fmeffects: Model-Agnostic Interpretations with Forward Marginal Effects

Create local, regional, and global explanations for any machine learning model with forward marginal effects. You provide a model and data, and 'fmeffects' computes feature effects. The package is based on the theory in: C. A. Scholbeck, G. Casalicchio, C. Molnar, B. Bischl, and C. Heumann (2022) <arXiv:2201.08837>.

Version: 0.1.1
Depends: R (≥ 3.5.0)
Imports: checkmate, data.table, partykit, ggparty, ggplot2, cowplot, R6, testthat
Suggests: caret, knitr, mlr3verse, ranger, rmarkdown, rpart
Published: 2023-09-26
Author: Holger Löwe [cre, aut], Christian Scholbeck [aut], Christian Heumann [rev], Bernd Bischl [rev], Giuseppe Casalicchio [rev]
Maintainer: Holger Löwe <hbj.loewe at>
License: LGPL-3
NeedsCompilation: no
Materials: README NEWS
CRAN checks: fmeffects results


Reference manual: fmeffects.pdf
Vignettes: Why FMEs?
Get started


Package source: fmeffects_0.1.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): fmeffects_0.1.1.tgz, r-oldrel (arm64): fmeffects_0.1.1.tgz, r-release (x86_64): fmeffects_0.1.1.tgz, r-oldrel (x86_64): fmeffects_0.1.1.tgz
Old sources: fmeffects archive

Reverse dependencies:

Reverse suggests: marginaleffects


Please use the canonical form to link to this page.