aricode: Efficient Computations of Standard Clustering Comparison Measures

Implements an efficient O(n) algorithm based on bucket-sorting for fast computation of standard clustering comparison measures. Available measures include adjusted Rand index (ARI), normalized information distance (NID), normalized mutual information (NMI), normalized variation information (NVI) and entropy, as described in Vinh et al (2009) <doi:10.1145/1553374.1553511>.

Version: 0.1.1
Imports: Matrix, Rcpp
LinkingTo: Rcpp
Suggests: testthat
Published: 2018-05-02
Author: Julien Chiquet ORCID iD [aut, cre], Guillem Rigaill [aut], Valentin Dervieux [ctb]
Maintainer: Julien Chiquet <julien.chiquet at>
License: GPL (≥ 3)
URL: (dev version)
NeedsCompilation: yes
Materials: NEWS
CRAN checks: aricode results


Reference manual: aricode.pdf
Package source: aricode_0.1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: aricode_0.1.1.tgz, r-oldrel: aricode_0.1.1.tgz


Please use the canonical form to link to this page.