'

stdize(x, binary = c(”"center”, "scale”, "binary"”, "half"”, "omit"),
center = TRUE, scale = TRUE, omit.cols = NULL, source = NULL,
prefix = TRUE, append = FALSE, ...)

S3 method for class 'formula’
stdize(x, data = NULL, response = FALSE,

binary = c("center”, "scale”, "binary"”, "half", "omit"),
center = TRUE, scale = TRUE, omit.cols = NULL, prefix = TRUE,
append = FALSE, ...)

stdizeFit(object, data, which = c("formula”, "subset”, "offset”, "weights"),
evaluate = TRUE, quote = NA)

Arguments

X a numeric or logical vector, factor, numeric matrix, data.frame or a formula.

center, scale either a logical value, or a logical or numeric vector of length equal to the num-
ber of columns of x (see ‘Details’). scale can be also a function to use for
scaling.

binary specifies how binary variables (logical or two-level factors) are scaled. Default
is to "center"” by subtracting the mean assuming levels are equal to 0 and 1;
use "scale” to both centre and scale by SD, "binary” to centre to 0/ 1, "half”
to centre to -0.5 / 0.5, and "omit" to leave binary variables unmodified. This
argument has precedence over center and scale, unless it is set to NA (in which
case binary variables are treated like numeric variables).

source a reference data. frame, being a result of previous stdize, from which scale
and center values are taken. Column names are matched. This can be used for
scaling new data using statistics of another data.

52

stdize
omit.cols column names or numeric indices of columns that should be left unaltered.
prefix either a logical value specifying whether the names of transformed columns

should be prefixed, or a two-element character vector giving the prefixes. The

9

prefixes default to “z.” for scaled and “c.” for centred variables.
append logical, if TRUE, modified columns are appended to the original data frame.

response logical, stating whether the response be standardized. By default only variables
on the right-hand side of formula are standardized.

data an object coercible to data. frame, containing the variables in formula. Passed
to, and used by model. frame.
For stdizeFit, a stdized data. frame to use.

for the formula method, additional arguments passed to model.frame. For
other methods it is silently ignored.

object a fitted model object or an expression being a call to the modelling function.

which a character string naming arguments which should be modified. This should be
all arguments which are evaluated in the data environment. Can be also TRUE to
modify the expression as a whole. The data argument is additionally replaced
with that passed to stdizeFit.

evaluate if TRUE, the modified call is evaluated and the fitted model object is returned.
quote if TRUE, avoids evaluating object. Equivalent to stdizeFit(quote(expr), ...).
Defaults to NA in which case object being a call to non-primitive function is
quoted.
Details

stdize resembles scale, but uses special rules for factors, similarly to standardize in package
arm.

stdize differs from standardize in that it is used on data rather than on the fitted model object.
The scaled data should afterwards be passed to the modelling function, instead of the original data.

Unlike standardize, it applies special ‘binary’ scaling only to two-level factors and logical vari-
ables, rather than to any variable with two unique values.

Variables of only one unique value are unchanged.

By default, stdize scales by dividing by standard deviation rather than twice the SD as standardize
does. Scaling by SD is used also on uncentred values, which is different from scale where root-
mean-square is used.

If center or scale are logical scalars or vectors of length equal to the number of columns of x,
the centring is done by subtracting the mean (if center corresponding to the column is TRUE), and
scaling is done by dividing the (centred) value by standard deviation (if corresponding scale is
TRUE). If center or scale are numeric vectors with length equal to the number of columns of x
(or numeric scalars for vector methods), then these are used instead. Any NAs in the numeric vector
result in no centering or scaling on the corresponding column.

Note that scale = @ is equivalent to no scaling (i.e. scale = 1).

Binary variables, logical or factors with two levels, are converted to numeric variables and trans-
formed according to the argument binary, unless center or scale are explicitly given.

stdize 53

Value

stdize returns a vector or object of the same dimensions as x, where the values are centred and/or
scaled. Transformation is carried out column-wise in data. frames and matrices.

The returned value is compatible with that of scale in that the numeric centring and scalings used
are stored in attributes attributes "scaled:center” and "scaled:scale” (these can be NA if no
centring or scaling has been done).

stdizeFit returns a modified, unevaluated call where the variable names are replaced to point the
transformed variables, or if evaluate is TRUE, a fitted model object.

Author(s)

Kamil Barton

References

Gelman, A. (2008) Scaling regression inputs by dividing by two standard deviations. Statistics in
medicine 27, 2865-2873.

See Also

Compare with scale and standardize or rescale (the latter two in package arm).
For typical standardizing, model coefficients transformation may be easier, see std. coef.

apply and sweep for arbitrary transformations of columns in a data. frame.

Examples

compare "stdize" and "scale”
nmat <- matrix(runif(15, @, 10), ncol = 3)

stdize(nmat)
scale(nmat)

rootmeansq <- function(v) {

v <= v[!lis.na(v)]

sqrt(sum(v*2) / max(1, length(v) - 1L))
3

scale(nmat, center = FALSE)
stdize(nmat, center = FALSE, scale = rootmeansq)

if(require(lme4)) {
define scale function as twice the SD to reproduce "arm::standardize’
twosd <- function(v) 2 * sd(v, na.rm = TRUE)

4

standardize data (scaled variables are prefixed with "z.")
z.C02 <- stdize(uptake ~ conc + Plant, data = C02, omit = "Plant”, scale = twosd)
summary (z.C02)

54 subset.model.selection

fmz <- stdizeFit(lmer(uptake ~ conc + I(conc*2) + (1 | Plant)), data = z.C02)
produces:
lmer(uptake ~ z.conc + I(z.conc*2) + (1 | Plant), data = z.C02)

standardize using scale and center from "z.C02", keeping the original data:
z.C02a <- stdize(C02, source = z.C02, append = TRUE)
Here, the "subset” expression uses untransformed variable, so we modify only
"formula” argument, keeping "subset” as-is. For that reason we needed the
untransformed variables in "data”.
stdizeFit(1lmer(uptake ~ conc + I(conc*2) + (1 | Plant),

subset = conc > 100,

), data = z.CO02a, which = "formula”, evaluate = FALSE)

create new data as a sequence along "conc”
newdata <- data.frame(conc = seq(min(C02$conc), max(CO02$conc), length = 10))

scale new data using scale and center of the original scaled data:
z.newdata <- stdize(newdata, source = z.C02)

plot predictions against "conc” on real scale:
plot(newdata$conc, predict(fmz, z.newdata, re.form = NA))

compare with "arm::standardize”

Not run:

library(arm)

fms <- standardize(lmer(uptake ~ conc + I(conc*2) + (1 | Plant), data = C02))
plot(newdata$conc, predict(fms, z.newdata, re.form = NA))

End(Not run)
3

subset.model.selection
Subsetting model selection table

Description

Extract subset of a model selection table.

Usage

S3 method for class 'model.selection’

subset(x, subset, select, recalc.weights = TRUE, recalc.delta = FALSE, ...)
S3 method for class 'model.selection'

x[i, j, recalc.weights = TRUE, recalc.delta = FALSE, ...]

subset.model.selection 55

S3 method for class 'model.selection'

x[[..., exact = TRUE]]
Arguments
X amodel.selection object to be subsetted.

subset,select logical expressions indicating columns and rows to keep. See subset.
i,j indices specifying elements to extract.

recalc.weights logical value specyfying whether Akaike weights should be normalized across
the new set of models to sum to one.

recalc.delta logical value specyfying whether Aj¢ should be calculated for the new set of
models (not done by default).

exact logical, see [.

further arguments passed to [.data. frame (drop).

Details
Unlike the method for data. frame, single bracket extraction with only one index x[i] selects rows
(models) rather than columns.

To select rows according to presence or absence of the variables (rather than their value), a pseudo-
function has may be used with subset, e.g. subset(x, has(a, !b)) will select rows with a and
without b (this is equivalent to !is.na(a) & is.na(b)). has can take any number of arguments.

Complex model terms need to be enclosed within curly brackets (e.g {s(a,k=2)3}), except for
within has. Backticks-quoting is also possible, but then the name must match exactly (including
whitespace) the term name as returned by getAllTerms.

Enclosing in I prevents a name from being interpreted as column name.

To select rows where one variable can be present conditional on the presence of other variable(s),
the function dc (dependency chain) can be used. dc takes any number of variables as arguments,
and allows a variable to be included only if all the preceding arguments are also included (e.g.
subset = dc(a, b, c) allows for models of form a, a+b and a+b+c but not b, c, b+c or a+c).

Value

A model.selection object containing only the selected models (rows). If columns are selected
(via argument select or second index x[, jJ]) and not all if not all essential columns (i.e. all
except "varying" and "extra") are present in the result, a plain data. frame is returned. Similarly,
modifying values in the essential columns with [<-, [[<- or $<- produces a regular data frame.

Author(s)

Kamil Barton

See Also

dredge, subset and [.data. frame for subsetting and extracting from data. frames.

56 updateable

Examples

fml <- Im(formula =y ~ X1 + X2 + X3 + X4, data = Cement, na.action = na.fail)

generate models where each variable is included only if the previous
are included too, e.g. X2 only if X1 is there, and X3 only if X2 and X1
dredge(fm1, subset = dc(X1, X2, X3, X4))

which is equivalent to
dredge(fm1, subset = (IX2 | X1) & (!X3 | X2) & (!X4 | X3))

alternatively, generate "all possible” combinations

ms@ <- dredge(fm1)

...and afterwards select the subset of models

subset(ms@, dc(X1, X2, X3, X4))

which is equivalent to

subset(ms@, (has(!X2) | has(X1)) & (has(!X3) | has(X2)) & (has(!X4) | has(X3)))

Different ways of finding a confidence set of models:

delta(AIC) cutoff

subset(ms@, delta <= 4, recalc.weights = FALSE)

cumulative sum of Akaike weights

subset(ms@, cumsum(weight) <= .95, recalc.weights = FALSE)

relative likelihood

subset(ms@, (weight / weight[1]) > (1/8), recalc.weights = FALSE)

updateable Make a function return updateable result

Description

Creates a function wrapper that stores a call in the object returned by its argument FUN.

Usage
updateable(FUN, eval.args = NULL, Class)

get_call(x)

updateable wrapper for mgcv::gamm and gammé4::gamm4

uGamm(formula, random = NULL, ..., lme4 = inherits(random, "formula"))
Arguments

FUN function to be modified, found via match. fun.

eval.args optionally a character vector of function arguments names to be evaluated in the

stored call. See ‘Details’.

Class optional character vector naming class(es) to be set onto the result of FUN (not
possible with formal S4 objects).

updateable 57

X an object from which the call should be extracted.

formula, random,
arguments to be passed to gamm or gamm4

1me4 if TRUE, gamm4 is called, gamm otherwise.

Details

Most model fitting functions in R return an object that can be updated or re-fitted via update. This
is thanks to the call stored in the object, which can be used (possibly modified) later on. It is
also utilised by dredge to generate sub-models. Some functions (such as gamm or MCMCglmm) do
not provide their result with the call element. To work that around, updateable can be used on
that function to store the call. The resulting wrapper should be used in exactly the same way as the
original function.

Argument eval.args specifies names of function arguments that should be evaluated in the stored
call. This is useful when, for example, the model object does not have formula element. The
default formula method tries to retrieve formula from the stored call, which works unless the
formula has been given as a variable and value of that variable changed since the model was fitted
(the last ‘example’ demonstrates this).

Value

updateable returns a function with the same arguments as FUN, wrapping a call to FUN and adding
an element named call to its result if possible, otherwise an attribute "call” (if the returned value
is atomic or a formal S4 object).

Note

get_call is similar to getCall (defined in package stats), but it can also extract the call when it
is an attribute (and not an element of the object). Because the default getCall method cannot do
that, the default update method will not work with atomic or S4 objects resulting from updateable
wrappers.

uGamm sets also an appropriate class onto the result ("gamm4” and/or "gamm"), which is needed for
some generics defined in MuMIn to work (note that unlike the functions created by updateable it
has no formal arguments of the original function). As of version 1.9.2, MuMIn: : gamm is no longer
available.

Author(s)

Kamil Barton

See Also

update, getCall, getElement, attributes

gamm, gamm4

58

Examples

Simple example with cor.test:

From example(cor.test)

X <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)

y <-c¢(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

ctl <- cor.test(x, y, method = "kendall”, alternative = "greater")
uCor.test <- updateable(cor.test)

ct2 <- uCor.test(x, y, method = "kendall"”, alternative = "greater")
getCall(ct1) # --> NULL

getCall(ct2)

#update(ct1, method = "pearson”) --> Error

update(ct2, method = "pearson")
update(ct2, alternative = "two.sided")

predefined wrapper for 'gamm':

set.seed(0)
dat <- gamSim(6, n = 100, scale = 5, dist = "normal”)

fmm1 <- uGamm(y ~s(x@)+ s(x3) + s(x2), family = gaussian, data = dat,
random = list(fac = ~1))

getCall(fmm1)
class(fmm1)

H#it#
Not run:

library(caper)
data(shorebird)

shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)

fml <- crunch(Egg.Mass ~ F.Mass * M.Mass, data = shorebird)
uCrunch <- updateable(crunch)

fm2 <- uCrunch(Egg.Mass ~ F.Mass * M.Mass, data = shorebird)
getCall(fm1)

getCall(fm2)

update(fm2) # Error with 'fm1'

dredge (fm2)

End(Not run)

updateable

Weights 59

fizizid

Not run:

"lmekin"” does not store "formula” element
library(coxme)

uLmekin <- updateable(lmekin, eval.args = "formula")

f <- effort ~ Type + (1|Subject)
fml <- 1lmekin(f, data = ergoStool)
fm2 <- ulLmekin(f, data = ergoStool)

f <- wrong ~ formula # reassigning "f"

getCall(fm1) # formula is "f"
getCall(fm2)

formula(fm1) # returns the current value of "f"
formula(fm2)

End(Not run)

Weights Akaike weights

Description

Calculate or extract normalized model likelihoods (‘Akaike weights’).

Usage
Weights(x)
Arguments
X a numeric vector of information criterion values such as AIC, or objects returned
by functions like AIC. There are also methods for extracting ‘Akaike weights’
from a "model.selection” or "averaging" objects.
Value

A numeric vector of normalized likelihoods.

Author(s)

Kamil Barton

See Also

importance, weighted.mean

weights, which extracts fitting weights from model objects.

60 Weights

Examples

fml <- glm(Prop ~ dose, data = Beetle, family = binomial)

fm2 <- update(fml, . ~ . + I(dose”2))
fm3 <- update(fml, . ~ log(dose))
fm4 <- update(fm3, . ~ . + I(log(dose)*2))

round(Weights(AICc(fm1, fm2, fm3, fm4)), 3)

Index

+Topic datasets
Beetle, 7
Cement, 9
GPA, 19
+Topic hplot
plot.model.selection, 39
+Topic manip
exprApply, 15
Formula manipulation, 17
merge.model.selection, 22
Model utilities, 24
stdize, 51
subset.model.selection, 54
*Topic models
AICc, 4
arm.glm, 5
dredge, 10
get.models, 18
importance, 20
Information criteria, 21
Model utilities, 24
model.avg, 25
model.sel, 29
model.selection.object, 31
MuMIn-package, 2
nested, 33
par.avg, 35
pdredge, 36
predict.averaging, 40
QAIC, 42
QIC, 44
r.squaredGLMM, 46
r.squaredLR, 47
std. coef, 49
Weights, 59
xTopic package
MuMIn-models, 32
MuMIn-package, 2
*Topic utils

61

updateable, 56
L, 55
[.data.frame, 55
[.model.selection
(subset.model.selection), 54
[[.model.selection
(subset.model.selection), 54

AIC, 3,5, 22

AlCc, 3,4, 5, 22, 28, 30,43

aicc, 5

aictab, 30

alist, 1/

aodml, 32

aodql, 32

append.model.selection
(merge.model.selection), 22

apply, 53

arm.glm, 5

as.call, /6

as.name, /6

attribute, 57

attributes, 57

backticks, 12

Beetle, 7, 11

bestglm, 13

beta.weights (std.coef), 49
betabin, 32

betareg, 32

BIC, 3, 22

bquote, 16

brglm, 32

CAICF, 3

CAICF (Information criteria), 21
call, 16

Cement, 9

clm, 33

clmm, 33

62

coef, 25, 50

coef.glmulti, 28

coeffs, 50

coeffs (Model utilities), 24
coefTable, 11, 13, 26, 49, 50
coefTable (Model utilities), 24
compar.gee, 45

confint, 27

coxme, 33

coxph, 33

Cp (Information criteria), 21
cpglm, 32

cpglmm, 32

crunch, 33

curly, 15

dc (dredge), 10

delete.response, 17

DIC, 3

DIC (Information criteria), 21

dredge, 3, 10, 18, 20, 23, 26, 28-34, 37, 55
drop.terms, 17

expand. formula (Formula manipulation),
17

exprApply, 15

expression, 16

extractDIC, 22

formula, 17, 26
Formula manipulation, 17

gam, 32

gamm, 32, 57

gamm-wrapper (updateable), 56
gamm4, 32, 57

gee, 33,45

geeglm, 33,45

geem, 33,45
get.models, 11, 13, 18,28
get.response (Model utilities), 24
get_call (updateable), 56
getAllTerms (Model utilities), 24
getCall, 57

getElement, 57

glm, 32

glm.nb, 32

glmer, 32

glmmML, 32

INDEX

glmulti, /13
global option, 13
gls, 32

GPA, 19

has (subset.model.selection), 54
hurdle, 32

IC (Information criteria), 21
ICOMP, 3

ICOMP (Information criteria), 21
ICtab, 30

importance, 20, 59

Information criteria, 21

list, 18

list of supported models, 3, 11, 26, 30
1m, 32

1me, 32, 40

Imekin, 33

lmer, 32

Logical Operators, 12

logistf, 33

loglik, 27

makeCluster, /8

Mallows’ Cp, 3

Mallows’ Cp (Information criteria), 21
mark, 33

match.call, 16

match.fun, 15, 26, 56

maxlike, 33

MCMCglmm, 32

merge, 23

merge.model.selection, 22

mod. sel (model.sel), 29

modavg, 28

Model utilities, 24
model.avg, 3,6, 13, 18, 20, 25, 33, 36, 41
model. frame, 52

model.names (Model utilities), 24
model.sel, 3, 13, 20, 23, 29, 31-34
model.selection.object, /3, 30, 31
multinom, 32

MuMIn (MuMIn-package), 2

MuMIn-gamm (updateable), 56
MuMIn-model-utils (Model utilities), 24
MuMIn-models, 32
MuMIn-package, 2, 40

INDEX

negbin, 32
nested, 33
null.fit (r.squaredLR), 47

par, 39, 40
par.avg, 6, 25, 26, 28, 35, 41
parse, 39

partial.sd (std.coef), 49
pdredge, 3, 13, 18, 36
pget.models (get.models), 18
pgls, 33

plot, 13

plot.default, 40
plot.model.selection, 39
polr, 32

predict, 26
predict.averaging, 40
predict.glm, 4/

predict.gls, 41/

predict.lme, 41
print.averaging (model.avg), 25
print.model.selection (dredge), 10

QAIC, 3,42
QAICc, 3

QAICc (QAIC), 42
QIC, 3, 22, 33,44
QICu (QIC), 44
quasi, 43
quasilik (QIC), 44
quote, 11, 16

r.squaredGLMM, 46, 49

r.squaredLR, 11,46, 47, 47

rbind, 23

rbind.model.selection
(merge.model.selection), 22

reformulate, 17

regsubsets, 13

rescale, 53

rlm, 32

rq, 33

scale, 52, 53

search list, 4/

simplify.formula (Formula
manipulation), 17

source reference, 15

spautolm, 33

63

spml, 33

square, 15
standardize, 52, 53
std. coef, 10,49, 53
stdize, 50, 51
stdizeFit (stdize), 51
step, 3

stepAIC, 3
subset, 13, 26, 55
subset.model.selection, 54
substitute, /6
summary.glm, 26
summary.1lm, 47, 49
summary.lme, 25
survreg, 33

sweep, 53

tTable (Model utilities), 24

uGamm (updateable), 56
update, 57
updateable, 11, 33, 56
updateable? (updateable), 56

V (dredge), 10
veov, 25, 26

walkCode, /16
weighted.mean, 59
Weights, 20, 59
weights, 59

zeroinfl, 32

	MuMIn-package
	AICc
	arm.glm
	Beetle
	Cement
	dredge
	exprApply
	Formula manipulation
	get.models
	GPA
	importance
	Information criteria
	merge.model.selection
	Model utilities
	model.avg
	model.sel
	model.selection.object
	MuMIn-models
	nested
	par.avg
	pdredge
	plot.model.selection
	predict.averaging
	QAIC
	QIC
	r.squaredGLMM
	r.squaredLR
	std.coef
	stdize
	subset.model.selection
	updateable
	Weights
	Index

