Package ‘cowplot’

January 8, 2019

Title Streamlined Plot Theme and Plot Annotations for 'ggplot2'
Version 0.9.4

Description Some helpful extensions and modifications to the 'ggplot2'
package. In particular, this package makes it easy to combine multiple
'ggplot2’ plots into one and label them with letters, e.g. A, B, C, etc.,
as is often required for scientific publications. The package also provides
a streamlined and clean theme that is used in the Wilke lab, hence the
package name, which stands for Claus O. Wilke's plot package.

URL https://github.com/wilkelab/cowplot

Depends R (>=3.3.0), ggplot2 (>=2.1.0),

Imports grid (>= 3.0.0), gtable (>= 0.1.2), plyr (>= 1.8.2),
grDevices, methods, scales, utils

License GPL-2
LazyData true

Suggests covr, gridGraphics, knitr, rmarkdown, magick, maps, dplyr,
tidyr, testthat, vdiffr, viridis

VignetteBuilder knitr

BugReports https://github.com/wilkelab/cowplot/issues

Collate 'add_sub.R' 'axis_canvas.R' 'cowplot.R' 'draw.R’
'get_legend.R' 'get_panel.R' 'gtable.R' ‘plot_grid.R'
'plot_to_gtable.R' 'save.R' 'setup.R' 'switch_axis.R'
'themes.R' 'utils_ggplot2.R’

RoxygenNote 6.1.0
NeedsCompilation no

Author Claus O. Wilke [aut, cre],
RStudio [cph] (Copyright for ggplot2 code copied to cowplot)

Maintainer Claus O. Wilke <wilke@austin.utexas.edu>
Repository CRAN
Date/Publication 2019-01-08 05:50:03 UTC

https://github.com/wilkelab/cowplot
https://github.com/wilkelab/cowplot/issues

2 add_sub

R topics documented:
add_sub e 2
align_margin e e e e e 4
align_plots. L 5
AXIS_CANVAS .+ v v v v o e e e e e e e e e e e 6
background_grid 7
cowplot . . . e 8
draw_figure_label L 8
draw_grob L e 10
draw_image e e e e e 10
draw_label e 12
draw_line e 13
draw_plot e e 14
draw_plot_label 15
draw_teXt e e e e e e e e e e e e e e 15
get_legend 16
get_panel L e e e 17
gedraw . ..o e 18
ESAVE . . . e e e e e e e e e e e e 18
gtable_remove_grobs L. e e e 19
gtable_squash_cols 20
gtable_squash_rows e e 20
INSErt_XaxXiS_grob e e e e e e 21
panel_border 21
plot_grid e e 22
plot_to_gtable 24
save_plot . . . L e e e e 25
theme_cowplot L 26
theme_map 27
theme_nothing 27

Index 29

add_sub Add annotation underneath a plot
Description

This function can add an arbitrary label or mathematical expression underneath the plot, simi-
lar to the sub parameter in base R. It is mostly superseded now by the caption argument to
ggplot2::1labs(), and it is recommended to use caption instead of add_sub() whenever pos-
sible.

add_sub 3

Usage
add_sub(plot, label, x = 0.5, y = 0.5, hjust = 0.5, vjust = 0.5,

vpadding = grid::unit(1, "lines"), fontfamily = "",
fontface = "plain”, colour = "black”, size = 14, angle = 0,

lineheight = 0.9)

Arguments
plot A ggplot object or gtable object derived from a ggplot object.
label The label with which the plot should be annotated. Can be a plotmath expres-
sion.
X The x position of the label
y The y position of the label
hjust Horizontal justification
vjust Vertical justification
vpadding Vertical padding. The total vertical space added to the label, given in grid units.
By default, this is added equally above and below the label. However, by chang-
ing the y and vjust parameters, this can be changed.
fontfamily The font family
fontface The font face ("plain”, "bold", etc.)
colour Text color
size Point size of text
angle Angle at which text is drawn
lineheight Line height of text
Details

The exact location where the label is placed is controlled by the parameters x, y, hjust, and
vjust. By default, all these parameters are set to 0.5, which places the label centered underneath
the plot panel. A value of x = 0 indicates the left boundary of the plot panel and a value of
x = 1 indicates the right boundary. The parameter hjust works just as elsewhere in ggplot2.
Thus, x = @, hjust = 0 places the label left-justified at the left boundary of the plot panel,
x = 0.5, hjust = 0.5 places the label centered underneath the plot panel, and x = 1, hjust = 1
places it right-justified at the right boundary of the plot panel. x-values below 0 or above 1 are al-
lowed, and they move the label beyond the limits of the plot panel.

The y coordinates are relative to the added vertical space that is introduced underneath the x-axis
label to place the annotation. A value of y=0 indicates the bottom-most edge of that space and a
value of y=1 indicates the top-most edge of that space. The total height of the added space is given
by the height needed to draw the label plus the value of vpadding. Thus, if y=0, vjust=0 then the
extra padding is added entirely above the label, if y=1, vjust=1 then the extra padding is added
entirely below the label, and if y=0.5, vjust=0.5 (the default) then the extra padding is added
equally above and below the label. As is the case with x, y-values outside the range 0-1 are allowed.
In particular, for sufficiently large values of y, the label will eventually be located inside the plot
panel.

4 align_margin

Value

A gtable object holding the modified plot.

Examples

pl1 <- ggplot(mtcars, aes(mpg, disp)) + geom_line(colour = "blue"”) + background_grid(minor="none")
ggdraw(add_sub(p1, "This is an annotation.\nAnnotations can span multiple lines."))

You can also do this repeatedly.

p2 <- add_sub(p1, "This formula has no relevance here:", y = 0, vjust = 0)
p3 <- add_sub(p2, expression(paste(a*2+b*2, " =", c*2)))

ggdraw(p3)

#This code also works with faceted plots:
plot.iris <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
geom_point() + facet_grid(. ~ Species) + stat_smooth(method = "1Im") +
background_grid(major = 'y', minor = "none") + # add thin horizontal lines
panel_border() # and a border around each panel
p2 <- add_sub(plot.iris, "Annotation underneath a faceted plot, left justified.”, x = @, hjust = @)

ggdraw(p2)

Finally, it is possible to move the annotation inside of the plot if desired.
ggdraw(add_sub(p1, "Annotation inside plot”, vpadding=grid::unit(@, "lines"),
y =6, x = 0.03, hjust = 0))

align_margin Align multiple plots along a specified margin

Description

The function aligns the dimensions of multiple plots along a specified axis, and is solely a helper
function for align_plots() to reduce redundancy. Each element of the sizes list corresponds to
the dimensions of a plot being aligned. They should be vectors created from calls to grob$heights
or grob$widths depending on whether you are aligning vertically or horizontally. The list of di-
mensions is generated automatically by the align_plots() function, but see examples. If the same
number of elements exist for all plots for the specified margin, the function will align individual
elements on the margin. Otherwise, it aligns the plot by adding white space to plot margins so that
all margins have the same dimensions.

Usage

align_margin(sizes, margin_to_align)

Arguments

sizes list of dimensions for each plot being aligned. Each element of list obtained by
a call to grob$heights or grob$widths (see example).

align_plots 5

margin_to_align
string either "first" or "last" for which part of plot area should be aligned. If
vertically aligning, "first" aligns left margin and "last" aligns right margin. If
horizontally aligning "first" aligns top margin and "last" aligns bottom margin

Examples

Example for how to utilize, though align_plots() does this internally and automatically
pl <- gplot(1:10, 1:10)
p2 <- gplot(1:10, (1:10)%2)
p3 <- gplot(1:10, (1:10)"3)
plots <- list(pl1, p2, p3)
grobs <- lapply(plots, ggplot2::ggplotGrob)
plot_widths <- lapply(grobs, function(x){x$widths})
Aligning the Left margins of all plots
aligned_widths <- align_margin(plot_widths, "first")
Aligning the right margins of all plots as well
aligned_widths <- align_margin(plot_widths, "last")
Setting the dimensions of plots to the aligned dimensions
for(i in 1:3){
plots[[i]]$widths <- aligned_widths[[i]]
3

align_plots Align multiple plots vertically and/or horizontally

Description

Align the plot area of multiple plots. Inputs are a list of plots plus alignment parameters. Horizontal
or vertical alignment or both are possible. In the simplest case the function will align all elements
of each plot, but it can handle more complex cases as long as the axis parameter is defined. In this
case, alignment is done through a call to align_margin(). The function align_plots is called by
the plot_grid() function and is usually not called directly, though direct calling of the function is
useful if plots with multiple y-axes are desired (see example).

Usage

align_plots(..., plotlist = NULL, align = c("none”, "h", "v", "hv"),
aXiS = C(Hnonell’ Hlﬁl’ llrll, “t”, Hbll’ lllrlﬁ, “tb", ”tblr"))

Arguments
List of plots to be aligned.
plotlist (optional) List of plots to display. Alternatively, the plots can be provided in-
dividually as the first n arguments of the function align_plots (see plot_grid
examples).
align (optional) Specifies whether graphs in the grid should be horizontally ("h") or

vertically ("v") aligned. Options are align="none" (default), "hv" (align in both
directions), "h", and "v".

6 axis_canvas

axis (optional) Specifies whether graphs should be aligned by the left ("I"), right
("r"), top ("t"), or bottom ("b") margins. Options are axis="none"” (default),
or a string of any combination of "1", "r", "t", and/or "b" in any order (e.g.
axis="tblr" or axis="rlbt" for aligning all margins)

Examples

pl <- ggplot(mpg, aes(manufacturer, hwy)) + stat_summary(fun.y="median"”, geom = "bar") +
theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust= 1))

p2 <- ggplot(mpg, aes(manufacturer, displ)) + geom_point(color="red") +
scale_y_continuous(position = "right") +
theme(axis.text.x = element_blank())

manually align and plot on top of each other

aligned_plots <- align_plots(pl, p2, align="hv", axis="tblr")

Note: In most cases two y-axes should not be used, but this example

illustrates how one would could accomplish it.

ggdraw(aligned_plots[[1]]) +draw_plot(aligned_plots[[2]1])

axis_canvas Generates a canvas onto which one can draw axis-like objects.

Description

This function takes an existing ggplot2 plot and copies one or both of the axis into a new plot. The
main idea is to use this in conjunction with insert_xaxis_grob() or insert_yaxis_grob() to
draw custom axis-like objects or margin annotations. Importantly, while this function works for
both continuous and discrete scales, notice that discrete scales are converted into continuous scales
in the returned axis canvas. The levels of the discrete scale are placed at continuous values of 1, 2,
3, etc. See Examples for an example of how to convert a discrete scale into a continuous scale.

Usage

axis_canvas(plot, axis = "y", data = NULL, mapping = aes(),
xlim = NULL, ylim = NULL, coord_flip = FALSE)

Arguments

plot The plot defining the x and/or y axis range for the axis canvas.

axis Specifies which axis to copy from plot. Can be "x", "y", or "xy".

data (optional) Data to be displayed in this layer.

mapping (optional) Aesthetic mapping to be used in this layer.

xLlim (optional) Vector of two numbers specifying the limits of the x axis. Ignored if
the x axis is copied over from plot.

ylim (optional) Vector of two numbers specifying the limits of the y axis. Ignored if
the y axis is copied over from plot.

coord_flip (optional) If true, flips the coordinate system and applies x limits to the y axis

and vice versa. Useful in combination with ggplot2’s coord_f1lip() function.

background_grid

Examples

annotate line graphs with labels on the right
library(dplyr)
library(tidyr)
x <- seq(0, 10, .1)
d <- data.frame(x,
linear = x,
squared = x*x/5,
cubed = x*x*x/25) %>%
gather(fun, y, -x)

pmain <- ggplot(d, aes(x, y, group = fun)) + geom_line() +
scale_x_continuous(expand = c(@, 0))

paxis <- axis_canvas(pmain, axis = "y") +
geom_text(data = filter(d, x == max(x)), aes(y =y, label = paste@(" ", fun)),
X = @, hjust = @, vjust = 0.5)
ggdraw(insert_yaxis_grob(pmain, paxis, grid::unit(.25, "null")))

discrete scale with integrated color legend

pmain <- ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
geom_violin(trim = FALSE) + guides(fill = "none") +
scale_x_discrete(labels = NULL) +
theme_minimal ()

label_data <- data.frame(x = 1:nlevels(iris$Species),
Species = levels(iris$Species))
paxis <- axis_canvas(pmain, axis = "x", data = label_data, mapping = aes(x = x)) +
geom_tile(aes(fill = Species, y = 0.5), width = 0.9, height = 0.3) +
geom_text(aes(label = Species, y = 0.5), hjust = 0.5, vjust = 0.5, size = 11/.pt)
ggdraw(insert_xaxis_grob(pmain, paxis, grid::unit(.07, "null"),
position = "bottom"))

add marginal density distributions to plot
pmain <- ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point()

xdens <- axis_canvas(pmain, axis = "x") +
geom_density(data=iris, aes(x=Sepal.Length, fill=Species), alpha=0.7, size=.2)

need to set ‘coord_flip = TRUE' if you plan to use ‘coord_flip()*

ydens <- axis_canvas(pmain, axis = "y", coord_flip = TRUE) +
geom_density(data=iris, aes(x=Sepal.Width, fill=Species), alpha=0.7, size=.2) +
coord_flip()

pl <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"), position = "top")
p2 <- insert_yaxis_grob(pl, ydens, grid::unit(.2, "null”), position = "right")
ggdraw(p2)

background_grid Add/modify/remove the background grid in a ggplot2 plot

8 draw_figure_label

Description

This function provides a simple way to modify the background grid in ggplot2. It doesn’t do any-
thing that can’t be done just the same with theme (). However, it simplifies creation of the most
commonly needed variations.

Usage
background_grid(major = c("xy", "x", "y", "only_minor”, "none"),
minor = c("xy", "x", "y", "none"), size.major = 0.2,
size.minor = 0.5, colour.major = "grey90", colour.minor = "grey98")
Arguments
major Specifies along which axes you would like to plot major grid lines. Options are
"xy", "x", "y", "only_minor" (disables major grid lines but allows you to switch
on minor grid lines), "none".
minor Specifies along which axes you would like to plot minor grid lines. Options are
"Xy", "X”, lly"’ "noneﬂ'
size.major Size of the major grid lines.
size.minor Size of the minor grid lines.

colour.major Color of the major grid lines.

colour.minor Color of the minor grid lines.

cowplot cowplot.
Description
cowplot.
draw_figure_label Add a label to a figure
Description

The main purpose of this function is to add labels specifying extra information about the figure,
such as "Figure 1", or "A" - often useful in cowplots with more than one pane. The function is
similar to draw_plot_label.

Usage

draw_figure_label(label, position = c("top.left”, "top"”, "top.right",
"bottom.left”, "bottom”, "bottom.right"), size, fontface, ...)

draw_figure_label

Arguments

label

position

size

fontface

Author(s)

Label to be drawn

Position of the label, can be one of "top.left", "top",
"bottom", "bottom.right". Default is "top.left"

top.right", "bottom.left",

(optional) Size of the label to be drawn. Default is the text size of the current
theme

(optional) Font face of the label to be drawn. Default is the font face of the
current theme

other arguments passed to draw_plot_label

Ulrik Stervbo (ulrik.stervbo @ gmail.com)

See Also

draw_plot_label

Examples

p1 <- gplot(1l
p2 <- gplot(1
p3 <- gplot(1
p4 <- gplot(1l

210,
210,
110,
110,

1:10)

(1:10)42)
(1:10)73)
(1:10)24)

Create a simple grid
p <- plot_grid(pl1, p2, p3, p4, align = 'hv')

Default font size and position
p + draw_figure_label(label = "Figure 1")

Different position and font size
p + draw_figure_label(label = "Figure 1", position = "bottom.right”, size = 10)

Using bold font face
p + draw_figure_label(label = "Figure 1", fontface = "bold")

Making the label red and slanted
p + draw_figure_label(label = "Figure 1", angle = -45, colour = "red")

Labeling an individual plot
ggdraw(p2) + draw_figure_label(label = "Figure 1", position = "bottom.right”, size = 10)

10 draw_image

draw_grob Draw a grob.

Description
Places an arbitrary grob somewhere onto the drawing canvas. By default, coordinates run from O to
1, and the point (0, 0) is in the lower left corner of the canvas.

Usage

draw_grob(grob, x = @, y = 0, width = 1, height = 1, scale =1,
clip = "inherit")

Arguments
grob The grob to place.
X The x location of the lower left corner of the grob.
y The y location of the lower left corner of the grob.
width Width of the grob.
height Height of the grob.
scale Scales the grob relative to the rectangle defined by x, y, width, height. A
setting of scale = 1 indicates no scaling.
clip Set to "on" to clip the grob or "inherit" to not clip. Note that clipping doesn’t
always work as expected, due to limitations of the grid graphics system.
Examples

A grid grob (here a blue circle)

library(grid)

g <- circleGrob(gp = gpar(fill = "blue"))

place into the middle of the plotting area, at a scale of 50%
ggdraw() + draw_grob(g, scale = 0.5)

draw_image Draw an image

Description

Places an image somewhere onto the drawing canvas. By default, coordinates run from O to 1, and
the point (0, 0) is in the lower left corner of the canvas. Requires the magick package to work, and
fails gracefully if that package is not installed.

draw_image

Usage

11

draw_image(image, x = @, y = @, width = 1, height = 1, scale =1,
clip = "inherit”, interpolate = TRUE)

Arguments

image

X

y
width

height

scale

clip

interpolate

Examples

The image to place. Can be a file path, a URL, or a raw vector with image
data, as in magick: :image_read(). Can also be an image previously created
by magick: :image_read() and related functions.

The x location of the lower left corner of the image.
The y location of the lower left corner of the image.
Width of the image.
Height of the image.

Scales the image relative to the rectangle defined by x, y, width, height. A
setting of scale = 1 indicates no scaling.

Set to "on" to clip the image relative to the box into which it is draw (useful
for scale > 1). Note that clipping doesn’t always work as expected, due to
limitations of the grid graphics system.

A logical value indicating whether to linearly interpolate the image (the alterna-
tive is to use nearest-neighbour interpolation, which gives a more blocky result).

Use image as plot background
p <- ggplot(iris, aes(x = Sepal.Length, fill = Species)) + geom_density(alpha = 0.7)

ggdraw() +

draw_image("http://jeroen.github.io/images/tiger.svg") +
draw_plot(p + theme(legend.box.background = element_rect(color = "white")))

Make grid with plot and image
p <- ggplot(iris, aes(x = Sepal.Length, fill = Species)) +
geom_density(alpha = 0.7)

p2 <- ggdraw() + draw_image("http://jeroen.github.io/images/tiger.svg"”, scale

0.9)

plot_grid(p, p2, labels = "AUTO")

Manipulate images and draw in plot coordinates
if (requireNamespace("magick”, quietly = TRUE)){
img <- magick::image_read("http://jeroen.github.io/images/tiger.svg")
img <- magick::image_transparent(img, color = "white")
img2 <- magick::image_negate(img)
ggplot(data.frame(x = 1:3, y = 1:3), aes(x, y)) +
geom_point(size = 3) +
geom_abline(slope = 1, intercept = @, linetype = 2, color = "blue”) +

draw_image(img |,
draw_image(img2,

=1, y=1, scale = .9) +

X
X =2,y =2, scale = .9)

12 draw_label

draw_label Draw a text label or mathematical expression.

Description

This function can draw either a character string or mathematical expression at the given coordinates.
It works both on top of ggdraw and directly with ggplot, depending on which coordinate system is
desired (see examples).

Usage

draw_label(label, x = 0.5, y = 0.5, hjust = 0.5, vjust = 0.5,
fontfamily = "", fontface = "plain”, colour = "black”, size = 14,
angle = @, lineheight = 0.9, alpha = 1)

Arguments
label String or plotmath expression to be drawn.
X The x location (origin) of the label.
y The y location (origin) of the label.
hjust Horizontal justification. Default = 0.5 (centered on x). 0 = flush-left at x, 1 =
flush-right.
vjust Vertical justification. Default = 0.5 (centered on y). O = baseline aty, 1 =
ascender at y.
fontfamily The font family
fontface The font face ("plain”, "bold", etc.)
colour Text color
size Point size of text
angle Angle at which text is drawn
lineheight Line height of text
alpha The alpha value of the text
Details

By default, the x and y coordinates specify the center of the text box. Set hjust = @, vjust = @
to specify the lower left corner, and other values of hjust and vjust for any other relative location
you want to specify.

See Also

ggdraw

draw_line 13

Examples

setup plot and a label (regression description)
p <- ggplot(mtcars, aes(mpg, disp)) + geom_line(color = "blue”) + background_grid(minor = 'none')
c <- cor.test(mtcars$mpg, mtcars$disp, method = 'sp')
label <- substitute(paste(”Spearman ", rho, " = ", estimate, ", P = ", pvalue),
list(estimate = signif(c$estimate, 2), pvalue = signif(c$p.value, 2)))

Add label to plot, centered on {x,y} (in data coordinates)

p + draw_label(label, x = 20, y = 400)

Add label to plot in data coordinates, flush-left at x, baseline at y.
p + draw_label(label, x = 20, y = 400, hjust = @, vjust = 0)

Add label to plot. Data coordinates, drawing rightward

from x, with ascenders of text touching y.

p + draw_label(label, x = 20, y = 400, hjust = @, vjust = 1)

Add labels via ggdraw. Uses ggdraw coordinates.

ggdraw coordinates default to xlim = c(@, 1), ylim = c(@, 1).
ggdraw(p) + draw_label("centered on 70% of x, 90% of y height”, x = 0.7, y = 0.9)
labstr = "bottom left at {0%, 0%} of the SHEET, not the plot!”

p = ggdraw(p) + draw_label(labstr, x = @, y = 0, hjust = 0@, vjust

)

p = p + draw_label("top right at {1,1}", x =1, y =1, hjust =1, vjust = 1)
p = p + draw_label("bottom left at {.4,.4}", x = 0.4, y = 0.4, hjust = @, vjust = Q)
p + draw_label("centered on at {.5,.5}", x = 0.5, y = 0.5, hjust = 0.5, vjust = 0.5)
draw_line Draw a line from connected points
Description

Provide a sequence of x values and accompanying y values to draw a line on a plot.

Usage
draw_line(x, y, ...)
Arguments
X Vector of x coordinates.
y Vector of y coordinates.
geom_path parameters such as colour, alpha, size, etc.
Details

This is a convenience function, providing a wrapper around ggplot2’s geom_path.

See Also

geom_path, ggdraw

14 draw_plot

Examples
ggdraw() + draw_line(x = c(0.2, 0.7, 0.7, 0.3),
y = c(0.1, 0.3, 0.9, 0.8),
color = "blue”, size = 2)
draw_plot Draw a (sub)plot.

Description

Places a plot somewhere onto the drawing canvas. By default, coordinates run from O to 1, and the
point (0, 0) is in the lower left corner of the canvas.

Usage

draw_plot(plot, x = @, y = @, width = 1, height = 1, scale = 1)

Arguments
plot The plot to place. Can be a ggplot2 plot, an arbitrary grob or gtable, or a
recorded base-R plot, as in plot_to_gtable().
X The x location of the lower left corner of the plot.
y The y location of the lower left corner of the plot.
width Width of the plot.
height Height of the plot.
scale Scales the grob relative to the rectangle defined by x, y, width, height. A
setting of scale = 1 indicates no scaling.
Examples

make a plot

p <- gplot(1:10, 1:10)

draw into the top-right corner of a larger plot area
ggdraw() + draw_plot(p, .6, .6, .4, .4)

draw_plot_label 15

draw_plot_label Add a label to a plot

Description

This function adds a plot label to the upper left corner of a graph (or an arbitrarily specified posi-
tion). It takes all the same parameters as draw_text, but has defaults that make it convenient to
label graphs with letters A, B, C, etc. Just like draw_text(), it can handle vectors of labels with
associated coordinates.

Usage
draw_plot_label(label, x = @, y = 1, hjust = -0.5, vjust = 1.5,
size = 16, fontface = "bold”, family = NULL, colour = NULL, ...)
Arguments
label String (or vector of strings) to be drawn as the label.
X The x position (or vector thereof) of the label(s).
y The y position (or vector thereof) of the label(s).
hjust Horizontal adjustment.
vjust Vertical adjustment.
size Font size of the label to be drawn.
fontface Font face of the label to be drawn.
family (optional) Font family of the plot labels. If not provided, is taken from the
current theme.
colour (optional) Color of the plot labels. If not provided, is taken from the current
theme.

Other arguments to be handed to draw_text.

draw_text Draw multiple text-strings in one go.

Description
This is a convenience function to plot multiple pieces of text at the same time. It cannot handle
mathematical expressions, though. For those, use draw_label.

Usage

draw_text(text, x = 0.5, y = 0.5, size = 14, hjust = 0.5,
vjust = 0.5, ...)

16 get_legend

Arguments
text A vector of Character (not expressions) specifying the string(s) to be written.
X Vector of x coordinates.
y Vector of y coordinates.
size Font size of the text to be drawn.
hjust (default = 0.5)
vjust (default = 0.5)
Style parameters, such as colour, alpha, angle, size, etc.
Details

Note that font sizes are scaled by a factor of 2.85, so sizes agree with those of the theme. This is
different from geom_text in ggplot2.

By default, the x and y coordinates specify the center of the text box. Set hjust = @, vjust = @
to specify the lower left corner, and other values of hjust and vjust for any other relative location
you want to specify.

For a full list of ... options, see geom_label.

See Also
draw_label

Examples

Draw onto a 1%1 drawing surface

ggdraw() + draw_text("Hello World!", x = 0.5, y = 0.5)

#

Adorn a plot from the Anscombe data set of "identical” data.

p = gplot(x = x1, y = y1, geom = c("smooth”, "point”), data = anscombe)
threeStrings = c("Hello World!"”, "to be or not to be”, "over and out")
p + draw_text(threeStrings, x = 8:10, y = 5:7, hjust = 0)

get_legend Retrieve the legend of a plot

Description

This function extracts just the legend from a ggplot

Usage
get_legend(plot)

Arguments

plot A ggplot or gtable from which to retrieve the legend

get_panel 17

Value

A gtable object holding just the lengend

Examples

pl <- ggplot(mtcars, aes(mpg, disp)) + geom_line()

plot.mpg <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(cyl))) + geom_point(size=2.5)
Note that these cannot be aligned vertically due to the legend in the plot.mpg
ggdraw(plot_grid(p1, plot.mpg, ncol=1, align='v'))

legend <- get_legend(plot.mpg)

plot.mpg <- plot.mpg + theme(legend.position='none')

Now plots are aligned vertically with the legend to the right

ggdraw(plot_grid(plot_grid(p1, plot.mpg, ncol=1, align='v'),
plot_grid(NULL, legend, ncol=1),
rel_widths=c(1, 0.2)))

get_panel Retrieve the panel of a plot

Description

This function extracts just the main panel from a ggplot. It only works for plots with exactly one
panel (i.e., plots that are not faceted).

Usage

get_panel(plot)

Arguments

plot A ggplot or gtable from which to retrieve the panel

Value

A gtable object holding just the panel

18 ggsave

ggdraw Set up a drawing layer on top of a ggplot

Description

Set up a drawing layer on top of a ggplot.

Usage

ggdraw(plot = NULL, xlim = c(@, 1), ylim = c(0, 1))

Arguments
plot The plot to use as a starting point. Can be a ggplot2 plot, an arbitrary grob or
gtable, or a recorded base-R plot, as in plot_to_gtable().
x1lim The x-axis limits for the drawing layer.
ylim The y-axis limits for the drawing layer.
Examples

p <- ggplot(mpg, aes(displ, cty)) + geom_point()
ggdraw(p) + draw_label("Draft”, colour = "grey"”, size = 120, angle = 45)

ggsave Cowplot reimplementation of ggsave.

Description

This function should behave just like ggsave from ggplot2, with the main difference being that by
default it doesn’t use the Dingbats font for pdf output. If you ever have trouble with this function,
you can use ggplot2: :ggsave() instead.

Usage

ggsave(filename, plot = ggplot2::last_plot(), device = NULL,
path = NULL, scale = 1, width = NA, height = NA,
units = c¢("in”, "cm”, "mm"), dpi = 300, limitsize = TRUE, ...)

gtable_remove_grobs

Arguments

filename
plot
device
path
scale
width
height

units

dpi

limitsize

19

Filename of plot

Plot to save, defaults to last plot displayed.

Device to use, automatically extract from file name extension.
Path to save plot to (if you just want to set path and not filename).
Scaling factor.

Width (defaults to the width of current plotting window).

Height (defaults to the height of current plotting window).

Units for width and height when either one is explicitly specified (in, cm, or
mm).

DPI to use for raster graphics.

When TRUE (the default), ggsave will not save images larger than 50x50 inches,
to prevent the common error of specifying dimensions in pixels.

Other arguments to be handed to the plot device.

gtable_remove_grobs Remove named elements from gtable

Description

Remove named elements from gtable

Usage
gtable_remove_grobs(table, names, ...)
Arguments
table The table from which grobs should be removed
names A character vector of the grob names (as listed in table$layout) that should be

removed

Other parameters passed through to gtable_filter.

20 gtable_squash_rows

gtable_squash_cols Set the width of given colums to 0.

Description

Set the width of given colums to 0.

Usage

gtable_squash_cols(table, cols)

Arguments
table The gtable on which to operate
cols Numerical vector indicating the columns whose width should be set to zero.
gtable_squash_rows Set the height of given rows to 0.
Description

Set the height of given rows to 0.

Usage

gtable_squash_rows(table, rows)

Arguments

table The gtable on which to operate

rows Numerical vector indicating the rows whose heights should be set to zero.

insert_xaxis_grob 21

insert_xaxis_grob Insert an axis-like grob on either side of a plot panel in a ggplot2 plot.

Description

The function insert_xaxis_grob() inserts a grob at the top or bottom of the plot panel in a ggplot2
plot. The function insert_yaxis_grob() inserts a grob to the right or left of the plot panel in a
ggplot2 plot.

Usage
insert_xaxis_grob(plot, grob, height = grid::unit(@.2, "null"),
position = c("top”, "bottom"))

insert_yaxis_grob(plot, grob, width = grid::unit(@.2, "null”),
position = c("right", "left"))

Arguments
plot The plot into which the grob will be inserted.
grob The grob to insert. This will generally have been obtained via get_panel()
from a ggplot2 object, in particular one generated with axis_canvas(). If a
ggplot2 plot is provided instead of a grob, then get_panel () is called to extract
the panel grob.
height The height of the grob, in grid units. Used by insert_xaxis_grob().
position The position of the grob. Can be "right"” or "1left"” for insert_yaxis_grob()
and "top"” or "botton" for insert_xaxis_grob().
width The width of the grob, in grid units. Used by insert_yaxis_grob().
Details

For usage examples, see axis_canvas().

panel_border Add/remove the panel border in a ggplot2 plot

Description
This function provides a simple way to modify the panel border in ggplot2. It doesn’t do anything
that can’t be done just the same with theme (). However, it saves some typing.

Usage

panel_border(colour = "gray80"”, size = 0.5, linetype = 1,
remove = FALSE)

22 plot_grid
Arguments

colour The color of the border.

size Size.

linetype Line type.

remove If TRUE, removes the current panel border.

plot_grid Arrange multiple plots into a grid

Description

Arrange multiple plots into a grid.

Usage

plot_grid(...

, plotlist = NULL, align = c(”none”, "h", "v", "hv"),

axis = c("none”, "1", "r", "t", "b", "1lr", "tb", "tblr"),

nrow = NULL, ncol = NULL, rel_widths = 1, rel_heights = 1,
labels = NULL, label_size = 14, label_fontfamily = NULL,
label_fontface = "bold"”, label_colour = NULL, label_x = 0,
label_y = 1, hjust = -0.5, vjust = 1.5, scale = 1, cols = NULL,

rows = NULL)

Arguments

plotlist

align

axis

nrow

ncol
rel_widths

rel_heights

List of plots to be arranged into the grid. The plots can be any objects that the
function plot_to_gtable() can handle (see also examples).

(optional) List of plots to display. Alternatively, the plots can be provided indi-
vidually as the first n arguments of the function plot_grid (see examples).

(optional) Specifies whether graphs in the grid should be horizontally ("h") or
vertically ("v") aligned. Options are "none" (default), "hv" (align in both direc-
tions), "h", and "v".

(optional) Specifies whether graphs should be aligned by the left ("1"), right
("r"), top ("t"), or bottom ("b") margins. Options are "none" (default), or a string
of any combination of 1, r, t, and b in any order (e.g. "tblr" or "rlbt" for aligning
all margins). Must be specified if any of the graphs are complex (e.g. faceted)
and alignment is specified and desired. See align_plots() for details.

(optional) Number of rows in the plot grid.
(optional) Number of columns in the plot grid.

(optional) Numerical vector of relative columns widths. For example, in a two-
column grid, rel_widths = c(2, 1) would make the first column twice as
wide as the second column.

(optional) Numerical vector of relative columns heights. Works just as rel_widths
does, but for rows rather than columns.

plot_grid

labels

label_size
label_fontfamily

label_fontface

label_colour

label_x

label_y

hjust

vjust

scale

cols

rows

Examples

p1
p2
p3
p4
p5

simple grid

<

gplot(1
gplot(1
<- gplot(1
<- gplot(1

N
1

110,
110,
110,
210,

23

(optional) List of labels to be added to the plots. You can also set labels="AUT0"
to auto-generate upper-case labels or labels="auto"” to auto-generate lower-
case labels.

(optional) Numerical value indicating the label size. Default is 14.

(optional) Font family of the plot labels. If not provided, is taken from the
current theme.

(optional) Font face of the plot labels. Default is "bold".

(optional) Color of the plot labels. If not provided, is taken from the current
theme.

(optional) Single value or vector of x positions for plot labels, relative to each
subplot. Defaults to O for all labels. (Each label is placed all the way to the left
of each plot.)

(optional) Single value or vector of y positions for plot labels, relative to each
subplot. Defaults to 1 for all labels. (Each label is placed all the way to the top
of each plot.)

Adjusts the horizontal position of each label. More negative values move the
label further to the right on the plot canvas. Can be a single value (applied to all
labels) or a vector of values (one for each label). Default is -0.5.

Adjusts the vertical position of each label. More positive values move the label
further down on the plot canvas. Can be a single value (applied to all labels) or
a vector of values (one for each label). Default is 1.5.

Individual number or vector of numbers greater than 0. Enables you to scale the
size of all or select plots. Usually it’s preferable to set margins instead of using
scale, but scale can sometimes be more powerful.

Deprecated. Use ncol.

Deprecated. Use nrow.

1:10)

(1:10)%2)
(1:10)73)
(1:10)*4)

<- ggplot(mpg, aes(as.factor(year), hwy)) +
geom_boxplot() +
facet_wrap(~class, scales = "free_y")

plot_grid(pl, p2, p3, p4)

simple grid with labels and aligned plots
plot_grid(p1, p2, p3, p4, labels=c('A', 'B', 'C', 'D'), align="hv")

manually setting the number of rows, auto-generate upper-case labels
plot_grid(p1, p2, p3, nrow=3, labels="AUT0", label_size=12, align="v")

making rows and columns of different widths/heights

24 plot_to_gtable

plot_grid(pl, p2, p3, p4, align='hv', rel_heights=c(2,1), rel_widths=c(1,2))

aligning complex plots in a grid
plot_grid(p1, p5, align="h", axis="b", nrow = 1, rel_widths = c(1,2))

more examples
#' # missing plots in some grid locations, auto-generate lower-case labels
plot_grid(p1, NULL, NULL, p2, p3, NULL, ncol=2,

labels="auto"”, label_size=12, align="v")

can align top of plotting area as well as bottom
plot_grid(p1, p5, align="h", axis="tb", nrow = 1, rel_widths = c(1,2))

other types of plots not generated with ggplot

dev.new()
par(xpd = NA, # switch off clipping, necessary to always see axis labels
bg = "transparent”, # switch off background to avoid obscuring adjacent plots

oma = c(2, 2, 0, @), # move plot to the right and up

mgp = c(2, 1, @) # move axis labels closer to axis
)
plot(sqrt)
p6 <- recordPlot()
dev.off()

p7 <- function() image(volcano)
p8 <- grid::circleGrob()

plot_grid(p1, p6, p7, p8, labels = "AUTO", scale = c(1, 1, .85, .9))

plot_to_gtable Convert plot or other graphics object into a gtable

Description

This function does it’s best attempt to take whatever you provide it and turn it into a gtable. It is
primarily meant to convert ggplot plots into gtables, but it will also take any grid object (grob), a
recorded R base plot, or a function that generates an R base plot.

Usage

plot_to_gtable(plot)

Arguments

plot The plot or other graphics object to convert into a gtable. Here, plot can be
an object of the following classes: ggplot, recordedplot, grob, or gtable.
Alternatively, plot can be a function creating a plot when called (see examples
for plot_grid()).

save_plot 25

save_plot Alternative to ggsave, with better support for multi-figure plots.

Description

This function replaces the standard ggsave function for saving a plot into a file. It has several
advantages over ggsave. First, it uses default sizes that work well with the cowplot theme, so that
frequently a plot size does not have to be explicitly specified. Second, it acknowledges that one
often first develops individual plots and then combines them into multi-plot figures, and it makes
it easy—in combination with plot_grid—to carry out this workflow. Finally, it makes it easy to
adjust the aspect ratio of the figure, which is frequently necessary to accommodate the figure legend.

Usage
save_plot(filename, plot, ncol = 1, nrow = 1, base_height = 4,
base_aspect_ratio = 1.1, base_width = NULL, ..., cols = NULL,
rows = NULL)
Arguments
filename Name of the plot file to generate.
plot Plot to save.
ncol Number of subplot columns.
nrow Number of subplot rows.

base_height The height (in inches) of the plot or of one sub-plot if nrow or ncol > 1. Default
is 4.

base_aspect_ratio
The aspect ratio of the plot or of one sub-plot if nrow or ncol > 1. This argument
is used if base_width = NULL or if base_height = NULL; if width or height
is missing the aspect ratio will be used calculate the NULL value. The default is
1.1, which works well for figures without a legend.

base_width The width (in inches) of the plot or of one sub-plot if nrow or ncol > 1. Default is
NULL, which means that the width is calculated from height and base_aspect_ratio.

Other arguments to be handed to ggsave.

cols Deprecated. Like ncol.
rows Deprecated. Like nrow.
Details

The key idea for this function is that plots are often grids, with sup-plots at the individual grid
locations. Therefore, for this function we specify a base width and aspect ratio that apply to one
sup-plot, and we then specify how many rows and columns of subplots we have. This means that
if we have code that can save a single figure, it is trivial to adapt this code to save a combination of
multiple comparable figures. See examples for details.

26 theme_cowplot

Examples

save a single plot without legend

x <= (1:100)/10

pl <- gplot(x, 2*x+5, geom='line')

save_plot("p1.pdf"”, p1)

now combine with a second plot and save

p2B <- gplot(x, -x*2+10*x-3, geom='line')

p2 <- plot_grid(pl, p2B, labels=c("A", "B"))

save_plot("p2.pdf", p2, ncol = 2)

save a single plot with legend, changing the aspect ratio to make room for the legend
p3 <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(cyl))) + geom_point(size=2.5)
save_plot("p3.png”, p3, base_aspect_ratio = 1.3)

same as p3 but determine base_height given base_aspect_ratio and base_width

p4 <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(cyl))) + geom_point(size=2.5)
save_plot("p4.png”, p4, base_height = NULL, base_aspect_ratio = 1.618, base_width = 6)
same as p4 but determine base_width given base_aspect_ratio and base_height

p5 <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(cyl))) + geom_point(size=2.5)
save_plot("p5.png”, p5, base_height = 6, base_aspect_ratio = 1.618, base_width = NULL)

theme_cowplot Create the default cowplot theme

Description

After loading the cowplot package, this theme will be the default for all graphs made with ggplot2.

Usage

theme_cowplot(font_size = 14, font_family = "", line_size = 0.5)
Arguments

font_size Overall font size. Default is 14.

font_family Default font family.

line_size Default line size.

Value

The theme.

Examples

gplot(1:10, (1:10)*2) + theme_cowplot(font_size = 15)

theme_map 27

theme_map Create a theme for map plotting

Description

The theme created by this function is useful for plotting maps with cowplot default sizing.

Usage

theme_map(base_size = 14, base_family = "")

Arguments

base_size Opverall font size. Default is 14.

base_family Base font family.

Value

The theme.

Examples

usa_data = map_data("usa")

ggplot(usa_data, aes(long, lat, group=region)) + geom_polygon() + theme_map()

ggplot(usa_data, aes(long, lat, fill = region)) + geom_polygon() + theme_map()

ggplot(usa_data, aes(long, lat, fill = region)) + facet_wrap(~region, scales = "free") +
geom_polygon() + theme_map()

theme_nothing Create a completely empty theme

Description

The theme created by this function shows nothing but the plot panel.

Usage
theme_nothing(base_size = 14, base_family = "")
Arguments
base_size Overall font size. Default is 14.
base_family Base font family.
Value

The theme.

28 theme_nothing

Examples

gplot(1:10, (1:10)*2) + theme_nothing()

Index

*Topic datasets gtable_squash_rows, 20

draw_grob, 10
insert_xaxis_grob, 21

add_sub, 2 insert_xaxis_grob(), 6
align_margin, 4 insert_yaxis_grob (insert_xaxis_grob),
align_margin(), 5 21
align_plots, 5 insert_yaxis_grob(), 6
align_plots(), 4, 22
axis_canvas, 6 panel_border, 21
axis_canvas(), 21 plot_grid, 22
plot_grid(), 5, 24
background_grid, 7 plot_to_gtable, 24

lot_to_gtable(), 14, 18, 22
coord_flip(), 6 P g 0

cowplot, 8 recordedplot, 24
cowplot-package (cowplot), 8

save_plot, 25
draw_figure_label, 8

draw_grob, 10 theme_cowplot, 26
draw_image, 10 theme_map, 27
draw_label, 12, 16 theme_nothing, 27

draw_line, 13
draw_plot, 14
draw_plot_label, 9, 15
draw_text, 15

geom_label, 16
geom_path, 13
GeomDrawGrob (draw_grob), 10
get_legend, 16
get_panel, 17
get_panel(), 21
ggdraw, 12, 13, 18
ggplot, 24

ggplot2, 6, 21
ggplot2::1abs(), 2
ggsave, 18

grob, 24

gtable, 24
gtable_remove_grobs, 19
gtable_squash_cols, 20

29

	add_sub
	align_margin
	align_plots
	axis_canvas
	background_grid
	cowplot
	draw_figure_label
	draw_grob
	draw_image
	draw_label
	draw_line
	draw_plot
	draw_plot_label
	draw_text
	get_legend
	get_panel
	ggdraw
	ggsave
	gtable_remove_grobs
	gtable_squash_cols
	gtable_squash_rows
	insert_xaxis_grob
	panel_border
	plot_grid
	plot_to_gtable
	save_plot
	theme_cowplot
	theme_map
	theme_nothing
	Index

