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acs-package Download, Manipulate, and Present American Community Survey and
Decennial Data from the US Census

Description

Provides a general toolkit for downloading, managing, analyzing, and presenting data from the U.S.
Census, including SF1 (Decennial "short-form"), SF3 (Decennial "long-form"), and the American
Community Survey (ACS). Confidence intervals provided with ACS data are converted to standard
errors to be bundled with estimates in complex acs objects. Package provides new methods to
conduct standard operations on acs objects and present/plot data in statistically appropriate ways.

Details
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Package: acs
Type: Package
Version: 2.1.3
Date: 2018-03-01
License: GPL-3
Depends: stringr, methods, XML

The package defines a new "acs" class (containing estimates, standard errors, geography, and meta-
data for tables from the U.S. Census American Community Survey), with methods to deal appro-
priately with common tasks, such as combining subgroups or geographies, mathematical operations
on estimates, tests of significance, and computing (and plotting) confidence intervals.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

1. "A Compass for Understanding and Using American Community Survey Data: What State
and Local Governments Need to Know." Washington, DC: U.S. Census Bureau. 2009. http:
//www.census.gov/library/publications/2009/acs/state-and-local.html.

2. "acs.R: An R Package for Neighborhood-Level Data from the U.S. Census." Ezra Haber
Glenn, Department of Urban Studies and Planning, Massachusetts Institute of Technology.
Presented at the Computers in Urban Planning and Urban Management Conference, July 6,
2011. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2171390.

3. "Working with acs.R (June 2013)", Ezra Haber Glenn. http://papers.ssrn.com/sol3/
papers.cfm?abstract_id=2552524

4. CityState webpage: http://eglenn.scripts.mit.edu/citystate/
5. User Group Mailing List: http://mailman.mit.edu/mailman/listinfo/acs-r

acs-class Class "acs"

Description

The acs class provides a convenient wrapper for demographic data from the U.S. Census, especially
the American Community Survey. Estimates and standard errors are kept together, along with
geographic information and metadata necessary to manipulate and analyze data in this form.

Objects from the Class

acs objects can be created by calls of the form new("acs", ...), or through helper functions pro-
vided by the package (currently read.acs and acs.fetch), or from the output of subsetting or other
calls on existing acs objects. Once created, acs objects can be manipulated through new methods
to deal appropriately with common analytical tasks such as combining subgroups or geographies,
mathematical operations on estimates, and computing (and plotting) confidence intervals.

http://www.census.gov/library/publications/2009/acs/state-and-local.html
http://www.census.gov/library/publications/2009/acs/state-and-local.html
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2171390
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2552524
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2552524
http://eglenn.scripts.mit.edu/citystate/
http://mailman.mit.edu/mailman/listinfo/acs-r
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Slots

endyear: Object of class "integer" indicating the last year included in the dataset (e.g., 2012 for
data from the 2008–2012 ACS)

span: Object of class "integer" representing the number of years the dataset spans (e.g., 3 for
data from the 2011–2013 ACS); for decennial census datasets (SF1 and SF3), span = 0.

geography: Object of class "data.frame" containing columns extracted from the data’s geo-
graphic header: typically includes geographic place names, census summary level values, and
unique numeric identifiers, but can contain any geographic names or labels desired. When acs
objects are created or modified, the first geography column will be used to label estimates and
standard errors.

acs.colnames: Object of class "character" giving the variable names for each column
modified: Object of class "logical" to indicate whether the object has been modified since con-

struction
acs.units: Object of class "factor" designating the type of units in each column (e.g., count

or percentage or dollars); only used minimally, to check appropriateness of some operations;
mostly reserved for future functionality

currency.year: Object of class "integer" indicating the year that all currency values have been
adjusted to (by default the same as endyear, but able to be modified by the user for comparisons
with other years; see currency.convert.)

estimate: Object of class "matrix" holding the reported ACS estimates
standard.error: Object of class "matrix" holding the calculated values of the standard errors

for each estimate, derived from the reported 90% confidence intervals

Methods

acs.colnames signature(object = "acs"): Standard accessor function; returns character vector
acs.units signature(object = "acs"): Standard accessor function; returns factor vector
currency.year signature(object = "acs"): Standard accessor function; returns integer
endyear signature(object = "acs"): Standard accessor function; returns integer
estimate signature(object = "acs"): Standard accessor function; returns matrix
geography signature(object = "acs"): Standard accessor function; returns data.frame
modified signature(object = "acs"): Standard accessor function; return logical
span signature(object = "acs"): Standard accessor function; returns integer
standard.error signature(object = "acs"): Standard accessor function; returns matrix
sum signature(object = "acs"): Aggregates (adds) all estimates in the object, and adds the

corresponding standard errors in a statistically appropriate way; returns new acs object
summary signature(object = "acs"): Prints standard summary data on both estimates and

standard errors
confint signature(object = "acs"): Prints estimates with confidence intervals
[ signature(x = "acs"): subsetting works for acs objects using standard [i,j] square bracket

notation, similar to two-dimensional matrices; returns a new acs object with estimates, stan-
dard errors, and associated metadata for "i" rows (geographies) and "j" columns (variable
columns); essentially, subsetting for this class is structured to mirror standard operations on
matrix objects
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[<- signature(x = "acs"): new values may be replaced/assigned to an existing acs object using
standard [i,j] bracket notation. The assignment can accept a number of different forms: a
valid acs object (including a subsetted one), a list of two matrices (ideally named "estimate"
and "error" or "standard.error"), or a numeric object which may be coerced into a matrix (to
be used as estimates, with zero-values assigned to corresponding standard errors).

In addition to these methods, new methods for basic arithmetic functions (+, -, *, /) have been
provided to deal appropriately with combining estimates and standard errors.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

Examples

showClass("acs")
# load some data from the ACS
data(kansas09)
str(kansas09)

# access slots
endyear(kansas09)
span(kansas09)
estimate(kansas09)[1:5,1:5]
standard.error(kansas09[1:5,1:5])

# subset
kansas09[1:4,6:9]

# more complicated subsets
kansas09[c("Linn County, Kansas", "Wilson County, Kansas") ,

grep(pattern="21.years", x=acs.colnames(kansas09))]

# addition on estimates and errors
kansas09[1:4,25]+kansas09[1:4,49]

# can even multiply and divide
# males per female, by county
kansas09[1:4,2]/kansas09[1:4,26]

# (males<5 plus females<5) * 12
(kansas09[7,3]+kansas09[7,27]) * 12

# some replacement: males<5 as a percentage of all males
kansas09[,3]=kansas09[,3]/kansas09[,2]

acs.fetch Downloads demographic data (ACS, SF1, SF3) via the Census API
and converts to a proper acs object with estimates, standard errors,
and associated metadata.
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Description

When passed a valid geo.set object and either lookup terms (table.number, table.name, keyword)
or a valid acs.lookup object, queries the Census API and downloads data to create a new acs-class
object. Geographical information is preserved, metadata in bundled together with the acs object,
and margins of errors are converted to standard errors to accompany estimates (see help(acs)).

Usage

acs.fetch(endyear, span = 5, geography, table.name,
table.number, variable, keyword, dataset = "acs",
key, col.names = "auto", ...)

Arguments

endyear an integer indicating the latest year of the data in the survey (e.g., for data from
the 2007-2011 5-year ACS data, endyear would be 2011)

span an integer indicating the span (in years) of the desired ACS data (should be 1,
3, or 5 for ACS datasets, and 0 for decennial census SF1 and SF3 datasets);
defaults to 5, but ignored and reset to 0 if dataset="sf1" or "sf3".

geography a valid geo.set object specifying the census geography or geographies to be
fetched; can be created "on the fly" with a call to geo.make()

table.name a string giving the search term(s) to find in the name of the ACS census table (for
example, "Sex" or "Age"); accepts multiple words, which must all be found in
the returned table names; always case-sensitive. (Note: when set, this variable
is passed to an internal call to acs.lookup—see acs.lookup).

table.number a string (not a number) indicating the table from the Census to fetch; exam-
ples: "B01003" or "B23013"; always case-sensitive. Used to fetch all variables
for a given table number; if "table.number" is provided, other lookup variables
("table.name" or "keyword") will be ignored.

variable an object of acs.lookup class, or a string (not a number) or vector of strings
indicating the exact variable number(s) the Census to fetch. See details for
more. Non-acs.lookup examples include "B01003_001" or "B23013_003" or
c("B01003_001", "B23013_003"). Used to fetch specific variables, as opposed
to all variables for a given table number; if "variable" is provided, all other
lookup variables ("table.name", "table.number", and "keyword") will be ignored.

keyword a string or vector of strings giving the search term(s) to find in the name of
the census variable (for example, "Male" or "Haiti"); accepts multiple words,
which must all be found in the returned variable names; always case-sensitive.
(Note: when set, this variable is passed to an internal call to acs.lookup—see
acs.lookup).

dataset either "acs" (the default), "sf1", or "sf3", indicating whether to fetch data from
in the American Community Survey or the SF1/SF3 datasets. See details for
more information about available data.

key a string providing the Census API key to use for when fetching data. Typically
saved once via api.key.install and passed automatically with each call; see
api.key.install
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col.names either "auto","pretty", or a vector of strings of the same length as the number of
variables to be fetched. When "auto" (the default), census variable codes will be
used as column names for the fetched data; when "pretty", descriptive variables
names will be used; otherwise col.names will be used.

... Not used interactively (reserved for recursive calls).

Details

Assuming you have created some geography with geo.make and you have already installed an API
key, the call is quite simple: for example, acs.fetch(endyear=2014, geography=my.geo, table.number="B01003").
(For more on API keys, see api.key.install; if you haven’t installed one, you can always add a
"key=YOUR.KEY.HERE" argument to acs.fetch each time.)

By default, acs.fetch will download 5-year ACS, but as of version 2.0 users must specify a specific
"endyear". Users may also select 1- or 3-year ACS data using the "span=" option, as well as Decen-
nial data using the "dataset" option. (When dataset="sf1" or "sf3", span will be reset to 0 regardless
of any explict or default options.) At present, the API provides five-, three- and one-year data for
a variety of different endyears, and Decennial data for 2010, 2000, and 1990; see the chart below
and/or visit http://www.census.gov/data/developers/data-sets.html to learn more about
what is available through the API. (Warning: support for 1990 is a bit unreliable as of the date of
this version, due to non-standard variable lookup tables.)

• American Community Survey 5-Year Data (dataset="acs", span=5): 2005-2009 through 2010-
2014

• American Community Survey 3 Year Data (dataset="acs", span=3): 2013, 2012

• American Community Survey 1 Year Data (dataset="acs", span=1): 2014, 2013, 2012, 2011

• SF1/Short-Form (dataset="sf1"): 1990, 2000, 2010

• SF3/Long-Form (dataset="sf3"): 1990, 2000

Downloading based on a table number is probably the most fool-proof way to get the data you
want, but acs.fetch will also accept a number of other arguments instead of "table.number". Users
can provide strings to search for in table names (e.g., table.name="Age by Sex" or table.name="First
Ancestry Reported") or keywords to find in the names of variables (e.g., keyword="Male" or
keyword="Haiti")—but be warned: given how many tables there are, you may get more matches
than you expected and suffer from the "download overload" of fast-scrolling screens full of data.
(But don’t lose hope: see the acs.lookup tool, which can help with this problem.)

On the other hand, if you know you want a specific variable or two (not a whole table, just a few
columns of it, such as variable="B05001_006" or variable=c("B16001_058", "B16001_059")), you
can ask for that with acs.fetch(variable="these.variable.codes", ...).

Note: when "combine=T" for the fetched geo.set, data will be aggregated in the resulting acs abject.
Some users may therefore wish to specify "one.zero=T" as an additional argument to acs.fetch;
see sum-methods.

Value

Returns a new acs-class object with estimates, standard errors (derived from the census 90% margins
of error), and metadata of the fetched data from the Census API.

http://www.census.gov/data/developers/data-sets.html
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Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

1. http://www.census.gov/developers/

2. http://www.census.gov/data/developers/data-sets.html

See Also

acs.lookup.

acs.lookup Search for relevant demographic variables and tables from the US
Census.

Description

The acs.fetch function is used to download data from the US Census American Community Sur-
vey. The acs.lookup function provides a convenience function to use in advance to locate tables
and variables that may be of interest.

acs.lookup takes arguments similar to acs.fetch — in particular, "table.number", "table.name",
and "keyword", as well as "endyear","span", and "dataset" — and searches for matches in the
meta-data of the Census tables. When multiple search terms are passed to a given argument (e.g.,
keyword=c("Female", "GED")), the tool returns matches where ALL of the terms are found; simi-
larly, when more than one lookup argument is used (e.g., table.number="B01001", keyword="Female"),
the tool searches for matches that include all of the terms (i.e., terms are combined with a logical
"AND", not a logical "OR").

Results from acs.lookup — which are acs.lookup class objects — can then be inspected, subsetted
(with [square brackets]), and combined (with c or +) to create custom acs.lookup objects to store
and later pass to acs.fetch.

Usage

acs.lookup(endyear, span = 5, dataset = "acs", keyword,
table.name, table.number, case.sensitive = T)

Arguments

endyear an integer indicating the latest year of the data in the survey (e.g., for data from
the 2007-2011 5-year ACS data, endyear would be 2011; limited by accept-
able values currently provided by the Census API); for 2016 and later, the 2015
lookup tables are used (see details).

span an integer indicating the span (in years) of the desired ACS data (should be 1, 3,
or 5); defaults to 5. Ignored and reset to 0 if dataset="sf1" or "sf3".

http://www.census.gov/developers/
http://www.census.gov/data/developers/data-sets.html
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dataset either "acs" (the default), "sf1", or "sf3", indicating whether to look for tables
and variables in the American Community Survey, the SF1 dataset (decennial/"short-
form"), or the SF3 dataset (decennial/"long-form").

keyword a string or vector of strings giving the search term(s) to find in the name of the
ACS census variable (for example, "Male" or "Haiti"); accepts multiple words,
which must all be found in the returned variable names.

table.name a string giving the search term(s) to find in the name of the ACS census table
(for example, "Sex" or "Age" or "Age by Sex"); accepts multiple words, which
must all be found in the returned table names.

table.number a string (not a number) indicating the desired table from the Census to fetch;
examples: "B01003" or "B23013"; always case-sensitive. Used to identify all
variables for a given table number.

case.sensitive a logical flag indicating whether searching is case-sensitive (the default) or not.
Note that the Census is not entirely consistent in capitalization in table and vari-
able names, so setting case.sensitive=F may be useful in finding all possible
matches.

Details

In many cases, acs.lookup is called internally by acs.fetch, to determine the variable codes to
use for a given table.name or table.number. Since each lookup involves a search of static XML
tables (provided by the census for each endyear/span combination, and included by the acs package
in /extdata), searches involving more recent years (e.g., for version 2.0, endyears > 2014) may fail.
In such situations, users may wish to call acs.fetch with the "variable=" option, perhaps reusing
variables from a saved acs.lookup search for a previous year.

For example, once the 2011-2015 5-year ACS data is available via the API, users can attempt the fol-
lowing to access Table B01003, even before the new version of the package is installed with the cor-
rect variable lookup tables: acs.fetch(endyear=2015, span=5, variable=acs.lookup(endyear=2014, span=5, table.number="B01003")).

Note: version 2.1.3 of the package implements a "workaround" to address a problem accessing
data from 2016, when the Census Bureau seems to have changed the format for their XML vari-
able lookup tables, causing calls to acs.lookup (and acs.fetch) to fail for "endyear=2016". The
(hopefully) temporary solution was to simply use the 2015 lookup tables for these requests, which
should be safe in most situations, since table numbers and variable codes generally do not change
from year to year. In certain situations, this may not be true: see https://www.census.gov/
programs-surveys/acs/technical-documentation/table-and-geography-changes/2016/5-year.
html.

Value

Returns an acs.lookup class object with the results of the query. acs.lookup objects can be subsetted
and combined, and passed to the "variable" argument of acs.fetch.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2016/5-year.html
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2016/5-year.html
https://www.census.gov/programs-surveys/acs/technical-documentation/table-and-geography-changes/2016/5-year.html
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See Also

acs.lookup-class

Examples

## Not run: acs.lookup(endyear=2014, span=5, table.number="B01001")
acs.lookup(endyear=2012, span=1, table.number="B01001", keyword="Female")
acs.lookup(endyear=2012, span=1, keyword=c("Female", "GED"))
acs.lookup(endyear=2000, dataset="sf3", table.number="P56")
acs.lookup(endyear=1990, dataset="sf3", table.number="H058")
age.by.sex=acs.lookup(endyear=2014, span=5, table.name="Age by Sex")
age.by.sex
workers.age.by.sex=age.by.sex[4:6]
workers.age.by.sex

## End(Not run)

acs.lookup-class Class "acs.lookup"

Description

A new class to hold the results of calls to acs.lookup, typically for possible modification and then
passing to calls to acs.fetch (using the "variable=" argument).

Objects from the Class

Objects can be created by calls of the form new("acs.lookup", ...), but more typically will be
created as output from calls to acs.lookup.

Slots

endyear: Object of class "numeric" indicating the year of the census dataset; e.g., for data from
the 2005-2009 ACS, endyear=2009

span: Object of class "numeric" indicating the span in years of the census dataset; e.g., for data
from the 2005-2009 ACS, span=5. For decennial census datasets (SF1 and SF3), span = 0.

args: Object of class "list" containing the search terms used in the call to acs.lookup, including
some or all of: keyword, table.name, endyear, dataset, table.number, and case.sensitive.

results: Object of class "data.frame" containing character strings in four columns: variable.code,
table.number, table.name, and variable.name.

Methods

+ signature(e1 = "acs.lookup", e2 = "acs.lookup"): used for combining two acs.lookup
objects into one

c signature(x = "acs.lookup"): used for combining two acs.lookup objects into one
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endyear signature(object = "acs.lookup"): returns endyear from acs.lookup object

[ signature(object = "acs.lookup"): used for subsetting an acs.lookup object

results signature(object = "acs.lookup"): returns results (as dataframe) from acs.lookup
object

span signature(object = "acs.lookup"): returns span from acs.lookup object

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

acs.lookup

Examples

showClass("acs.lookup")

acs.tables.install Downloads and stores XML tables used to lookup variable codes, table
names, and other metadata associated with acs package.

Description

To obtain variable codes and other metadata needed to access the Census API, both acs.fetch and
acs.lookup must consult various XML lookup files, which are provided by the Census with each
data release. To keep the acs package-size small, as of version 2.0 these files are accessed online at
run-time for each query. As an alternative, users may use acs.tables.install to download and
archive all current tables (approximately 10MB, as of version 2.0 release).

Use of this function is completely optional and the package should work fine without it (assuming
the computer is online and is able to access the lookup tables), but running it once may result
in faster searches and quicker downloads for all subsequent sessions. (The results are saved and
archived, so once a user has run the function, it is unnecessary to run again, unless the acs package
is re-installed or updated.)

Usage

acs.tables.install()

Value

Downloads the files and saves them to the package’s "extdata" directory; return an error if no files
found.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>
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References

http://www.census.gov/data/developers/data-sets.html

See Also

acs.fetch acs.lookup

api.key.install Installs an API key from the US Census to use with calls to acs.fetch.

Description

The acs.fetch function requires an "API key" to use when downloading data from the US Census
API. Rather than pass this rather long string to the function each time, users can save the key as
part of the package installation, using the api.key.install function. Once installed, an api key
is saved on the system and available for use in future sessions. (To replace a key, simply call the
function again with the new key.)

Usage

api.key.install(key, file = "key.rda")

Arguments

key The API key provided to the user upon registering with the US Census Devel-
oper’s page. A string.

file An alternate name to use when storing key; reserved for future use.

Details

The requirement for a key seems to be laxly enforced by the Census API, but is nonetheless coded
into the acs package. Users without a key may find success by simply installing a blank key (i.e.,
key="") via api.key.install(key=""); similarly, calls to acs.fetch and geo.make(..., check=T)
may succeed with a key="" argument. Note that while this may work today, it may fail in the future
if the API decides to start enforcing the requirement.

Value

Saves the key and exits silently, unless an error is encountered.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

To request an API key, see http://www.census.gov/developers/

http://www.census.gov/data/developers/data-sets.html
http://www.census.gov/developers/
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See Also

acs.fetch

api.key.migrate After updating the acs package, installs an archived API key from a
previous installation.

Description

The acs.fetch function requires an "API key" to use when downloading data from the US Census
API. Rather than pass this rather long string to the function each time, users can save the key as
part of the package installation, using the api.key.install function. Once installed, an api key
is saved on the system and available for use in future sessions. (To replace a key, simply call the
function again with the new key.)

During the update process, this key may be lost or left in the wrong location. A call to api.key.migrate()
can help restore an archived key, if found.

Usage

api.key.migrate()

Value

Migrates the key (if found) and exits silently; return an error if no archived key is found.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

To request an API key, see http://www.census.gov/developers/

See Also

acs.fetch api.key.install

http://www.census.gov/developers/
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cbind.acs Combine acs Objects by Columns

Description

Take a pair of acs objects and combine by columns.

Usage

## S3 method for class 'acs'
cbind(e1, e2, ...)

Arguments

e1, e2 two acs-class objects

... provided for consistency with cbind S3 method

Details

When passed two acs-class objects, cbind will first check to confirm whether the objects contain
compatible data: same endyear and span; same geography. If not, it will issue a warning, but will
still proceed.

After this check, the function will return a new acs object that has resulted from combining the two
arguments column-wise. The effect is essentially the same as cbind on the underlying estimate and
standard.error matrices, with all the additional acs metadata tended to.

Value

Returns a single new acs object with all of the data contained in the two arguments.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

confint.acs Return upper and lower bounds of given confidence intervals for acs
objects.

Description

When passed an acs object, confint will return a list of two-column dataframes (one dataframe for
each variable specified in parm) including lower and upper bounds for given confidence intervals.
Intervals can be one- or two-sided.
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Usage

## S3 method for class 'acs'
confint(object, parm = "all", level = 0.95, alternative = "two.sided", ...)

Arguments

object a acs object (or subset).

parm which variables/columns to return confidence intervals for; defaults to "all",
which computes confidence intervals for all estimates in the acs object.

level the confidence level required – e.g., .95 = 95% confidence.

alternative whether the interval should be one-sided (i.e., one-tailed – "greater" or "less" –
extending to Inf (or -Inf) on one side) or "two-sided".

... additional argument(s) for methods.

Value

Returns a list of dataframes (one for each variable specified in parm) of the lower and upper bounds
of the confidence interval for each row of the data.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>.

Examples

# load ACS data
data(kansas09)

# confidence intervals for select columns
confint(kansas09[20:25,], parm=c(4,5,10))

# another way to accomplish this
confint(kansas09[20:25,c(4,5,10)])

# store data and extract at will
my.conf <- confint(kansas09)
str(my.conf)
my.conf[32]
my.conf$Universe...TOTAL.POPULATION.IN.THE.UNITED.STATES..U.S..citizen.by.naturalization

# try a different value for level
confint(kansas09[1:10,6], level=.75)

# ... or a one-sided confidence interval
confint(kansas09[1:10,6], level=.75, alternative="greater")
confint(kansas09[1:10,29], level=.75, alternative="less")
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cpi Consumer Price Index data (1913-2015).

Description

Contains data on the Consumer Price Index for All Urban Consumers (CPI-U) for the years 1913-
2015 from the U.S. Bureau of Labor Statistics. Used by the acs package for currency conversion
functions. Scaled for base (100) to be 1982-84.

Usage

data(cpi)

Format

A named vector containing 103 observations, one for each year from 1913 through 2015.

Source

http://www.bls.gov/cpi/

See Also

currency.year

currency.convert

currency.convert Convert dollar values of acs object to a new base year.

Description

currency.convert provides a helper function to create a new copy of an acs-class object with a
modified currency.year and converted dollar values without altering the original object.

Usage

currency.convert(object, rate="auto", newyear=NA_integer_, verbose=F)

Arguments

object an acs object
rate an optional rate to apply; "auto" (the default) will look up values from the cpi

dataset.
newyear an integer specifying the new value of currency.year to convert into
verbose whether to print additional information about the conversion

http://www.bls.gov/cpi/
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Details

currency.convert provides a helper function to create a new copy of an acs-class object with
a modified currency.year and converted dollar values without altering the original object. When
rate="auto" (the default), currency.convert will look up values from the cpi database to use
in conversion. When a numeric rate is provided through this option, actual cpi values are ignored.
When verbose=T, currency.convert will provide additional information about the rates of conver-
sion and the acs.colnames converted.

As of version 2.0 the package includes CPI data from 1913 through 2015, allowing conversion of
dollar values for any years in this range.

Value

Returns a new acs object with updated dollar values and currency.year metadata.

Unlike currency.year<-, currency.convert does not alter the original object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

currency.year

cpi

Examples

lawrence10 # median income data, endyear = 2010
currency.convert(lawrence10, newyear=2014) # convert $$ to 2014 dollars
currency.convert(lawrence10, newyear=1929) # convert $$ to 1929 dollars

currency.year Return (or change) currency.year value from the metadata of an acs
object.

Description

Standard accessor/replacement method for metadata contained within S4 acs-class objects.

Usage

currency.year(object)

currency.year(object)<-value
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Arguments

object an acs object

value an integer value to be used in replacement

Details

currency.year will return the (integer) value of the dollar-year of object.

Assigning a new value to currency.year (through currency.year(object)<-value or currency.year(object)=value)
will change the value of currency.year in the object’s metadata and also modify all dollar values
of the object (as determined by acs.units(object)=="dollars") to be in the dollars of the de-
sired new year.

A related function, currency.convert provides a helper function to create a new copy of an acs-
class object with a modified currency.year and converted dollar values without altering the original
object. When rate="auto" (the default), currency.convert will look up values from the cpi
database to use in conversion. When a numeric rate is provided through this option, actual cpi
values are ignored. When verbose=T, currency.convert will provide additional information about
the rates of conversion and the acs.colnames converted.

As of version 2.0 the package includes CPI data from 1913 through 2015, allowing conversion of
dollar values for any years in this range.

Value

Returns (or replaces) an integer value from the "currency.year" slot of an object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

cpi

currency.convert

acs-class

divide.acs Divide one acs object or variable by another.

Description

The acs package provides a new S4 method for standard division operations using "/" notation.
However, due to the nature of estimates and errors, there are actually two types of division, with
slightly different meanings: depending on which variables are being divided, the process may be
either a "proportion"-type division (in which the numerator is a subset of the denominator) or a
"ratio"-type division (in which this is not the case). When dividing with standard "a/b" notation, the
package will always use the more conservative ratio-type procedure.
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When appropriate, "proportion"-type division may be desirable, as it results in lower standarard
errors. To allow users to specify which type of division to use for acs objects, the package includes
a new "divide.acs" function. (See details.)

Usage

divide.acs(numerator, denominator, method="ratio", verbose=T, output="result")

Arguments

numerator an acs object to divide
denominator an acs object to divide by
method either "ratio" (the default) or "proportion", to indicate what kind of division is

desired
verbose whether to provide additional warnings or just shut up
output either "result" (the default), "div.method", or "both"

Details

In certain cases, "proportion-style" division will fail, due to the creation of a negative number under
a square root when calculating new standard errors. To address this problem and prevent unneces-
sary NaN values in the standard.errors, the package implements the recommended Census practice
of simply using "ratio-style" division in those cases.

If method="proportion" (not the default) and verbose=T (the default), division.acs will provide
a warning to indicate when "ratio-style" division has been used, including the number of standard
error cells so affected. Users wishing to examine a detailed, cell-by-cell report may run divide.acs
with the output="div.method" of output="both" to get additional diagnostic information.

See "A Compass for Understanding and Using American Community Survey Data" below for de-
tails on when this substitution is recommended.

Value

Returns a new acs object with the results of the division (the default), or (when result="div.method")
a martix with diagnostic information, or (when result="both"), a list with both of these objects (the
first name $result and the second $div.method).

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

1. "A Compass for Understanding and Using American Community Survey Data: What State
and Local Governments Need to Know." Washington, DC: U.S. Census Bureau. 2009. http:
//www.census.gov/library/publications/2009/acs/state-and-local.html.

See Also

acs-class

http://www.census.gov/library/publications/2009/acs/state-and-local.html
http://www.census.gov/library/publications/2009/acs/state-and-local.html
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endyear Return or replace endyear value from the metadata of an acs object.

Description

endyear() will return the (integer) value of the latest year of the object (for example, for the 2005-
2009 ACS survey, endyear = 2009.) When used for assignment, endyear<- will change the value
of the endyear slot in an acs object, warning the user that this is an unusual thing to do.

Usage

endyear(object)

endyear(object)<-value

Arguments

object an acs object

value an integer to use as the new endyear

Details

Normal operations on acs objects should not involve altering the value of endyear (although users
may wish to change the value of currency.year for comparisons with other objects). Sometimes
endyear may be set incorrectly when data is imported, in which case endyear<- may be necessary.

Value

Returns (or replaces) an integer value from the endyear slot of an object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

currency.year, which is often what users will be intending to modify

acs-class
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fips.state FIPS codes and geographic names for use in searching and creating
geographies in the acs package.

Description

FIPS codes and geographic names for use in searching and creating geographies in the acs package.
(Used internally.)

Usage

data(fips.state)

Format

Each table is a dataframe containing FIPS codes and names from the US Census.

Source

State: http://www.census.gov/geo/reference/ansi_statetables.html

County: http://www.census.gov/geo/www/codes/county/download.html

County Subdivision: http://www.census.gov/geo/www/codes/cousub/download.html

Place: http://www.census.gov/geo/www/codes/place/download.html

School: http://www.census.gov/geo/www/codes/sd/

American Indian Area: http://www.census.gov/geo/www/codes/aia/

flatten.geo.set Convenience function to "flatten" a nested geo.set object.

Description

In the acs package, geo.set objects may contain nested levels of geo.set objects, which is often
desired (to organize complex sets and subsets of geography). Sometimes, however, when combining
these sets, users may prefer to remove the nesting levels. This convenience function will recursively
prowl through a geo.set and return a single flat geo.set (one level deep) containing of the composite
geographies.

Usage

flatten.geo.set(x)

Arguments

x the geo.set to be flattened
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Value

Returns a new geo.set object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

geo.set-class

Examples

# a multiple-county geo.set
psrc=geo.make(state="WA", county=c(33,35,53,61))

# combine geo.sets
north.mercer.island=geo.make(state=53, county=33, tract=c(24300,24400))
optional.tract=geo.make(state=53, county=33, tract=24500)
# add in one more tract to create new, larger geo
north.mercer.island.plus=north.mercer.island + optional.tract

# created a nested geo.set
my.nested.geo.set=c(north.mercer.island.plus, psrc)

str(my.nested.geo.set)
length(my.nested.geo.set)

# .. and flatten in out
# note difference in structure and length
my.flat.geo.set=flatten.geo.set(my.nested.geo.set)
str(my.flat.geo.set)
length(my.flat.geo.set)

geo.lookup Search Census geographies

Description

When working with the acs package and the acs.fetch and geo.make functions, it can be diffi-
cult to find exactly the right geographic units: geo.make expects single matches to the groups of
arguments it is given, which can be problematic when trying to find names for places or county
subdivisions, which are unfamiliar to many users (and often seem very close or redundant: e.g.,
knowing whether to look for "Moses Lake city" vs. "Moses Lake CDP"). To help, the geo.lookup
function will search on the same arguments as geo.make, but outputs all the matches for your in-
spection.
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Usage

geo.lookup(state, county, county.subdivision, place,
american.indian.area, school.district, school.district.elementary,
school.district.secondary, school.district.unified)

Arguments

state either the two-digit numeric FIPS code for the state, the two-letter postal abbre-
viation, or a character string to match in the state name

county either the numeric FIPS code for the county or a character string to match in the
county name

county.subdivision

either the numeric FIPS code for the county subdivision or a character string to
match in the county subdivision name

place either the numeric FIPS code for the place or a character string to match in the
place name

american.indian.area

either the numeric FIPS code for the American Indian Area/Alaska Native Area/Hawaiian
Home Land, or a character string to match in the names of these Census areas

school.district

either the numeric FIPS code for the state school district (any type), or a charac-
ter string to search for in the names of the school districts.

school.district.elementary

either the numeric FIPS code for the state school district (elementary), or a char-
acter string to search for in the names of these elementary school districts.

school.district.secondary

either the numeric FIPS code for the state school district (secondary), or a char-
acter string to search for in the names of these secondary school districts.

school.district.unified

either the numeric FIPS code for the state school district (unified), or a character
string to search for in the names of these unified school districts.

Details

Unlike geo.make, geo.lookup searches for matches anywhere in geographic names (except when
dealing with state names), and will output a dataframe showing candidates that match some or
all of the arguments. (When multiple arguments are provided, the logic is a little complicated:
basically, with the exception of American Indian Areas, to be included all geographies must match
the given state name; when a county and a subdivision are both given, both must match; otherwise,
geographies are included that match any — but not necessarily all — of the other arguments.)

Value

Returns a dataframe of the matching geographies, with one column for each of the given search
terms.
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Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

geo.make

Examples

geo.lookup(state="WA", county="Ska", county.subdivision="oo")
geo.lookup(state="WA", county="Kit", place="Ra")

# find all counties in WA or OR with capital M or B in name
geo.lookup(state=c("WA", "OR"), county=c("M","B"))

# find all unified school districts in Kansas with "Ma" in name
geo.lookup(state="KS", school.district.unified="Ma")

# find all american indian areas with "Hop" in name
geo.lookup(american.indian.area="Hop")

geo.make Create a new geo.set object for use with the acs package.

Description

The geo.make function is used to create new user-specified geographies for use with the acs.fetch
function of the acs package. At the most basic level, a user specifies some combination of existing
census levels (state, county, county subdivision, place, tract, block group, msa, csa, puma, and more
– see arguments), and the function returns a new geo.set object holding this information.

When specifying state, county, county subdivision, place, american indian area, and/or any of the
state school district arguments, geo.make will accept either FIPS codes or common geographic
names, and will try to match on partial strings; there is also limited support for regular expres-
sions, but by default the searches are case sensitive and matches are expected at the start of names.
(For example, geo.make(state="WA", county="Kits") should find Kitsap County, and the more
adventurous yakima=geo.make(state="Washi",county=".*kima") should work to create the a
geo.set for Yakima county.)

Other geographies (including tract, block.group, csa, msa, region, division, urban.area, necta, puma,
zip.code. and/or congressional.district) can only be specified by FIPS codes (or "*" for all).

Tracts should be specified as six digit numbers, although initial zeroes may be removed; note that
trailing zeroes are often removed in common usage, so a tract that may be referred to as "tract 243"
is technically FIPS code 24300; likewise "tract 3872.01" is FIPS code 387201 for the purposes of
geo.make.
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Usage

geo.make(us, region, division, state, county, county.subdivision,
place, tract, block.group, msa, csa, necta, urban.area,
congressional.district, state.legislative.district.upper,
state.legislative.district.lower, puma, zip.code,
american.indian.area, school.district.elementary,
school.district.secondary, school.district.unified,
combine = F, combine.term = "aggregate", check = FALSE, key = "auto")

Arguments

us either the number 1, the character "*", or TRUE, indicating whether the geo.set
should contain data for the entire U.S.; if selected, no other geography options
may be specified; setting us corresponds to using census summary level 010.

region a numeric code (or wildcard "*" for all) corresponding to the desired FIPS region
(e.g., region=1 for Census Northeast Region); if selected, no other geography
options may be specified; setting region corresponds to using census summary
level 020.

division a numeric code (or wildcard "*" for all) corresponding to the desired FIPS divi-
sion (e.g., division=4 for Census West North Central Division); if selected, no
other geography options may be specified; setting division corresponds to using
census summary level 030.

american.indian.area

either the numeric code (or wildcard "*" for all) corresponding to the desired
FIPS American Indian Area/Alaska Native Area/Hawaiian Home Land, or a
character string to match in the names of these Census areas; if selected, no other
geography options may be specified; setting american.indian.area corresponds
to using census summary level 250.

state either the two-digit numeric FIPS code for the state, the two-letter postal abbre-
viation, or a character string to match in the state name (or wildcard "*" for all);
setting state without other options corresponds to using census summary level
040, but it may be used in conjunction with other summary levels below.

county either the numeric FIPS code (or wildcard "*" for all) for the county or a char-
acter string to match in the county name; setting state and county without other
options corresponds to using census summary level 050, but they may be used
in conjunction with other summary levels below.

county.subdivision

either the numeric FIPS code (or wildcard "*" for all) for the county subdivi-
sion or a character string to match in the county subdivision name; setting state,
county, and county.subdivision without other options corresponds to using cen-
sus summary level 060.

place either the numeric FIPS code (or wildcard "*" for all) for the place or a character
string to match in the place name; setting state and place without other options
corresponds to using census summary level 160.

tract a six digit numeric FIPS code (or wildcard "*" for all) for the census tract, in-
cluding trailing zeroes; remove decimal points; leading zeroes may be omitted;
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see description; tract may be used with state and county to create geo.sets for
census summary levels 140, and with state, county, and block.group for sum-
mary level 150.

block.group the numeric FIPS code (or wildcard "*" for all) for the block.group; block.group
may be used with state, county, and tract to create geo.sets for census summary
levels 150.

msa a numeric code (or wildcard "*" for all) corresponding to the desired FIPS
metropolitan statistical area/micropolitan statistical area (e.g., msa=10100 for
Aberdeen, SD micropolitan statistical area); setting msa without other options
corresponds to using census summary level 310, but it may be used in conjunc-
tion with state for summary level 320.

csa a numeric code (or wildcard "*" for all) corresponding to the desired FIPS com-
bined statistical area (e.g., csa=104 for Census Albany-Schenectady-Amsterdam,
NY CSA); setting csa without other options corresponds to using census sum-
mary level 330, but it may be used in conjunction with state for summary level
340.

necta a numeric code (or wildcard "*" for all) corresponding to the desired FIPS New
England City and Town Area (e.g., necta=77650 for Rutland, VT Micropolitan
NECTA); if selected, no other geography options may be specified; setting necta
corresponds to using census summary level 350.

urban.area a numeric code (or wildcard "*" for all) corresponding to the desired FIPS urban
area (e.g., urban.area=3169 for Aromas, CA Urban Cluster); if selected, no other
geography options may be specified; setting urban.area corresponds to using
census summary level 400.

congressional.district

a numeric code (or wildcard "*" for all) corresponding to the desired FIPS con-
gressional district (e.g., state="ME" and congressional.district=1 for Maine’s
first congressional district); setting state and congressional.district without other
options corresponds to using census summary level 500, but they may be used
in conjunction with county for summary level 510.

state.legislative.district.upper

a numeric or character code (or wildcard "*" for all) corresponding to the desired
FIPS state legislative district (upper chamber); these codes vary from state to
state, and are sometimes numbers (1, 2, 3, etc. in Massachusetts) and sometimes
letters ("A", "B", "C", etc. in Alaska); setting state and state.legislative.district.upper
without other options corresponds to using census summary level 610.

state.legislative.district.lower

a numeric or character code (or wildcard "*" for all) corresponding to the desired
FIPS state legislative district (lower chamber); these codes vary from state to
state, and are sometimes numbers (1, 2, 3, etc. in Massachusetts) and sometimes
letters ("A", "B", "C", etc. in Alaska); setting state and state.legislative.district.lower
without other options corresponds to using census summary level 620.

puma a numeric code (or wildcard "*" for all) corresponding to the desired FIPS public
use microdata area (e.g., state=10 and puma=103 for PUMA 103 in Delaware);
setting state and puma without other options corresponds to using census sum-
mary level 795.
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zip.code a numeric code (or wildcard "*" for all) corresponding to the desired zip code
tabulation area (e.g., zip.code=91303 for zip code 91303); if selected, no other
geography options may be specified; setting zip.code corresponds to using cen-
sus summary level 860.

school.district.elementary

a numeric code (or wildcard "*" for all) corresponding to the desired FIPS state
school district (elementary), or a character string to search for in the names of
these districts; setting state and school.district.elementary without other options
corresponds to using census summary level 950.

school.district.secondary

a numeric code (or wildcard "*" for all) corresponding to the desired FIPS state
school district (secondary), or a character string to search for in the names of
these districts; setting state and school.district.secondary without other options
corresponds to using census summary level 960.

school.district.unified

a numeric code (or wildcard "*" for all) corresponding to the desired FIPS
state school district (unified), or a character string to search for in the names
of these districts; setting state and school.district.unified without other options
corresponds to using census summary level 970.

combine a logical flag to indicate whether the component geographies of the geo.set are
to be combined when data is downloaded; see details.

combine.term a character string to provide a label for aggregate geography, if data is combined

check logical flag indicating whether to run a check for valid geographies with Census
API; defaults to FALSE; when TRUE, a current API key must be provided or
installed

key when check=T and no API key has been previously installed through api.key.install,
a string key may be provided here

Details

In addition to creating individual combinations of census geographies, users can pass vector argu-
ments (with recycling) to geo.make to create sets of geographies. Important: each set of arguments
must match with exactly one known Census geography: if, for example, the names of two places
(or counties, or whatever) would both match, the geo.make function will return an error. (To the
development team, this seemed preferable to simply including both matches, since all sorts of place
names might match a string, and it is doubtful a user really wants them all.) The one exception to
this "single match" rule is that for the smallest level of geography specified, a user can enter "*" to
indicate that all geographies at that level should be selected.

When creating new geographies, note, too, that not all combinations are valid. In particular the
package attempts to follow paths through the Census summary levels (such as summary level 140:
"state-county-tract" or summary level 160: "state-place"). So when specifying, for example, state,
county, and place, the county will be ignored.

Note: when a geo.set with "combine=T" is passed to acs.fetch, downloaded data will be aggre-
gated in the resulting acs abject. Some users may therefore wish to specify "one.zero=T" as an
additional argument to acs.fetch; see sum-methods.
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The following table may be helpful in figuring out which options to set for which Census sum-
mary levels. For more information on which datasets and endyear/span combinations are avail-
able for each summary level, see http://www.census.gov/data/developers/data-sets.html
(click each dataset and search for "Examples and Supported Geography").

SUMMARY LEVEL ARGUMENTS REQUIRED
010 us
020 region
030 division
040 state
050 state, county
060 state, county, county.subdivision
140 state, county, tract
150 state, county, tract, block.group
160 state, place
250 american.indian.area
310 msa
320 state, msa
330 csa
340 state, csa
350 necta
400 urban.area
500 state, congressional.district
510 state, congressional.district, county
610 state, state.legislative.district.upper
620 state, state.legislative.district.lower
795 state, puma
860 zip.code
950 state, school.district.elementary
960 state, school.district.secondary
970 state, school.district.unified

All other arguments/combinations will either be ignored or result in a failure.

Value

Returns a geo.set class object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

1. "acs.R: An R Package for Neighborhood-Level Data from the U.S. Census." Ezra Haber
Glenn, Department of Urban Studies and Planning, Massachusetts Institute of Technology.
Presented at the Computers in Urban Planning and Urban Management Conference, July 6,
2011. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2171390.

http://www.census.gov/data/developers/data-sets.html
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2171390
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2. Census API Supported Geography: http://www.census.gov/data/developers/data-sets.
html

See Also

geo.set-class

Examples

# some single-state geo.sets
washington=geo.make(state=53)
alabama=geo.make(state="Alab")

# a county match
yakima=geo.make(state="WA", county="Yakima")
yakima

# a multiple-county geo.set
psrc=geo.make(state="WA", county=c(33,35,53,61))
psrc

# combine geo.sets
north.mercer.island=geo.make(state=53, county=33, tract=c(24300,24400))
optional.tract=geo.make(state=53, county=33, tract=24500)
# add in one more tract to create new, larger geo
north.mercer.island.plus=north.mercer.island + optional.tract

# using wildcards

# all unified school districts in Kansas
geo.make(state="KS", school.district.unified="*")

# all state house districts in Alaska
geo.make(state="AK", state.legislative.district.lower="*")

# all tracts in Kings County, NY
geo.make(state="NY", county="King", tract="*")

geo.set-class Class "geo.set"

Description

The geo.set class provides a convenient wrapper for user-defined geographies, used for downloading
data from the U.S. Census American Community Survey. A geo.set may hold the designation
of a single geography (say, a census tract, a county, or a state), or may bundle together multiple
geographies of various levels, which may or may not be "combined" when downloaded. Note that
geo.sets may even contain nested geo.sets.

http://www.census.gov/data/developers/data-sets.html
http://www.census.gov/data/developers/data-sets.html


30 geo.set-class

Note: even a single geographic unit — one specific tract or county — must be wrapped up as a
geo.set. Technically, each individual element in the set is known as a "geo", but users will rarely
(if ever) interact will individual elements such as this; wrapping all groups of geographies — even
groups consisting of just one element — in geo.sets like this will help make them easier to deal with
as the geographies get more complex.

geo.set objects may be combined with the simple addition operator (+). By default, this will always
return "flat" geo.sets with all the geographies in a single list. The combination operator (c), on the
other hand, will generally return nested hierarchies, embedding sets within sets. When working
with nested sets like this, the "combine" flag can be set at each level to aggregate subsets within the
structure (although be careful — if a higher level of set includes "combine=T" you’ll never actually
see the unaggregated subsets deeper down).

Using these different techniques, users are able to create whatever sort of new geographies they need
— aggregating some geographies, keeping others distinct (but still bundled as a set for convenience),
mixing and matching different levels of Census geography, and so on.

Objects from the Class

Objects can be created by calls of the form new("geo.set", ...), or more frequently through the
geo.make() helper function.

Slots

geo.list: Object of class "list" containing individual census geographies (as geo class object)
and/or geo.sets.

combine: Object of class "logical" indicating whether or not data from the constituent geogra-
phies should be combined when downloaded. Set with combine<- or specified when using
geo.make.

combine.term: Object of class "character" indicating a new label to use when data is combined;
ignored when combine set to F. Set with combine.term<- or specified when using geo.make.

Methods

[ signature(x = "geo.set"): subset geo.set, similar to single-bracket list subsetting in R

[[ signature(x = "geo.set"): subset geo.set, similar to double-bracket list subsetting in R

+ signature(e1 = "geo", e2 = "geo"): combine two geo objects; returns a geo.set (generally
reserved for internal use)

+ signature(e1 = "geo", e2 = "geo.set"): combine a geo object onto an existing geo.set;
returns a geo.set (generally reserved for internal use)

+ signature(e1 = "geo.set", e2 = "geo"): combine an existing geo.set object with a geo
object; returns a geo.set (generally reserved for internal use)

+ signature(e1 = "geo.set", e2 = "geo.set"): combine two geo.set objects; always flattens
each set – no nesting

c signature(x = "geo.set"): combine two or more geo.set objects, preserving the structure of
each – allows nesting

combine<- signature(object = "geo.set"): used to set or change value of combine

combine signature(object = "geo.set"): returns logical value of combine
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combine.term<- signature(object = "geo.set"): used to set or change combine.term

combine.term signature(object = "geo.set"): returns combine.term

geo.list signature(object = "geo.set"): returns the geo.list of the geo.set (used internally)

length signature(x = "geo.set"): returns an integer indicating how many geographies it con-
tains; non-recursive.

name signature(object = "geo"): returns the text name of an individual geo object.

sumlev signature(object = "geo"): returns the summary level of an individual geo object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

References

http://eglenn.scripts.mit.edu/citystate/category/code/

See Also

geo.make

Examples

showClass("geo.set")

geography Return or replace geography metadata of an acs object.

Description

geography() will return the geography of an acs object, as a dataframe. Depending on the format of
the data at import (and possibly the values of geocols=, if the object was created with read.acs),
this may have multiple columns, but the number of geographic rows should be the same as the
number of rows of the acs estimates and standard errors.

When used for assignment, geography<- will change the values contained in the metadata, replac-
ing the existing dataframe with a new one. To replace a single value or a limited subset, call with
subsetting (e.g., geography(object)[i,j]<-value or geography(object)[[i]]<-value; note
that the brackets should occur outside the call – you are subsetting the dataframe, not the object).

To help with replacement operations, the package provides a new prompt method, which can be
used to interactively set new values for geography (as well as other metadata); see prompt.acs.

Usage

geography(object)

geography(object)<-value
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Arguments

object an acs object

value a dataframe containing geographic metadata; must contain the same number of
rows as the object

Value

Returns (or replaces) a dataframe containing the geography slot of an object.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

prompt.acs, a helper function to interactively generate a new geography dataframe to be used for
replacement.

acs-class

Examples

data(lawrence10)
geography(lawrence10)
str(geography(lawrence10))

kansas07 County-level data from the 2007 American Community Survey for
Kansas for use in examples of acs package.

Description

County-level data from the 2007 American Community Survey for Kansas. Contains demographic
data on sex, age, and citizenship. Used for examples in acs package. kansas07 and the correspond-
ing five-year survey data in kansas09 provide acs objects to test and demonstrate various functions
in the package.

Usage

data(kansas07)

Format

An acs-class object with 7 rows/geographies and 55 demographic variables, representing county-
level ACS data for the state of Kansas. Also includes geographic and other metadata.

Note that in comparison to kansas09, kansas07 has far fewer rows, which illustrates the fact that
the Census only provides ACS one-year data for the largest counties (over 65,000 population).
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Source

U.S. Census American Community Survey, 2007; http://www.census.gov/

Examples

data(kansas07)
str(kansas07)
class(kansas07)

geography(kansas07)

# subsetting
kansas07[1:3,2:4]

# row-wise addition
kansas07[1,6]+kansas07[2,6]

# column-wise addition
kansas07[1:4,3]+kansas07[1:4,27]

kansas09 County-level data from the 2005-2009 American Community Survey
for Kansas for use in examples of acs package.

Description

County-level data from the 2005-2009 American Community Survey for Kansas. Contains de-
mographic data on sex, age, and citizenship. Used for examples in acs package. kansas09, and
the corresponding one-year survey data in kansas07, provide acs objects to test and demonstrate
various functions in the package.

Usage

data(kansas09)

Format

An acs-class object with 105 rows/geographies and 55 demographic variables, representing county-
level ACS data for the state of Kansas. Also includes geographic and other metadata.

Source

U.S. Census American Community Survey, 2009; http://www.census.gov/

http://www.census.gov/
http://www.census.gov/
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Examples

data(kansas09)
str(kansas09)
class(kansas09)

geography(kansas09)

# subsetting
kansas09[1:3,2:4]

# row-wise addition
kansas09[1,6]+kansas09[2,6]

# column-wise addition
kansas09[1:4,3]+kansas09[1:4,27]

lawrence10 Tract-level data from the 2006-2010 American Community Survey for
Lawrence, MA for use in examples of acs package.

Description

Tract-level data from the 2006-2010 American Community Survey for Lawrence, MA. Contains
median household income. Used for examples in acs package.

Usage

data(lawrence10)

Format

An acs-class object with 18 rows/geographies and 1 variable, representing tract-level ACS data for
the city of Lawrence, MA from 2006-2010. Also includes geographic and other metadata.

Source

U.S. Census American Community Survey, 2010; http://www.census.gov/

Examples

data(lawrence10)
str(lawrence10)
class(lawrence10)

# subsetting
lawrence10[1:3,1]

# row-wise subtraction

http://www.census.gov/
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lawrence10[1,1]+lawrence10[2,1]

plot-methods acs Methods for Function plot

Description

Plot acs objects, with both estimates and confidence intervals.

Usage

## S4 method for signature 'acs'
plot(x, conf.level=.95, err.col="red", err.lwd=1,
err.pch="-", err.cex=2, err.lty=2, x.res=300, labels="auto",
by="geography", true.min=T, ...)

Arguments

x the acs object to be plotted

conf.level the desired confidence interval to use for error bars; numeric between 0<1

err.col the color to use for the error bars; analogous to graphic parameter col

err.lwd the line weight to use for the error bars; analogous to graphic parameter lwd

err.pch the point character to use for the error bars; analogous to graphic parameter pch

err.cex the scaling factor to use for the error bars; analogous to graphic parameter cex

err.lty the line type to use for the error bars; analogous to graphic parameter lty

x.res when plot called with a single acs value (see below), x.res determines the res-
olution of the resulting density plot; integer (defaults to 300, i.e., the curve is
drawn with 300 points)

labels the labels to use for the x axis; defaults to either geography names or acs.colnames
based on dimensions of object plotted; vector of proper length required

by in cases where multiple rows and columns are plotted, whether to provide a dif-
ferent plot for each value of geography (the default) or acs.colnames; accepts
either "geography" or "acs.colnames"

true.min whether to limit the lower bound of a confidence interval to some value or now;
TRUE (the default) allows for negative lower bounds; also accepts FALSE to limit
lower bounds to 0, or any number, to use that as a minimum lower bound; see
details.

... provided to allow for passing of additional arguments to plot functions
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Methods

signature(object = "acs") When passed an acs object (possibly involving subsetting), plot
will call a plot showing both estimates and confidence intervals for the data contained in the
object.
If the object contains only one row or only one column, plot will use this dimension as the
y-axis and will plot each observation along the x-axis, as three points (an estimate bracketed
by upper and lower confidence bounds). If the object contains multiple rows and columns,
plot will return a 1-by-y "plot of plots": by default there will be one plot per row showing all
the data for each geography, although this can be changed by specifying by="acs.colnames",
to plot each variable as its own plot, with all of the geographies along the x-axis.
In the special case where the dimensions of the object are exactly c(1,1) (i.e., a single geog-
raphy and column), plot will return a density plot of the estimate. In this case, conf.level,
err.col, err.lty, and err.lwd will be used to determine the properties of the margins of
error lines. (For none, use conf.level=F. For these density plots, users may also wish to set
xlim and x.res, which specify the horizontal extent and resolution of the plot.)
plot accepts many of the standard graphical arguments to plot, such as main, sub, xlab,
pch, and col, as well new ones listed above.
In some cases, the lower bound of a confidence interval may extend below 0; in some cases this
is desired, especially when a variable is actually stating the difference between two estimates.
In other cases, this may seem confusing (for example, when reporting the estimated count in
a particular category). Setting true.min to FALSE (or 0) will limit the lower boundary of any
confidence intervals computed and plotted.

Examples

# load ACS data
data(kansas07)

# plot a single value
plot(kansas07[4,4])

# plot by geography
plot(kansas07[,10])

# plot by columns
plot(kansas07[4,3:10])

# a density plot for a single variable
plot(kansas07[7,10])

# same, using some graphical parameters
plot(kansas07[7,10], col="blue", err.col="purple", err.lty=3)

plot(kansas07[7,49], col="lightblue", type="h", x.res=3000,
err.col="purple", err.lty=3, err.lwd=4, conf.level=.99,
main=(paste("Distribution of Females>85 Years in ",
geography(kansas07)[7,1], sep="")),
sub="(99-percent margin of error shown in purple)")
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# something more complicated...

plot(kansas07[c(1,3,4),3:25], err.col="purple",
pch=16, err.pch="x", err.cex=1, ylim=c(0,5000),
col=rainbow(23), conf.level=.99,
labels=paste("grp. ",1:23))

prompt.acs Prompt for new values for metadata in an acs object.

Description

Helper function to interactively set new values for row- and/or column-names in an acs object.

Usage

## S3 method for class 'acs'
prompt(object, filename=NA, name=NA, what="acs.colnames",
geocols="all", ...)

Arguments

object an acs object

filename not used; provided for S3 generic/method consistency

name not used; provided for S3 generic/method consistency

what which acs-class metadata slot to prompt for; either "acs.colnames" (the default),
"acs.units", or "geography"

geocols a vector, or "all", specifying which columns from the geography metadata to
prompt for (optional; defaults to "all"; ignored when what="acs.colnames")

... not used; provided for S3 generic/method consistency

Details

The acs package provides this S3 prompt method for acs-class objects, primarily as a "helper" func-
tion to use in calls to geography(object)<-, acs.units(object)<-, or acs.colnames(object)<-.
prompt provides an interactive interface, prompting the user for new metadata values based on the
existing ones.

When what="geography" and geocols is not "all", prompt will only prompt for replacements of
the values of geocols, but will still return values for all geography columns, suitable for passing to
geography(object)<-.

Anytime during the interactive prompt() session, a user may enter a blank line to terminate, re-
turning only the changed values up to that point (along with the unchanged values for remaining
entries.)
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Value

Returns a value of the same class and dimensions as the current geography, acs.units, or acs.colnames
of object, but with new names, suitable for passing to one of the replacement methods (acs.colnames<-,
(acs.units<-, or geography<-).

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

See Also

geography<-

acs.colnames<-

acs.units<-

Examples

data(kansas07)

acs.colnames(kansas07)=prompt(kansas07, what="acs.colnames")

geography(kansas07)=prompt.acs(kansas07, what="geography")

rbind.acs Combine acs Objects by Rows

Description

Take a pair of acs objects and combine by rows.

Usage

## S3 method for class 'acs'
rbind(e1, e2, ...)

Arguments

e1, e2 two acs-class objects

... provided for consistency with cbind S3 method
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Details

When passed two acs-class objects, rbind will first check to confirm whether the objects contain
compatible data: same endyear and span; same column names. If not, it will issue a warning, but
will still proceed.

After this check, the function will return a new acs object that has resulted from combining the
two arguments row-wise. The effect is essentially the same as rbind on the underlying estimate and
standard.error matrices, with all the additional acs metadata tended to.

Value

Returns a single new acs object with all of the data contained in the two arguments.

Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

read.acs Reads a comma-delimited file from the American Community Survey
and creates an acs object with estimates, standard errors, and associ-
ated metadata.

Description

When passed a comma-delimited file from the U.S. Census American Community Survey (typically
downloaded via the FactFinder website and unzipped), read.acs returns an acs object with estimates,
standard errors, and associated metadata.

Most users will prefer to start with acs.fetch to import data; read.acs is maintained as a "legacy"
function, primarily for use in situations where data is not available via the Census API.

Usage

read.acs(filename, endyear = "auto", span = "auto", col.names= "auto",
acs.units = "auto", geocols = "auto", skip = "auto")

Arguments

filename the name of the .csv, .zip, or .txt file to be input

endyear an integer (or "auto") indicating the latest year of the data in the survey (e.g., for
data from the 2005-2009 5-year ACS data, endyear would be 2009)

span an integer (should be 1, 3, or 5), or "auto" to have read.acs guess the span from
the filename (e.g., for data from the 2005-2009 5-year ACS data, span would be
5)

col.names a vector of column names to be used as acs.colnames for the object; defaults
to "auto", which will result in auto-generated names from the headers lines of
the input file
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acs.units a vector of factors indicating what sort of data is contained within each column
of data ("count","dollars","proportion", "ratio", "other")

geocols a vector of integers indicating which columns contain the geographic header
information; defaults to "auto", which is the same as 3:1, which seems to be the
standard for FactFinder-2 downloads

skip an integer indicating how many rows to skip before processing the csv file; de-
faults to "auto", which will try to guess the proper value

Details

After executing a query on the U.S. Census American FactFinder site (http://factfinder2.
census.gov), users can download their results as a zip file containing data in comma-delimited file
format (for example, "ACS_10_5YR_B19013_with_ann.csv"). read.acs simplifies the creation of
new acs objects from these files. The function uses some rudimentary algorithms to guess intelli-
gently about values for metadata (such as endyear and geography), based on current file-format
used by the Census "AmericanFactFinder 2" download site.

The specified filename can be an actual .csv file, or can be the name of a .zip file downloaded
from the FactFinder site. If the latter, read.acs will extract the necessary data and leave the com-
pressed zipfile in place.

As a default, read.acs assumes the first three columns will contain geographic header information,
which seems to be the standard for the new Census American Factfinder download site. Users can
also set different values for the geocols= to specify other columns for this geographic informa-
tion. The function will use the first of these columns for geographic rownames to label estimates.
(By default, then, this would be the third column of the actual file, since geocols=3:1. For files
downloaded via the Census "legacy" version of FactFinder prior to 2012, users will probably want
to specify geocols=4:1.

As for column names, by default read.acs will scan the file to determine how many of the initial
rows contain "header" information, and will generate new acs.colnames by concatenating infor-
mation found in these rows. Note that this can result in very long variable names, and users may
want to modify the contents of acs.colnames after creation.

Alternatively, users can inspect downloaded csv files prior to import and specify the skip= option
explicitly, as with read.csv and other read.XXX functions (i.e., the value of skip is equal to the
number of rows prior to the last header row). Regardless of whether skip= is set or "auto", however,
the column names will be created using all of the rows at the top of the file, even the "skipped" ones.

Finally, these new acs.colnames are used to guess intelligently about values for acs.units, but
currently all this includes is a check for the word "dollars" in the names; if this is not found, the
columns are assumed to be "counts".

When no other values are provided, read.acs will attempt to determine endyear and span from
the filename.

Value

Returns a new acs-class object with estimates, standard errors (derived from the census 90% margins
of error), and metadata associated with the survey,

http://factfinder2.census.gov
http://factfinder2.census.gov
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Author(s)

Ezra Haber Glenn <eglenn@mit.edu>

sum-methods acs Methods for Function sum

Description

Returns the sum of all the estimates present in its arguments, along with proper treatment of standard
errors.

Usage

## S4 method for signature 'acs'
sum(x, agg.term=c("aggregate", "aggregate"),
one.zero=FALSE, ..., na.rm=FALSE)

Arguments

x the acs object to be summed

agg.term a character vector (length 1 or 2) of labels to use for the geography or acs.colnames
of the new object

one.zero a logical flag indicating whether to include standard errors for only one zero-
value estimates or all (the default); see details.

... reserved for other arguments to pass

na.rm whether to remove NAs from the values before summing; defaults to FALSE.

Details

Note: when aggregating ACS data, users may want to sum many fields with "0" values for esti-
mates, especially when working with small geographies or detailed tables that split the population
into many categories. In these cases, some analysts have suggested that the traditional summation
procedure for standard errors (taking the square-root of the sum of the squares of the errors) may
over-inflate the associated margins of error; instead, they recommend an alternative method, which
ignores all but the single largest of the standard errors for any "zero-estimate" fields. Although this
is somewhat unconventional, it is provided as an additional user-specified option here, through the
"one.zero" argument.
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Methods

signature(object = "acs") When passed an acs object (possibly involving subsetting), sum
will return a new acs object created by aggregating (adding) all estimates in the object, and
adding the corresponding standard errors in a statistically appropriate way. (Aggregate stan-
dard errors are computed by taking the square root of the sum of the squared standard errors
of the terms to be aggregated.)
If the original object contains a single row, the geographic metadata and row name is pre-
served; if not, the geographic metadata is replaced with the term "aggregate" (or the contents
of the first item of the (vector) option agg.term).
If the original object contains a single column, the column names and acs.units data are pre-
served; if not, the column names are replaced with the term "aggregate" or the contents of the
second item of the (vector) option agg.term; note: if agg.term is only one item in length, it
will be repeated here if needed.
All other acs-class metadata is preserved, except for the modified flag, which is set to TRUE.

Examples

# load ACS data
data(kansas09)

# aggregate the third column, all rows
sum(kansas09[,3])

# aggregate the fifth row, all column
sum(kansas09[5,])

# aggregate all rows, columns 3 through 25, rename rows "Kansas" and columns "Total Males"
sum(kansas09[, 3:25], agg.term=c("Kansas","Total Males"))
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