
Package ‘PAMmisc’
March 27, 2021

Title Miscellaneous Functions for Passive Acoustic Analysis

Version 1.6.8

Description A collection of miscellaneous functions for passive acoustics.
Much of the content here is adapted to R from code written by other people.
If you have any ideas of functions to add, please contact Taiki Sakai.

License GNU General Public License

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Imports ggplot2, tuneR, seewave, dplyr, magrittr, RcppRoll,
PamBinaries, RSQLite, lubridate, rerddap, ncdf4, httr, purrr,
plotKML, hoardr, methods, geosphere, tcltk, stringr,
viridisLite

Suggests testthat

NeedsCompilation no

Author Taiki Sakai [aut, cre],
Jay Barlow [ctb],
Julie Oswald [ctb]

Maintainer Taiki Sakai <taiki.sakai@noaa.gov>

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2021-03-27 08:40:38 UTC

R topics documented:
addPgEvent . 2
addPgGps . 3
browseEdinfo . 4
dataToRanges . 5
decimateWavFiles . 6
downloadEnv . 7

1

2 addPgEvent

edinfoToURL . 8
erddapList . 8
erddapToEdinfo . 9
formatURL . 10
getEdinfo . 11
matchEnvData . 12
ncToData . 13
peakTrough . 15
squishList . 16
straightPath . 17
updateUID . 18
varSelect . 19
wignerTransform . 20
writeAMWave . 21
writeClickWave . 22

Index 25

addPgEvent Add Pamguard Event to Database

Description

Add a new event to an existing Pamguard database in the "OfflineEvents" table. If the specified
eventType does not exist in the database, it will be added to the "Lookup" table.

Usage

addPgEvent(db, UIDs, binary, eventType, comment = NA, tableName = NULL)

Arguments

db database file to add an event to

UIDs vector of the UIDs of the individual detections to add to the event

binary binary file containing the detections from UIDs

eventType the name of the event type to add. If this is not already present in the database,
it will be added to the "Lookup" table

comment (optional) a comment for the event

tableName (optional) specify the name of the Click Detector that generated the event table
you want to add to. This only needs to be specified if you have more than
one click detector, it defaults to the first "NAME_OfflineEvents" table in the
database.

Value

Adds to the database db, invisibly returns TRUE if successful

addPgGps 3

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:
myDb <- 'PamguardDatabase.sqlite3'
myBinaries <- c('./Binaries/Bin1.pgdf', './Binaries/Bin2.pgdf')
addUIDs <- c(10000001, 10000002, 20000007, 20000008)
addPgEvent(db = myDb, UIDs = addUIDs, binary = myBinaries, eventType = 'MyNewEvent')

End(Not run)

addPgGps Add GPS to a Pamguard Database

Description

Add GPS data to an existing Pamguard database

Usage

addPgGps(
db,
gps,
source = c("SPOTcsv", "SPOTgpx", "csv"),
format = "%m/%d/%Y %H:%M:%S",
tz = "UTC"

)

Arguments

db database file to add gps data to

gps data.frame of gps data or a character of the file name to be read. If a data.frame or
non-SPOT csv file, needs columns UTC, Latitude, and Longitude. If multiple
separate tracks are present in the same dataset, this should be marked with a
column labeled Name

source one of SPOTcsv, SPOTgpx, or csv. Describes the source of the GPS data, not
needed if gps is a data.frame

format date format for converting to POSIXct, only needed for source='csv'. See
strptime

tz timezone of gps source being added, will be converted to UTC

Value

Adds to the database db, invisibly returns the Name of the GPS track if successful (NA if not named)

4 browseEdinfo

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:
not run because example files don't exist
myDb <- 'PamguardDatabase.sqlite3'
adding from a .gpx file downloaded from SPOT
spotGpx <- 'SpotGPX.gpx'
addPgGps(myDb, spotGpx, source='SPOTgpx')
adding from a csv file with a Y-M-D H:M date format
gpsCsv <- 'GPS.csv'
addPgGps(myDb, gpsCsv, source='csv', format='%Y-%m-%d %H:%M')

End(Not run)

browseEdinfo Browse a List of Environmental Datasets

Description

This function browses the list of selected environmental datasets that are recommended as a starting
point, and prompts the user to select one to use, returning an edinfo object. Also allows user to filter
by variable name, matching will be attempted using regex

Usage

browseEdinfo(var = NULL)

Arguments

var the name or partial name of a variable to filter the available datasets by

Value

Returns an edinfo class object that can be used to get environmental data with other functions

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

dataToRanges 5

Examples

Not run:
browse the full list (interactive)
edi <- browseEdinfo()

search for sst datasets (interactive)
edi <- browseEdinfo(var='sst')

End(Not run)

dataToRanges Create List of the Ranges of Coordinates

Description

Creates a named list with the ranges of Longitude, Latitude, and Time (UTC) data for use in func-
tions like formatURL. Can also specify an amount to buffer the min and max values by for each
coordinate

Usage

dataToRanges(data, buffer = c(0, 0, 0))

Arguments

data a data frame with longitude, latitude, and time (UTC) columns

buffer a vector of the amount to buffer the min and max values of Longitude, Latitude,
and UTC by (in that order)

Value

a list with the ranges of coordinates for Longitude, Latitude, and UTC. Ranges are listed as c(left,
right), so if your data spans across the dateline

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

gps <- data.frame(Latitude = c(32, 32.1, 32.2, 32.2, 32.2),
Longitude = c(-110, -110.1, -110.2, -110.3, -110.4),
UTC = as.POSIXct(c('2000-01-01 00:00:00', '2000-01-01 00:00:10',

'2000-01-01 00:00:20', '2000-01-01 00:00:30',
'2000-01-01 00:00:40')))

6 decimateWavFiles

dataToRanges(gps)

dataToRanges(gps, buffer = c(.05, .05, 86400))

decimateWavFiles Decimate Wave Files

Description

Decimate a folder of .wav files or a single .wav file to a new sample rate.

Usage

decimateWavFiles(inDir, outDir, newSr, progress = TRUE)

Arguments

inDir directory of wave files to decimate. Can also be a single .wav file.

outDir directory to write wave files to

newSr sample rate to decimate the files to

progress logical flag to show progress bar

Details

This code is based on R code written by Jay Barlow.

Value

Invisibly returns the names of all files that were successfully decimated

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

origDir <- file.path(tempdir(), 'origSR')
decDir <- file.path(tempdir(), 'decSR')
writeClickWave('origWav.wav', outDir=origDir, signalLength = 1, clickLength = 100,

clicksPerSecond = 200, frequency = 20000, sampleRate = 100000)
decWavs <- decimateWavFiles(origDir, decDir, 50000)
file.remove(paste0(origDir, 'origWav.wav'))
file.remove(decWavs)

downloadEnv 7

downloadEnv Download Environmental Data

Description

Downloads environmental data matching the coordinates in a set of data

Usage

downloadEnv(data, edinfo, fileName = NULL, buffer = c(0, 0, 0))

Arguments

data Data containing Longitude, Latitude, and UTC to download matching environ-
mental data for

edinfo either a edinfo object from getEdinfo or erddapToEdinfo or an ERDDAP dataset
ID

fileName name of the file to save downloaded data. If left as the default NULL, data will be
saved to a temporary folder

buffer numeric vector of the amount to buffer the Longitude, Latitude, and UTC coor-
dinates by

Value

if download is successful, invisibly returns the filename. If it fails returns FALSE.

If successful, the file name of downloaded data. If not, returns FALSE

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

data <- data.frame(Latitude = 32, Longitude = -117,
UTC = as.POSIXct('2000-01-01 00:00:00', tz='UTC'))

Not run:
not run because download could take time
download jplMURSST41 dataset
edi <- erddapToEdinfo('jplMURSST41')
ncFile <- downloadEnv(data, edi, 'sstData.nc')

browse suggested sst datasets, then download
edi <- browseEdinfo(var='sst')
ncFile <- downloadEnv(data, edi, 'sstData.nc')

End(Not run)

8 erddapList

edinfoToURL Create a URL for Downloading Data from a edinfo Object

Description

Creates a properly formatted URL (see formatURL) from a datalist either from the package’s rec-
ommended sources or an ERDDAP dataset id

Usage

edinfoToURL(edinfo, ranges)

Arguments

edinfo a edinfo class object, either from getEdinfo or created by erddapToEdinfo

ranges list of ranges for Longitude, Latitude, and UTC. Must be a named list with a
vector of min/max values for each of the three dimensions

Value

a properly formatted URL that can be used to download environmental data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

sstEdi <- getEdinfo()[['jplMURSST41']]
select all variables for download
sstEdi <- varSelect(sstEdi, TRUE)
edinfoToURL(sstEdi, ranges = list(Latitude = c(32, 33),

Longitude = c(-118, -117),
UTC = as.POSIXct(c('2000-01-01 00:00:00',

'2000-01-02 00:00:00'), tz='UTC')))

erddapList A list of edinfo objects from ERDDAP data sources

Description

A list of edinfo objects, mostly used internally for functions. These objects represent different
environmental data sources from ERDDAP servers and are used to download environmental data.

Usage

erddapList

erddapToEdinfo 9

Format

A list with objects of class edinfo

Source

Southwest Fisheries Science Center / NMFS / NOAA

erddapToEdinfo Create an edinfo Object from an ERDDAP Dataset Id

Description

Creates an edinfo object that can be used to create a URL for downloading environmental data using
edinfoToURL

Usage

erddapToEdinfo(
dataset,
baseurl = "https://upwell.pfeg.noaa.gov/erddap/",
chooseVars = TRUE

)

Arguments

dataset an ERDDAP dataset id, or the result from info

baseurl the base URL of an ERDDAP server

chooseVars logical flag whether or not to select which variables you want now

Value

an edinfo list object that can be used to download environmental data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Not run:
examples not run because they require internet connection
sstEdi <- erddapToEdinfo('jplMURSST41')
dataset from a diferent erddap server
sshEdi <- erddapToEdinfo('hawaii_soest_2ee3_0bfa_a8d6',

baseurl = 'http://apdrc.soest.hawaii.edu/erddap/')

End(Not run)

10 formatURL

formatURL Format URL for Environmental Data Download

Description

This creates a properly formatted URL for downloading environmental data either from an ERD-
DAP or HYCOM server. This URL can be pasted into a browser or submitted to something like
httr::GET to actually download the data. Also see edinfoToURL

Usage

formatURL(
base,
dataset,
fileType,
vars,
ranges,
stride = 1,
style = c("erddap", "hycom")

)

Arguments

base the base URL to download from

dataset the specific datased ID to download

fileType the type of file to download, usually a netcdf

vars a vector of variables to download

ranges a list of three vectors specifying the range of data to download, must a list with
named vectors Longitude, Latitude, and UTC where each vector is c(min,max)
(Note: even if the time is something like "dayOfYear" this should still be called
’UTC’ for the purpose of this list). (see dataToRanges).

stride the stride for all dimensions, a value of 1 gets every data point, 2 gets every
other, etc.

style either 'erddap' or 'hycom'

Value

a properly formatted URL that can be used to download environmental data

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

getEdinfo 11

Examples

formatURL(
base = "https://upwell.pfeg.noaa.gov/erddap/griddap/",
dataset = "jplMURSST41",
fileType = "nc",
vars = "analysed_sst",
ranges = list(

Latitude = c(30, 31),
Longitude = c(-118, -117),

UTC = as.POSIXct(c('2005-01-01 00:00:00', '2005-01-02 00:00:00'), tz='UTC')
),

stride=1,
style = 'erddap'

)

getEdinfo Browse a List of Curated Environmental Datasets

Description

This function gets the list of environmental datasets provided as a recommended starting point for
various measures

Usage

getEdinfo()

Value

a list of edinfo list objects

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

ediList <- getEdinfo()
ediList[[1]]
ediList[['jplMURSST41']]

12 matchEnvData

matchEnvData Match Data From an Existing Netcdf File or Download and Match

Description

Extracts all variables from a netcdf file matching Longitude, Latitude, and UTC coordinates in given
dataframe

Usage

matchEnvData(
data,
nc = NULL,
var = NULL,
buffer = c(0, 0, 0),
FUN = c(mean, median, sd),
fileName = NULL,
progress = TRUE,
...

)

S4 method for signature 'data.frame'
matchEnvData(
data,
nc = NULL,
var = NULL,
buffer = c(0, 0, 0),
FUN = c(mean, median, sd),
fileName = NULL,
progress = TRUE,
...

)

Arguments

data dataframe containing Longitude, Latitude, and UTC to extract matching vari-
ables from the netcdf file

nc name of a netcdf file, ERDDAP dataset id, or an edinfo object

var (optional) vector of variable names

buffer vector of Longitude, Latitude, and Time (seconds) to buffer around each data-
point. All values within the buffer will be used to report the mean, median, and
standard deviation

FUN a vector or list of functions to apply to the data. Default is to apply mean,
median, and standard deviation calculations

ncToData 13

fileName (optional) file name to save downloaded nc file to. If not provided, then no
nc files will be stored, instead small temporary files will be downloaded and
then deleted. This can be much faster, but means that the data will need to be
downloaded again in the future. If fileName is provided, then the function will
attempt to download a single nc file covering the entire range of your data. If
your data spans a large amount of time and space this can be problematic.

progress logical flag to show progress bar

... other parameters to pass to ncToData

Value

original dataframe with three attached columns for each variable in the netcdf file, one for each of
mean, median, and standard deviation of all values within the buffer

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

data <- data.frame(Latitude = 32, Longitude = -117,
UTC = as.POSIXct('2000-01-01 00:00:00', tz='UTC'))

Not run:
Not run because downloads files
sstEdi <- getEdinfo()[['jplMURSST41']]
sstEdi <- varSelect(sstEdi, TRUE)
default calculates mean, median, and standard deviation
matchEnvData(data, sstEdi)
get just mean within a buffer around coordinates
matchEnvData(data, sstEdi, FUN = mean, buffer = c(.01, .01, 86400))
Can also work from an existing nc file
nc <- downloadEnv(data, sstEdi, buffer = c(.01, .01, 86400))
matchEnvData(data, nc = nc)
Using a custom function
meanPlusOne <- function(x) {

mean(x, na.rm=TRUE) + 1
}
matchEnvData(data, nc=nc, FUN=c(mean, meanPlusOne))

End(Not run)

ncToData Match Data From a Netcdf File

Description

Extracts all variables from a netcdf file matching Longitude, Latitude, and UTC coordinates in given
dataframe

14 ncToData

Usage

ncToData(
data,
nc,
buffer = c(0, 0, 0),
FUN = c(mean, median, sd),
raw = FALSE,
progress = TRUE,
verbose = TRUE

)

Arguments

data dataframe containing Longitude, Latitude, and UTC to extract matching vari-
ables from the netcdf file

nc name of a netcdf file

buffer vector of Longitude, Latitude, and Time (seconds) to buffer around each data-
point. All values within the buffer will be used to report the mean, median, and
standard deviation

FUN a vector or list of functions to apply to the data. Default is to apply mean,
median, and standard deviation calculations

raw logical flag to return only the raw values of the variables. If TRUE the output will
be changed to a list with length equal to the number of data points. Each item
in the list will have separate named entries for each variable that will have all
values within the given buffer and all values for any Z coordinates present.

progress logical flag to show progress bar for matching data

verbose logical flag to show warning messages for possible coordinate mismatch

Value

original dataframe with three attached columns for each variable in the netcdf file, one for each of
mean, median, and standard deviation of all values within the buffer

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

data <- data.frame(Latitude = 32, Longitude = -117,
UTC = as.POSIXct('2005-01-01 00:00:00', tz='UTC'))

nc <- system.file('extdata', 'sst.nc', package='PAMmisc')
calculate mean median and stdev
ncToData(data, nc = nc)
calculate only median
ncToData(data, nc=nc, FUN=median, buffer = c(.01, .01, 86400))
custom function

peakTrough 15

meanPlusOne <- function(x) {
mean(x, na.rm=TRUE) + 1

}
ncToData(data, nc=nc, FUN=c(mean, meanPlusOne))

peakTrough Find Peaks and Troughs in a Spectrum

Description

Finds up to three peaks in a spectrum, as well as the troughs between those peaks.

Usage

peakTrough(spec, freqBounds = c(10, 30), dbMin = -15, smooth = 5, plot = FALSE)

Arguments

spec the spectrum of a signal, the first column must be frequency in kilohertz, the
second column must be dB

freqBounds a two element vector specifying the frequency range around the highest peak to
search for a second/third peak. Units are in kHz, a value of c(f1, f2) requires a
second peak to be at least f1 kHz away from the first peak, but no further than
f2 kHz away.

dbMin minimum dB level for second / third peaks, relative to maximum dB. Any points
lower than this dB level will not be considered a candidate peak.

smooth the amount to smooth the spectrum before attempting to find second / third
peaks. Uses a simple local average, smooth is the total number of points to
use. A value of 1 applies no smoothing.

plot logical flag to plot image of peak/trough locations on spectrum. Useful for find-
ing appropriate settings for freqBounds and dbMin

Details

This uses a very simple algorithm to find second and third peaks in a spectrum. Peak candidates are
identified with a few simple steps.

Step 1 Use a local average of (smooth) points to smooth the spectrum.

Step 2 Check if a point is larger than both its neighbors.

Step 3 Check if points are within the frequency range specified by freqBounds. Points must be at
least f1 kHz away from the frequency , but no further than f2 kHz away.

Step 4 Check if points are above the minimum dB level specified by dbMin.

16 squishList

From the remaining points the point with the highest dB level is selected as the second peak, then the
frequency range filter of Step 3 is applied again around this second peak before attempting to find
a third peak. If no second or third peak is found (ie. no values fall within the specified frequency
and dB search ranges), then it will be set to 0. The trough values are set as the frequency with the
lowest dB level between any peaks that were found. The trough values will be 0 for any peaks that
were not found.

If you are unsure of what levels to specify for freqBounds and dbMin, setting plot=TRUE will
show a visualization of the search range and selected peaks so you can easily see if the selected
parameters are capturing the behavior you want.

Value

a dataframe with the frequencies (in kHz) of up to 3 peaks and 2 troughs between those peaks. Also
reports the peak-to-peak distance. Any peaks / troughs that were not able to be found (based on
freqBounds and dbMin parameters) will be 0.

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

clickWave <- createClickWave(signalLength = .1, clickLength = 1000, clicksPerSecond = 200,
frequency = 3e3, sampleRate = 10e3)

peakTrough(seewave::spec(clickWave, plot=FALSE), plot=TRUE)

squishList Compress a List by Name

Description

Attempts to compress a list by combining elements with the same name, searching recursively if
there are lists in your list

Usage

squishList(myList)

Arguments

myList a list with named elements to be compressed

Details

items with the same name are assumed to have the same structure and will be combined. Dataframes
will be combined with bind_rows, vectors just be collapsed into one vector, lists will be combined
recursively with another call to squishList

straightPath 17

Value

a list with one element for every unique name in the original list

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

myList <- list(a=1:3, b=letters[1:4], a=5:6, b=letters[4:10])
squishList(myList)

myList <- list(a=1:3, b=data.frame(x=1:3, y=4:6), b=data.frame(x=10:14, y=1:5))
squishList(myList)

myList <- list(a=list(c=1:2, d=2), b=letters[1:3], a=list(c=4:5, d=6:9))
squishList(myList)

straightPath Mark Straight Path Segments in GPS Track

Description

This function attempts to mark portions of a GPS track where a ship is traveling in a straight line
by comparing the recent average heading with a longer term average heading. If these are different,
then the ship should be turning. Note this currently does not take in to account time, only number
of points

Usage

straightPath(gps, nSmall = 10, nLarge = 60, thresh = 10, plot = FALSE)

Arguments

gps gps data with columns Longitude, Latitude, and UTC (POSIX format). Usually
this has been read in from a Pamguard database, in which case columns Heading
and Speed will also be used.

nSmall number of points to average to get ship’s current heading

nLarge number of points to average to get ship’s longer trend heading

thresh the amount which nSmall and nBig should differ by to call this a turn

plot logical flag to plot result, gps must also have columns Latitude and Longitude

Value

the original dataframe gps with an added logical column straight indicating which portions are
approximately straight

18 updateUID

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

gps <- data.frame(Latitude = c(32, 32.1, 32.2, 32.2, 32.2),
Longitude = c(-110, -110.1, -110.2, -110.3, -110.4),
UTC = as.POSIXct(c('2000-01-01 00:00:00', '2000-01-01 00:00:10',

'2000-01-01 00:00:20', '2000-01-01 00:00:30',
'2000-01-01 00:00:40')),

Heading = c(320, 320, 270, 270, 270),
Speed = c(.8, .8, .5, .5, .5))

straightPath(gps, nSmall=1, nLarge=2)

straightPath(gps, nSmall=1, nLarge=4)

updateUID Update Detection UIDs

Description

Update the UIDs of detections in a Pamguard database. UIDs can become mismatched when re-
running data, this will attempt to re-associate the new UIDs in binary files with detections in the
database

Usage

updateUID(db, binaries, verbose = TRUE, progress = TRUE)

Arguments

db database file to update UIDs

binaries folder of binary files to use for updating

verbose logical flag to show summary messages

progress logical flag to show progress bars

Value

Same database as db, but with an additional column "newUID" added to each detection table with
updated UIDs if found. "newUID" will be -1 for any detections where no match was found

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

varSelect 19

Examples

Not run:
not run because sample data does not exist
db <- 'MismatchedUid.sqlite3'
bin <- './BinaryFolder'
updateUID(db, bin)

End(Not run)

varSelect Utility for Selecting Variables to Download

Description

Loops through the available variables in an edinfo object and asks whether or not each should be
downloaded, then stores the result for passing on to formatURL

Usage

varSelect(edinfo, select = NULL)

Arguments

edinfo a datalist, either from getEdinfo or created by erddapToEdinfo

select (optional) logical vector of which variables to select. If left as default NULL, user
will be prompted to select which variables to keep. If not NULL, can either be
a single TRUE to select all variables, or a logical vector of length equal to the
number of variables in edinfo

Value

the same object as edinfo with an updated varSelect field

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

sstEdi <- getEdinfo()[['jplMURSST41']]
Not run:
interactively select
sstEdi <- varSelect(sstEdi)

End(Not run)

20 wignerTransform

select all variables
sstEdi <- varSelect(sstEdi, TRUE)
select the first two of four
sstEdi <- varSelect(sstEdi, c(TRUE, TRUE, FALSE, FALSE))

wignerTransform Calculate the Wigner-Ville Transform of a Signal

Description

Calculates the Wigner-Ville transform a signal. By default, the signal will be zero-padded to the
next power of two before computing the transform, and creates an NxN matrix where N is the zero-
padded length. Note that this matrix can get very large for larger N, consider shortening longer
signals.

Usage

wignerTransform(signal, n = NULL, sr, plot = FALSE)

Arguments

signal input signal waveform
n number of frequency bins of the output, if NULL will be the next power of two

from the length of the input signal (recommended)
sr the sample rate of the data
plot logical flag whether or not to plot the result

Details

This code mostly follows Pamguard’s Java code for computing the Wigner-Ville and Hilbert trans-
forms.

Value

a list with three items. tfr, the real values of the wigner transform as a matrix with n rows and
number of columns equal to the next power of two from the length of the input signal. f and t the
values of the frequency and time axes.

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

clickWave <- createClickWave(signalLength = .05, clickLength = 1000, clicksPerSecond = 200,
frequency = 3e3, sampleRate = 10e3)

wt <- wignerTransform(clickWave@left, n = 1000, sr = 10e3, plot=TRUE)

writeAMWave 21

writeAMWave Write Amplitude Modulated Waveform

Description

Write a wave file for a synthesized amplitude modulated call

Usage

writeAMWave(
fileName,
outDir,
signalLength,
modFrequency,
frequency,
sampleRate,
window = c(0.55, 0.45),
silence = c(0, 0),
gainFactor = 0.1

)

createAMWave(
signalLength,
modFrequency,
frequency,
sampleRate,
window = c(0.55, 0.45),
silence = c(0, 0),
gainFactor = 0.1

)

Arguments

fileName name of the file to write. If missing, the file be named usign signalLength,
modFrequency, frequency, and sampleRate

outDir directory to write wave files to

signalLength length of signal to create in seconds

modFrequency modulation frequency in Hz of the amplitude modulation

frequency frequency of the AM call

sampleRate sample rate for the wave file to create

window window constants for applying the amplitude modulation. See details.

silence silence to pad before and after signal in seconds

gainFactor scaling factor between 0 and 1. Low numbers are recommended (default 0.1)

22 writeClickWave

Details

Amplitude modulated signals are modelled as an ideal sinusoid multiplied by a window function.
The window function is an offset sinusoid with frequency equal to the modulation frequency:

W = .5 + .45 ∗ sin(2πmft)

See example(writeAMWave) for a plot showing how this works.

Value

writeAMWave invisibly returns the file name, createAMWave returns a Wave class object

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

Examples

Visualisation of modelled AM wave
signal <- sin(2*pi*100*(1:1000)/1000)
window <- .55 + .45 * sin(2*pi*15*(1:1000)/1000)
oldMf <- par()$mfrow
par(mfrow=c(3,1))
plot(signal, type='l')
plot(window, type='l')
plot(window*signal, type='l')
tmpFile <- file.path(tempdir(), 'tempWav.wav')
writeAMWave(tmpFile, signalLength = 1, modFrequency = 1000,

frequency = 30000, sampleRate = 100000)
file.remove(tmpFile)
amWave <- createAMWave(signalLength = 1, modFrequency = 1000,

frequency = 30e3, sampleRate = 100e3)
par(mfrow=oldMf)

writeClickWave Write Click Waveform

Description

Write a wave file for a synthesized delphinid click

Usage

writeClickWave(
fileName,
outDir,
signalLength,
clickLength,

writeClickWave 23

clicksPerSecond,
frequency,
sampleRate,
silence = c(0, 0),
gainFactor = 0.1

)

createClickWave(
signalLength,
clickLength,
clicksPerSecond,
frequency,
sampleRate,
silence = c(0, 0),
gainFactor = 0.1

)

Arguments

fileName name of the file to write. If missing, the file be named usign signalLength,
clickLength, clicksPerSecond, frequency, and sampleRate

outDir directory to write wave files to

signalLength length of signal to create in seconds

clickLength length of each click in microseconds

clicksPerSecond

number of clicks per second

frequency frequency of the clicks

sampleRate sample rate for the wave file to create

silence silence to pad before and after signal in seconds

gainFactor scaling factor between 0 and 1. Low numbers are recommended (default 0.1)

Details

This code is based on Matlab code by Julie Oswald (2004). Clicks are simulated as an exponentially
damped sinusoid.

Value

writeClickWave invisibly returns the file name, createClickWave returns a Wave class object

Author(s)

Taiki Sakai <taiki.sakai@noaa.gov>

24 writeClickWave

Examples

tmpFile <- file.path(tempdir(), 'tempWav.wav')
writeClickWave(tmpFile, signalLength = 1, clickLength = 100, clicksPerSecond = 200,

frequency = 30000, sampleRate = 100000)
file.remove(tmpFile)
clickWave <- createClickWave(signalLength = 1, clickLength = 100, clicksPerSecond = 200,

frequency = 30e3, sampleRate = 100e3)

Index

∗ datasets
erddapList, 8

addPgEvent, 2
addPgGps, 3

browseEdinfo, 4

createAMWave (writeAMWave), 21
createClickWave (writeClickWave), 22

dataToRanges, 5, 10
decimateWavFiles, 6
downloadEnv, 7

edinfoToURL, 8, 9, 10
erddapList, 8
erddapToEdinfo, 7, 8, 9, 19

formatURL, 5, 8, 10, 19

getEdinfo, 7, 8, 11, 19

info, 9

matchEnvData, 12
matchEnvData,data.frame-method

(matchEnvData), 12

ncToData, 13, 13

peakTrough, 15

squishList, 16
straightPath, 17
strptime, 3

updateUID, 18

varSelect, 19

Wave, 22, 23
wignerTransform, 20
writeAMWave, 21
writeClickWave, 22

25

	addPgEvent
	addPgGps
	browseEdinfo
	dataToRanges
	decimateWavFiles
	downloadEnv
	edinfoToURL
	erddapList
	erddapToEdinfo
	formatURL
	getEdinfo
	matchEnvData
	ncToData
	peakTrough
	squishList
	straightPath
	updateUID
	varSelect
	wignerTransform
	writeAMWave
	writeClickWave
	Index

