bonsaiforest: Shrinkage Based Forest Plots

Subgroup analyses are routinely performed in clinical trial analyses. From a methodological perspective, two key issues of subgroup analyses are multiplicity (even if only predefined subgroups are investigated) and the low sample sizes of subgroups which lead to highly variable estimates, see e.g. Yusuf et al (1991) <doi:10.1001/jama.1991.03470010097038>. This package implements subgroup estimates based on Bayesian shrinkage priors, see Carvalho et al (2019) <>. In addition, estimates based on penalized likelihood inference are available, based on Simon et al (2011) <doi:10.18637/jss.v039.i05>. The corresponding shrinkage based forest plots address the aforementioned issues and can complement standard forest plots in practical clinical trial analyses.

Version: 0.1.0
Depends: R (≥ 4.1)
Imports: brms, broom, checkmate, dplyr, forcats, gbm, ggplot2, glmnet, MASS, Rcpp, splines2, stats, survival, tibble, tidyr, tidyselect, vdiffr
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-06-17
DOI: 10.32614/CRAN.package.bonsaiforest
Author: Mar Vazquez Rabunal [aut], Daniel Sabanés Bové [aut], Marcel Wolbers [aut], Isaac Gravestock [cre], F. Hoffmann-La Roche AG [cph, fnd]
Maintainer: Isaac Gravestock <isaac.gravestock at>
License: Apache License 2.0
NeedsCompilation: yes
Language: en-US
Materials: NEWS
CRAN checks: bonsaiforest results


Reference manual: bonsaiforest.pdf
Vignettes: Introduction


Package source: bonsaiforest_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): bonsaiforest_0.1.0.tgz, r-oldrel (arm64): bonsaiforest_0.1.0.tgz, r-release (x86_64): bonsaiforest_0.1.0.tgz, r-oldrel (x86_64): bonsaiforest_0.1.0.tgz


Please use the canonical form to link to this page.