ddalpha: Depth-based Classification and Calculation of Data Depth

Contains procedures for depth-based supervised learning, which are entirely nonparametric, in particular the DDalpha-procedure. The training data sample is transformed by a statistical depth function to a compact low-dimensional space, where the final classification is done. It also offers an extension to functional data and routines for calculating certain notions of statistical depth functions. 50 multivariate and 5 functional classification problems are included.

Version: 1.1.0
Depends: MASS, class, robustbase
Imports: Rcpp (≥ 0.11.0)
LinkingTo: BH, Rcpp
Published: 2014-12-20
Author: Oleksii Pokotylo [aut, cre], Pavlo Mozharovskyi [aut]
Maintainer: Oleksii Pokotylo <alexey.pokotylo at gmail.com>
License: GPL-2
NeedsCompilation: yes
Citation: ddalpha citation info
CRAN checks: ddalpha results

Downloads:

Reference manual: ddalpha.pdf
Package source: ddalpha_1.1.0.tar.gz
Windows binaries: r-devel: ddalpha_1.1.0.zip, r-release: ddalpha_1.1.0.zip, r-oldrel: ddalpha_1.1.0.zip
OS X Snow Leopard binaries: r-release: ddalpha_1.0.6.tgz, r-oldrel: ddalpha_1.0.6.tgz
OS X Mavericks binaries: r-release: ddalpha_1.1.0.tgz
Old sources: ddalpha archive