Package ‘geometry’

September 9, 2015
License GPL (>= 3) + file LICENSE
Title Mesh Generation and Surface Tesselation

Description Makes the ghull library (www.ghull.org)
available in R, in a similar manner as in Octave and MATLAB. Qhull
computes convex hulls, Delaunay triangulations, halfspace
intersections about a point, Voronoi diagrams, furthest-site
Delaunay triangulations, and furthest-site Voronoi diagrams. It
runs in 2-d, 3-d, 4-d, and higher dimensions. It implements the
Quickhull algorithm for computing the convex hull. Qhull does not
support constrained Delaunay triangulations, or mesh generation of
non-convex objects, but the package does include some R functions
that allow for this. Currently the package only gives access to
Delaunay triangulation and convex hull computation.

Version 0.3-6

URL http://geometry.r-forge.r-project.org/
Date 2015-09-04

BugReports https://r-forge.r-project.org/tracker/?group_id=1149
Depends R (>=2.5.0), magic

Suggests testthat, rgl, R.matlab, tripack

NeedsCompilation yes

Author C. B. Barber [cph],
Kai Habel [cph, aut],
Raoul Grasman [cph, aut],
Robert B. Gramacy [cph, aut],
Andreas Stahel [cph, aut],
David C. Sterratt [cph, aut, cre]

Maintainer David C. Sterratt <david.c.sterratt@ed.ac.uk>
Repository CRAN
Date/Publication 2015-09-09 13:47:14

http://geometry.r-forge.r-project.org/
https://r-forge.r-project.org/tracker/?group_id=1149

2 baryZ2cart

R topics documented:
bary2cart e e e e e 2
cart2bary e e e e e e 3
convhulln 5
delaunayn 6
distmesh2d e e 8
distmeshnd e e e 10
dot . . . 12
entry.value 12
extprod3do 13
MAMAX . . v v v v v e e e e e e e e e e e e e e e e e 14
mesh.dcircleo 15
mesh.diff 16
mesh.drectangle e 16
mesh.dsphere L 17
mesh.hunif 18
polyarea L 19
SUIfLLrl . . . e e e e e 20
tetramesh L e e e e 21
trimesh L 22
tsearch e 23
tsearchn L e 24
Unique o o e e e e 25

Index 26

bary2cart Conversion of Barycentric to Cartesian coordinates
Description

Given the baryocentric coordinates of one or more points with respect to a simplex, compute the
Cartesian coordinates of these points.

Usage

bary2cart(X, Beta)

Arguments
X Reference simplex in N dimensions represented by a NV + 1-by-N matrix
Beta M points in baryocentric coordinates with respect to the simplex X represented
by a M-by-N + 1 matrix
Value

M-by-N matrix in which each row is the Cartesian coordinates of corresponding row of Beta

cart2bary 3

Author(s)

David Sterratt

See Also

cart2bary

Examples

Define simplex in 2D (i.e. a triangle)
X <- rbind(c(0, 0),

c(o, 1),

c(1, 0)
Cartesian cooridinates of points
beta <- rbind(c(@, 0.5, 0.5),

c(0.1, 0.8, 0.1))

Plot triangle and points
trimesh(rbind(1:3), X)
text(X[,1]1, X[,2]1, 1:3) # Label vertices
P <- bary2cart(X, beta)
points(P)

cart2bary Conversion of Cartesian to Barycentric coordinates.

Description
Given the Cartesian coordinates of one or more points, compute the barycentric coordinates of these
points with respect to a simplex.

Usage
cart2bary(X, P)

Arguments
X Reference simplex in N dimensions represented by a N + 1-by-/N matrix
P M-by-N matrix in which each row is the Cartesian coordinates of a point.
Details

Given a reference simplex in N dimensions represented by a N + 1-by-N matrix an arbitrary point
P in Cartesian coordinates, represented by a 1-by-/N row vector, can be written as

P = 8X

where is a N 4 1 vector of the barycentric coordinates. A criterion on [is that

Zﬂizl

4 cart2bary

Now partition the simplex into its first NV rows X and its N + 1th row X ;. Partition the
barycentric coordinates into the first /N columns Sy and the N + 1th column Sy 1. This allows us
to write

P —Xni1 = BvXN + Brvs1X N4 — Xyt

which can be written
P—Xpyg1 = 08Xy —1Xn41)

where 1 is a N-by-1 matrix of ones. We can then solve for Sy
By = (P = Xnp1) Xy = 1Xn41) ™!

and compute
N
Byii=1-> 5
i=1
This can be generalised for multiple values of P, one per row.

Value

M-by-N + 1 matrix in which each row is the barycentric coordinates of corresponding row of P. If
the simplex is degenerate a warning is issued and the function returns NULL.

Note

Based on the Octave function by David Bateman.

Author(s)

David Sterratt

See Also

bary2cart

Examples

Define simplex in 2D (i.e. a triangle)
X <- rbind(c(0, @),

c(o, 1),

c(1, 0))
Cartesian cooridinates of points
P <- rbind(c(0.5, 0.5),

c(0.1, 0.8))
Plot triangle and points
trimesh(rbind(1:3), X)
text(X[,1], X[,2], 1:3) # Label vertices
points(P)
cart2bary(X, P)

convhulln 5

convhulln Compute smallest convex hull that encloses a set of points

Description

Returns an index matrix to the points of simplices (“triangles”) that form the smallest convex sim-
plicial complex of a set of input points in N-dimensional space. This function interfaces the Qhull
library.

Usage
convhulln(p, options = "Tv")
Arguments
p An n-by-dim matrix. The rows of p represent n points in dim-dimensional space.
options String containing extra options for the underlying Qhull command; see details
below and Qhull documentation at http://www.ghull.org/html/qconvex.
htmi#synopsis.
Details

For slient operation, specify the option Pp.

Value

An m-by-dim index matrix of which each row defines a dim-dimensional “triangle”. The indices
refer to the rows in p. If the option FA is provided, then the output is a 1ist with entries hull
containing the matrix mentioned above, and area and vol with the generalised area and volume of
the hull described by the matrix. When applying convhulln to a 3D object, these have the conven-
tional meanings: vol is the volume of enclosed by the hull and area is the total area of the facets
comprising the hull’s surface. However, in 2D the facets of the hull are the lines of the perimeter.
Thus area is the length of the perimeter and vol is the area enclosed.

Note

This is a port of the Octave’s (http://www.octave.org) geometry library. The Octave source was
written by Kai Habel.

See further notes in delaunayn.

Author(s)

Raoul Grasman, Robert B. Gramacy and David Sterratt <david.c.sterratt@ed.ac.uk>

http://www.qhull.org/html/qconvex.htm#synopsis
http://www.qhull.org/html/qconvex.htm#synopsis
http://www.octave.org

6 delaunayn

References

Barber, C.B., Dobkin, D.P, and Huhdanpaa, H.T., “The Quickhull algorithm for convex hulls,”
ACM Trans. on Mathematical Software, Dec 1996.

http://www.ghull.org

See Also

convex.hull, delaunayn, surf.tri, distmesh2d

Examples

example convhulln

==> see also surf.tri to avoid unwanted messages printed to the console by ghull
ps <- matrix(rnorm(3000), ncol=3) # generate points on a sphere

ps <- sqrt(3)*ps/drop(sqrt((ps*2) %*% rep(1, 3)))

ts.surf <- t(convhulln(ps)) # see the ghull documentations for the options

Not run:
rgl.triangles(ps[ts.surf,1],ps[ts.surf,2],ps[ts.surf,3],col="blue”,alpha=.2)

for(i in 1:(8%360)) rgl.viewpoint(i/8)

End(Not run)

delaunayn Delaunay triangulation in N-dimensions

Description

The Delaunay triangulation is a tessellation of the convex hull of the points such that no N-sphere
defined by the N-triangles contains any other points from the set.

Usage
delaunayn(p, options = "", full = FALSE)
Arguments
p p is an n-by-dim matrix. The rows of p represent n points in dim-dimensional
space.
options String containing extra options for the underlying Qhull command.(See the Qhull
documentation (. . /doc/html/qdelaun.html) for the available options.)
full Return all information asscoiated with triangulation as a list. At present this is

the triangulation (tri), a vector of facet areas (areas) and a list of neighbours
of each facet (neighbours).

http://www.qhull.org
../doc/html/qdelaun.html

delaunayn 7

Details

If neither of the QJ or Qt options are supplied, the Qt option is passed to Qhull. The Qt option
ensures all Delaunay regions are simplical (e.g., triangles in 2-d). See ../doc/html/qdelaun.
html for more details. Contrary to the Qhull documentation, no degenerate (zero area) regions are
returned with the Qt option since the R function removes them from the triangulation.

For slient operation, specify the option Pp.

Value

The return matrix has m rows and dim+1 columns. It contains for each row a set of indices to the
points, which describes a simplex of dimension dim. The 3D simplex is a tetrahedron.

Note

This function interfaces the Qhull library and is a port from Octave (http://www.octave.org)
to R. Qhull computes convex hulls, Delaunay triangulations, halfspace intersections about a point,
Voronoi diagrams, furthest-site Delaunay triangulations, and furthest-site Voronoi diagrams. It runs
in 2-d, 3-d, 4-d, and higher dimensions. It implements the Quickhull algorithm for computing the
convex hull. Qhull handles roundoff errors from floating point arithmetic. It computes volumes,
surface areas, and approximations to the convex hull. See the Qhull documentation included in this
distribution (the doc directory . ./doc/index.html).

Qhull does not support constrained Delaunay triangulations, triangulation of non-convex surfaces,
mesh generation of non-convex objects, or medium-sized inputs in 9-D and higher. A rudimentary
algorithm for mesh generation in non-convex regions using Delaunay triangulation is implemented
in distmesh2d (currently only 2D).

Author(s)

Raoul Grasman and Robert B. Gramacy; based on the corresponding Octave sources of Kai Habel.

References

Barber, C.B., Dobkin, D.P, and Huhdanpaa, H.T., “The Quickhull algorithm for convex hulls,”
ACM Trans. on Mathematical Software, Dec 1996.

http://www.ghull.org

See Also

tri.mesh, convhulln, surf.tri, distmesh2d

Examples

example delaunayn

d <- c(-1,1)

pc <- as.matrix(rbind(expand.grid(d,d,d),0))
tc <- delaunayn(pc)

example tetramesh
Not run:

../doc/html/qdelaun.html
../doc/html/qdelaun.html
http://www.octave.org
../doc/index.html
http://www.qhull.org

8 distmesh2d

rgl::rgl.viewpoint(60)
rgl::rgl.light(120,60)
tetramesh(tc,pc, alpha=0.9)

End(Not run)

distmesh2d A simple mesh generator for non-convex regions

Description

An unstructured simplex requires a choice of meshpoints (vertex nodes) and a triangulation. This
is a simple and short algorithm that improves the quality of a mesh by relocating the meshpoints
according to a relaxation scheme of forces in a truss structure. The topology of the truss is reset
using Delaunay triangulation. A (sufficiently smooth) user supplied signed distance function (fd)
indicates if a given node is inside or outside the region. Points outside the region are projected back
to the boundary.

Usage

distmesh2d(fd, fh, h@, bbox, p = NULL, pfix = array(@, dim = c(@, 2)), ...,
dptol = 0.001, ttol = 0.1, Fscale = 1.2, deltat = 0.2, geps = 0.001
* h@, deps = sqrt(.Machine$double.eps) * h@, maxiter = 1000)

Arguments

fd Vectorized signed distance function, for example mesh.dcircle or mesh.diff,
accepting an n-by-2 matrix, where n is arbitrary, as the first argument.

fh Vectorized function, for example mesh.hunif, that returns desired edge length
as a function of position. Accepts an n-by-2 matrix, where n is arbitrary, as its
first argument.

ho Initial distance between mesh nodes. (Ignored of p is supplied)

bbox Bounding box cbind(c(xmin,xmax), c(ymin,ymax))

p An n-by-2 matrix. The rows of p represent locations of starting mesh nodes.

pfix nfix-by-2 matrix with fixed node positions.

dptol Algorithm stops when all node movements are smaller than dptol

ttol Controls how far the points can move (relatively) before a retriangulation with
delaunayn.

Fscale “Internal pressure” in the edges.

deltat Size of the time step in Eulers method.

geps Tolerance in the geometry evaluations.

deps Stepsize Az in numerical derivative computation for distance function.

maxiter Maximum iterations.

parameters to be passed to fd and/or fh

distmesh2d 9

Details

This is an implementation of original Matlab software of Per-Olof Persson.
Excerpt (modified) from the reference below:

“The algorithm is based on a mechanical analogy between a triangular mesh and a 2D truss structure.
In the physical model, the edges of the Delaunay triangles of a set of points correspond to bars of a
truss. Each bar has a force-displacement relationship f (¢, ¢y) depending on its current length ¢ and
its unextended length £.

‘External forces on the structure come at the boundaries, on which external forces have normal
orientations. These external forces are just large enough to prevent nodes from moving outside the
boundary. The position of the nodes are the unknowns, and are found by solving for a static force
equilibrium. The hope is that (when fh = function(p) return(rep(1,nrow(p)))), the lengths
of all the bars at equilibrium will be nearly equal, giving a well-shaped triangular mesh.’

See the references below for all details. Also, see the comments in the source file.

Value

n-by-2 matrix with node positions.

Wishlist

* *Implement in C/Fortran
* *Implement an nD version as provided in the matlab package

 *Translate other functions of the matlab package

Author(s)

Raoul Grasman

References

http://persson.berkeley.edu/distmesh/

P-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

tri.mesh, delaunayn, mesh.dcircle, mesh.drectangle,
mesh.diff, mesh.union, mesh.intersect

Examples

examples distmesh2d

fd <- function(p, ...) sqrt((p*2)%*%c(1,1)) - 1
also predefined as ‘mesh.dcircle’

fh <- function(p,...) rep(1,nrow(p))

bbox <- matrix(c(-1,1,-1,1),2,2)

p <- distmesh2d(fd,fh,@.2,bbox, maxiter=100)
this may take a while:

http://persson.berkeley.edu/distmesh/

10 distmeshnd

press Esc to get result of current iteration

example with non-convex region
fd <- function(p, ...) mesh.diff(p , mesh.drectangle, mesh.dcircle, radius=.3)
fd defines difference of square and circle

p <- distmesh2d(fd,fh,@.05,bbox,radius=0.3,maxiter=4)
p <- distmesh2d(fd,fh,0.05,bbox,radius=0.3, maxiter=10)
continue on previous mesh

distmeshnd A simple mesh generator for non-convex regions in n-D space

Description

An unstructured simplex requires a choice of meshpoints (vertex nodes) and a triangulation. This
is a simple and short algorithm that improves the quality of a mesh by relocating the meshpoints
according to a relaxation scheme of forces in a truss structure. The topology of the truss is reset
using Delaunay triangulation. A (sufficiently smooth) user supplied signed distance function (fd)
indicates if a given node is inside or outside the region. Points outside the region are projected back
to the boundary.

Usage

distmeshnd(fdist, fh, h, box, pfix = array(dim = c(@, ncol(box))), ...,

ptol = 0.001, ttol = 0.1, deltat = 0.1, geps = 0.1 * h,
deps = sqgrt(.Machine$double.eps) * h)
Arguments
fdist Vectorized signed distance function, for example mesh.dsphere, accepting an
m-by-n matrix, where m is arbitrary, as the first argument.
fh Vectorized function, for example mesh.hunif, that returns desired edge length
as a function of position. Accepts an m-by-n matrix, where n is arbitrary, as its
first argument.
h Initial distance between mesh nodes.
box 2-by-n matrix that specifies the bounding box. (See distmesh2d for an example.)
pfix nfix-by-2 matrix with fixed node positions.
ptol Algorithm stops when all node movements are smaller than dptol
ttol Controls how far the points can move (relatively) before a retriangulation with
delaunayn.
deltat Size of the time step in Eulers method.
geps Tolerance in the geometry evaluations.
deps Stepsize Az in numerical derivative computation for distance function.

parameters that are passed to fdist and fh

distmeshnd 11

Details

This is an implementation of original Matlab software of Per-Olof Persson.
Excerpt (modified) from the reference below:

‘The algorithm is based on a mechanical analogy between a triangular mesh and a n-D truss struc-
ture. In the physical model, the edges of the Delaunay triangles of a set of points correspond to bars
of a truss. Each bar has a force-displacement relationship f(¢, ¢y) depending on its current length ¢
and its unextended length ¢;.

‘External forces on the structure come at the boundaries, on which external forces have normal
orientations. These external forces are just large enough to prevent nodes from moving outside the
boundary. The position of the nodes are the unknowns, and are found by solving for a static force
equilibrium. The hope is that (when fh = function(p) return(rep(1,nrow(p)))), the lengths
of all the bars at equilibrium will be nearly equal, giving a well-shaped triangular mesh.’

See the references below for all details. Also, see the comments in the source file of distmesh2d.

Value

m-by-n matrix with node positions.

Wishlist

* *Implement in C/Fortran

 *Translate other functions of the matlab package

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp- 329-345, June 2004

See Also

distmesh2d, tri.mesh, delaunayn, mesh.dsphere, mesh.hunif,
mesh.diff, mesh.union, mesh.intersect

Examples

Not run:
examples distmeshnd
require(rgl)

fd = function(p, ...) sqrt((p*2)%x%c(1,1,1)) - 1
also predefined as ‘mesh.dsphere’
function(p,...) rep(1,nrow(p))

also predefined as ‘mesh.hunif"

fh

http://persson.berkeley.edu/distmesh/

12 entry.value

bbox = matrix(c(-1,1),2,3)
p = distmeshnd(fd,fh,0.2,bbox, maxiter=100)
this may take a while:
press Esc to get result of current iteration

End(Not run)

dot Compute the dot product of two vectors

Description
If x and y are matrices, calculate the dot-product along the first non-singleton dimension. If the
optional argument d is given, calculate the dot-product along this dimension.

Usage
dot(x, y, d = NULL)

Arguments
X Matrix of vectors
Matrix of vectors
d Dimension along which to calculate the dot product
Value

Vector with length of dth dimension

Author(s)

David Sterratt

entry.value Retrieve or set a list of array element values

Description
entry.value retrieves or sets the values in an array a at the positions indicated by the rows of a
matrix idx.

Usage

entry.value(a, idx)

extprod3d 13

Arguments

a An array.

idx Numerical matrix with the same number of columns as the number of dimen-
sions of a. Each row indices a cell in a of which the value is to be retrieved or
set.

value An array of length nrow(idx).

Value

entry.value(a, idx) returns a vector of values at the indicated cells. entry.value(a,idx) <- val
changes the indicated cells of a to val.

Author(s)

Raoul Grasman

Examples

a = array(1:(4%4),c(4,4,4,4))
entry.value(a,cbind(1:4,1:4,1:4,1:4))
entry.value(a,cbind(1:4,1:4,1:4,1:4)) <- 0
entry.value(a, as.matrix(expand.grid(1:4,1:4,1:4,1:4)))

same as ‘c(al1:4,1:4,1:4,1:4])"' which is same as ‘c(a)'

extprod3d Compute external- or ‘cross’- product of 3D vectors.

Description

Computes the external product

(T2ys — T3Y2, T3y1 — T1Y3, T1Y2 — T2Y1)

of the 3D vectors in x and y.

Usage
extprod3d(x, y)

Arguments

X n-by-3 matrix. Each row is one x-vector

y n-by-3 matrix. Each row is one y-vector

14 matmax

Value

n-by-3 matrix

Author(s)

Raoul Grasman

matmax Row-wise matrix functions

Description

Compute maximum or minimum of each row, or sort each row of a matrix, or a set of (equal length)
vectors.

Usage

matmax(...)

Arguments

A numeric matrix or a set of numeric vectors (that are column-wise bind together
into a matrix with cbind).

Value

matmin and matmax return a vector of length nrow(cbind(...)). matsort returns a matrix of
dimension dim(cbind(...)) with in each row of cbind(...) sorted. matsort(x) is a lot
faster than, e.g., ‘t(apply(x,1,sort))’, if x is tall (i.e., nrow(x)»ncol(x) and ncol (x)<30. If
ncol(x)>30 then matsort simply calls ‘t (apply(x,1,sort))’. matorder returns a permutation
which rearranges its first argument into ascending order, breaking ties by further arguments.

Author(s)

Raoul Grasman

Examples

example(Unique)

mesh.dcircle 15

mesh.dcircle Circle distance function

Description

Signed distance from points p to boundary of circle to allow easy definition of regions in distmesh2d.

Usage
mesh.dcircle(p, radius =1, ...)
Arguments
p A matrix with 2 columns (3 in mesh.dsphere), each row representing a point in
the plane.
radius radius of circle
additional arguments (not used)
Value

A vector of length nrow(p) containing the signed distances to the circle

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

distmesh2d, mesh.drectangle, mesh.diff, mesh.intersect, mesh.union

Examples

example(distmesh2d)

http://persson.berkeley.edu/distmesh/

16 mesh.drectangle

mesh.diff Difference, union and intesection operation on two regions

Description

Compute the signed distances from points p to a region defined by the difference, union or inter-
section of regions specified by the functions regionA and regionB. regionA and regionB must
accept a matrix p with 2 columns as their first argument, and must return a vector of length nrow(p)
containing the signed distances of the supplied points in p to their respective regions.

Usage
mesh.diff(p, regionA, regionB, ...)
Arguments
p A matrix with 2 columns (3 in mesh. dsphere), each row representing a point in
the plane.
regionA vectorized function describing region A in the union / intersection / difference
regionB vectorized function describing region B in the union / intersection / difference
additional arguments passed to regionA and regionB
Value

A vector of length nrow(p) containing the signed distances to the boundary of the region.

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

See Also

distmesh2d, mesh.dcircle, mesh.drectangle mesh.dsphere

mesh.drectangle Rectangle distance function

Description
Signed distance from points p to boundary of rectangle to allow easy definition of regions in
distmesh2d.

Usage
mesh.drectangle(p, x1 = -1/2, y1 = -1/2, x2 = 1/2, y2 = 1/2, ...)

mesh.dsphere 17

Arguments
p A matrix with 2 columns, each row representing a point in the plane.
x1 lower left corner of rectangle
y1 lower left corner of rectangle
X2 upper right corner of rectangle
y2 upper right corner of rectangle
additional arguments (not used)
Value

a vector of length nrow(p) containing the signed distances

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp. 329-345, June 2004

See Also

distmesh2d, mesh.drectangle, mesh.diff, mesh.intersect, mesh.union

Examples

example (distmesh2d)

mesh.dsphere Sphere distance function

Description

Signed distance from points p to boundary of sphere to allow easy definition of regions in distmeshnd.

Usage
mesh.dsphere(p, radius =1, ...)
Arguments
p A matrix with 2 columns (3 in mesh.dsphere), each row representing a point in
the plane.
radius radius of sphere

additional arguments (not used)

http://persson.berkeley.edu/distmesh/

18 mesh.hunif

Value

A vector of length nrow(p) containing the signed distances to the sphere

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

References

http://persson.berkeley.edu/distmesh/

P-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2),
pp- 329-345, June 2004

See Also

distmeshnd

Examples

example (distmeshnd)

mesh.hunif Uniform desired edge length

Description
Uniform desired edge length function of position to allow easy definition of regions when passed
as the fh argument of distmesh2d or distmeshnd.

Usage
mesh.hunif(p, ...)

Arguments
p A n-by-m matrix, each row representing a point in an m-dimensional space.
additional arguments (not used)
Value

Vector of ones of length n.

Author(s)

Raoul Grasman; translated from original Matlab sources of Per-Olof Persson.

See Also

distmesh2d and distmeshnd.

http://persson.berkeley.edu/distmesh/

polyarea 19

polyarea Determines area of a polygon by triangle method.

Description

Determines area of a polygon by triangle method. The variables x and y define the vertex pairs, and
must therefore have the same shape. They can be either vectors or arrays. If they are arrays then the
columns of x and y are treated separately and an area returned for each.

Usage

polyarea(x, y, d = 1)

Arguments
X X coordinates of verticies.
y Y coordinates of verticies.
Dimension of array to work along.
Details

If the optional dim argument is given, then polyarea works along this dimension of the arrays x
and y.

Value

Area(s) of polygon(s).

Author(s)

David Sterratt based on the octave sources by David M. Doolin

Examples

x <-c(1, 1, 3, 3,1

y <= c(1, 3, 3,1, 1)

polyarea(x, y)

polyarea(cbind(x, x), cbind(y, y)) ## c(4, 4)
polyarea(cbind(x, x), cbind(y,y), 1) ## c(4, 4)
polyarea(rbind(x, x), rbind(y,y), 2) ## c(4, 4)

20 surf.tri

surf.tri Find surface triangles from tetrahedra mesh

Description

Find surface triangles from tetrahedron mesh typically obtained with delaunayn.

Usage

surf.tri(p, t)

Arguments

An n-by-3 matrix. The rows of p represent n points in dim-dimensional space.

Matrix with 4 columns, interpreted as output of delaunayn.

Details

surf.tri and convhulln serve a similar purpose in 3D, but surf. tri also works for non-convex
meshes obtained e.g. with distmeshnd. It also does not produce currently unavoidable diagnostic
output on the console as convhulln does at the Rterm console—i.e., surf. tri is silent.

Value

An m-by-3 index matrix of which each row defines a triangle. The indices refer to the rows in p.

Note

surf.tri was based on matlab code for mesh of Per-Olof Persson (http://persson.berkeley.
edu/distmesh/).

Author(s)

Raoul Grasman

See Also

tri.mesh, convhulln, surf.tri, distmesh2d

Examples

Not run:
more extensive example of surf.tri

url's of publically available data:
datal.url = "http://neuroimage.usc.edu/USCPhantom/mesh_data.bin"
data2.url = "http://neuroimage.usc.edu/USCPhantom/CT_PCS_trans.bin"

meshdata = R.matlab::readMat(url(datal.url))

http://persson.berkeley.edu/distmesh/
http://persson.berkeley.edu/distmesh/

tetramesh 21

elec = R.matlab::readMat(url(data2.url))$eeg.ct2pcs/1000

brain = meshdata$mesh.brain[,c(1,3,2)]

scalp = meshdata$mesh.scalp[,c(1,3,2)]

skull = meshdata$mesh.skulll[,c(1,3,2)]

tbr = t(surf.tri(brain, delaunayn(brain)))

tsk = t(surf.tri(skull, delaunayn(skull)))

tsc = t(surf.tri(scalp, delaunayn(scalp)))

rgl::rgl.triangles(brain[tbr,1], brain[tbr,2], brain[tbr,3],col="gray")
rgl::rgl.triangles(skull[tsk,1], skull[tsk,2], skull[tsk,3],col="white"”, alpha=0.3)
rgl::rgl.triangles(scalp[tsc,1], scalp[tsc,2], scalp[tsc,3],col="#a53900", alpha=0.6)
rgl::rgl.viewpoint(-40,30,.4,zoom=.03)

1x = ¢(-.025,.025); ly = -c(.02,.02);
rgl::rgl.spheres(elec[,1],elec[,3],elec[,2],radius=.0025,col="gray"')
rgl::rgl.spheres(1x, ly,.11,radius=.015,col="white")

rgl::rgl.spheres(1x, ly,.116,radius=.015%.7,col="brown")

rgl::rgl.spheres(1x, ly,.124,radius=.015%.25,col="black")

End(Not run)

tetramesh Render tetrahedron mesh (3D)

Description

tetramesh(T, X, col) uses the rgl package to display the tetrahedrons defined in the m-by-4
matrix T as mesh. Each row of T specifies a thetrahedron by giving the 4 indices of its points in X.

Usage
tetramesh(T, X, col = grDevices::heat.colors(nrow(T)), clear = TRUE, ...)
Arguments
T T is a m-by-3 matrix in trimesh and m-by-4 in tetramesh. A row of T contains
indices into X of the vertices of a triangle/tetrahedron. T is usually the output of
delaunayn.
X X is an n-by-2/n-by-3 matrix. The rows of X represent n points in 2D/3D space.
col The tetrahedron color. See rgl documentation for details.
clear Should the current rendering device be cleared?
Parameters to the rendering device. See the rgl package.
Author(s)

Raoul Grasman

See Also

trimesh, rgl, delaunayn, convhulln, surf.tri

22 trimesh

Examples

Not run:

example delaunayn

d=c(-1,1)

pc = as.matrix(rbind(expand.grid(d,d,d),0))
tc = delaunayn(pc)

example tetramesh

clr = rep(1,3) %0% (1:nrow(tc)+1)
rgl::rgl.viewpoint(60,fov=20)
rgl::rgl.light(270,60)
tetramesh(tc,pc,alpha=0.7,col=clr)

End(Not run)

trimesh Display triangles mesh (2D)

Description

trimesh(T, p) displays the triangles defined in the m-by-3 matrix T and points p as a mesh. Each
row of T specifies a triangle by giving the 3 indices of its points in X.

Usage
trimesh(T, p, p2, add = FALSE, axis = FALSE, boxed = FALSE, ...)
Arguments
T T is a m-by-3 matrix. A row of T contains indices into X of the vertices of a
triangle. T is usually the output of delaunayn.
p A vector or a matrix.
p2 if p is not a matrix p and p2 are bind to a matrix with cbind.
add Add to existing plot in current active device?
axis Draw axes?
boxed Plot box?
Parameters to the rendering device. See the rgl package.
Author(s)

Raoul Grasman

See Also

tetramesh, rgl, delaunayn, convhulln, surf.tri

tsearch 23

Examples

#texample trimesh

p = cbind(x=rnorm(30), y=rnorm(30))
tt = delaunayn(p)

trimesh(tt,p)

tsearch Search for the enclosing Delaunay convex hull

Description

For t = delaunay(cbind(x, y)), where (x, y)isa2D setof points, tsearch(x, y, t, xi, yi)
finds the index in t containing the points (xi, yi). For points outside the convex hull the index is
NA.

Usage

tsearch(x, y, t, xi, yi, bary = FALSE)

Arguments

X X-coordinates of triangluation points

Y-coordinates of triangluation points

t Triangulation, e.g. produced by t = delaunayn(cbind(x, y))

xi X-coordinates of points to test

yi Y-coordinates of points to test

bary If TRUE return barycentric coordinates as well as index of triangle.
Value

If bary is FALSE, the index in t containing the points (xi, yi). For points outside the convex hull
the index is NA. If bary is TRUE, a list containing:

list("idx") the index in t containing the points (xi,yi)
list("p") a 3-column matrix containing the barycentric coordinates with respect to the
enclosing triangle of each point code(xi, yi).

Note
Based on the Octave function Copyright (C) 2007-2012 David Bateman.

Author(s)

David Sterratt

See Also

tsearchn, delaunayn

24 tsearchn

tsearchn Search for the enclosing Delaunay convex hull

Description

For t = delaunayn(x), where x is a set of points in d dimensions, tsearchn(x, t, xi) finds the
index in t containing the points xi. For points outside the convex hull, idx is NA. tsearchn also
returns the barycentric coordinates p of the enclosing triangles.

Usage

tsearchn(x, t, xi, fast = TRUE)

Arguments
X An n-by-d matrix. The rows of x represent n points in d-dimensional space.
t A m-by-d+1 matrix. A row of t contains indices into x of the vertices of a d-
dimensional simplex. t is usually the output of delaunayn.
xi An ni-by-d matrix. The rows of xi represent n points in d-dimensional space
whose positions in the mesh are being sought.
fast If the data is in 2D, use the fast C-based tsearch function to produce the results.
Value

A list containing:

list("idx") An ni-long vector containing the indicies of the row of t in which each point in
x1i is found.
list("p") An ni-by-d+1 matrix containing the barycentric coordinates with respect to the

enclosing simplex of each point in xi.

Note
Based on the Octave function Copyright (C) 2007-2012 David Bateman.

Author(s)

David Sterratt

See Also

tsearch, delaunayn

Unique 25

Unique Extract Unique Rows

Description

‘Unique’ returns a vector, data frame or array like "x’ but with duplicate elements removed.

Usage

Unique(X, rows.are.sets = FALSE)

Arguments

X Numerical matrix.

rows.are.sets If ‘TRUE’, rows are treated as sets - i.e., to define uniqueness, the order of the
rows does not matter.
Value

Matrix of the same number of columns as x, with the unique rows in x sorted according to the
columns of x. If rows.are.sets = TRUE the rows are also sorted.

Note

‘Unique’ is (under circumstances) much quicker than the more generic base function ‘unique’.

Author(s)

Raoul Grasman

Examples

“Unique' is faster than ‘unique'’

X = matrix(sample(1:(4*8),4%*8),ncol=4)
y = x[sample(1:nrow(x),3000,TRUE), 1]
gc(); system.time(unique(y))

gc(); system.time(Unique(y))

#

z = Unique(y)
x[matorder(x),]
z[matorder(z),]

Index

xTopic arith
dot, 12
entry.value, 12
extprod3d, 13
matmax, 14
mesh.dcircle, 15
mesh.drectangle, 16
mesh.dsphere, 17
Unique, 25
xTopic array
dot, 12
entry.value, 12
extprod3d, 13
matmax, 14
Unique, 25
*Topic dplot
convhulln, 5
delaunayn, 6
distmesh2d, 8
distmeshnd, 10
surf.tri, 20
+Topic graphs
convhulln, 5
delaunayn, 6
distmesh2d, 8
distmeshnd, 10
+Topic hplot
tetramesh, 21
trimesh, 22
+Topic math
convhulln, 5
delaunayn, 6
distmesh2d, 8
distmeshnd, 10
dot, 12
entry.value, 12
extprod3d, 13
mesh.dcircle, 15
mesh.drectangle, 16

26

mesh.dsphere, 17
surf.tri, 20
Unique, 25
«Topic optimize
distmesh2d, 8
distmeshnd, 10
surf.tri, 20

bary2cart, 2

cart2bary, 3
convex.hull, 6
convhulln, 5,7, 20-22

delaunayn, 5, 6, 6, 8-11, 20-22
distmesh2d, 6, 7,8, 10, 11, 15-18, 20
distmeshnd, 10, /7, 18, 20

dot, 12

entry.value, 12
entry.value<- (entry.value), 12
extprod3d, 13

matmax, 14

matmin (matmax), 14

matorder (matmax), 14

matsort (matmax), 14
mesh.dcircle, 8, 9, 15, 16
mesh.diff, 8, 9,11,15,16,17
mesh.drectangle, 9, 15, 16, 16, 17
mesh.dsphere, 10, 11, 16, 17
mesh.hunif, 8, 10, 11, 18
mesh.intersect, 9, 11, 15,17
mesh.intersect (mesh.diff), 16
mesh.union, 9, 11, 15,17
mesh.union (mesh.diff), 16

polyarea, 19

rgl, 21, 22

INDEX

surf.tri, 6, 7, 20, 20, 21, 22

tetramesh, 21, 22
tri.mesh, 7,9, 11,20
trimesh, 21,22
tsearch, 23
tsearchn, 24

Unique, 25

27

	bary2cart
	cart2bary
	convhulln
	delaunayn
	distmesh2d
	distmeshnd
	dot
	entry.value
	extprod3d
	matmax
	mesh.dcircle
	mesh.diff
	mesh.drectangle
	mesh.dsphere
	mesh.hunif
	polyarea
	surf.tri
	tetramesh
	trimesh
	tsearch
	tsearchn
	Unique
	Index

