# effectsize Size does matter

The goal of this package is to provide utilities to work with indices of effect size and standardized parameters, allowing computation and conversion of indices such as Cohen’s d, r, odds-ratios, etc.

## Installation

Run the following:

``````install.packages("devtools")
devtools::install_github("easystats/effectsize")``````
``library("effectsize")``

## Documentation

Click on the buttons above to access the package documentation and the easystats blog, and check-out these vignettes:

# Features

This package is focused on indices of effect size. But there are hundreds of them! Thus, everybody is welcome to contribute by adding support for the interpretation of new indices. If you’re not sure how to code it it’s okay, just open an issue to discuss it and we’ll help :)

## Effect Size Computation

### Basic Indices (Cohen’s d, Hedges’ g, Glass’ delta)

The package provides functions to compute indices of effect size.

``````cohens_d(iris\$Sepal.Length, iris\$Sepal.Width)
##  -4.21
hedges_g(iris\$Sepal.Length, iris\$Sepal.Width)
##  -4.2
glass_delta(iris\$Sepal.Length, iris\$Sepal.Width)
##  -3.36``````

### ANOVAs (Eta2, Omega2, …)

``````model <- aov(Sepal.Length ~ Species, data = iris)

omega_squared(model, partial = TRUE)
##   Parameter Omega_Sq_partial
## 1   Species            0.612
## 2 Residuals               NA
eta_squared(model, partial = TRUE)
##   Parameter Eta_Sq_partial
## 1   Species          0.619
## 2 Residuals             NA
epsilon_squared(model)
##   Parameter Epsilon_sq
## 1   Species      0.614
## 2 Residuals         NA
cohens_f(model)
##   Parameter Cohens_f
## 1   Species     1.27
## 2 Residuals       NA``````

### Regression Models

Importantly, `effectsize` also provides advanced methods to compute standardized parameters for regression models.

``````lm(Sepal.Length ~ Species + Sepal.Length, data = iris) %>%
standardize_parameters()``````
Parameter Std_Coefficient
(Intercept) -1.01
Speciesversicolor 1.12
Speciesvirginica 1.91

## Effect Size Interpretation

The package allows for an automated interpretation of different indices.

``````interpret_r(r = 0.3)
##  "large"``````

Different sets of “rules of thumb” are implemented (guidelines are detailed here) and can be easily changed.

``````interpret_d(d = 0.45, rules = "cohen1988")
##  "small"
interpret_d(d = 0.45, rules = "funder2019")
##  "medium"``````

## Effect Size Conversion

The package also provides ways of converting between different effect sizes.

``````convert_d_to_r(d = 1)
##  0.447``````

## Standardization

Many indices of effect size stem out, or are related, to standardization. Thus, it is expected that `effectsize` provides functions to standardize data and models.

### Data standardization, normalization and rank-transformation

A standardization sets the mean and SD to 0 and 1:

``````library(parameters)

df <- standardize(iris)
describe_distribution(df\$Sepal.Length)``````
Mean SD Min Max Skewness Kurtosis n n_Missing
0 1 -1.9 2.5 0.3 -0.6 150 0

This can be also applied to statistical models:

``````std_model <- standardize(lm(Sepal.Length ~ Species, data = iris))
coef(std_model)
##       (Intercept) Speciesversicolor  Speciesvirginica
##             -1.01              1.12              1.91``````

Alternatively, normalization is similar to standardization in that it is a linear translation of the parameter space (i.e., it does not change the shape of the data distribution). However, it puts the values within a 0 - 1 range, which can be useful in cases where you want to compare or visualise data on the same scale.

``````df <- normalize(iris)
describe_distribution(df\$Sepal.Length)``````
Mean SD Min Max Skewness Kurtosis n n_Missing
0.4 0.2 0 1 0.3 -0.6 150 0

This is a special case of a rescaling function, which can be used to rescale the data to an arbitrary new scale. Let’s change all numeric variables to “percentages”:

``````df <- change_scale(iris, to = c(0, 100))
describe_distribution(df\$Sepal.Length)``````
Mean SD Min Max Skewness Kurtosis n n_Missing
42.9 23 0 100 0.3 -0.6 150 0

For some robust statistics, one might also want to transfom the numeric values into ranks (or signed-ranks), which can be performed using the `ranktransform()` function.

``````ranktransform(c(1, 3, -2, 6, 6, 0))
##  3.0 4.0 1.0 5.5 5.5 2.0``````