geostatsp: Geostatistical Modelling with Likelihood and Bayes

Geostatistical modelling facilities using Raster and SpatialPoints objects are provided. Non-Gaussian models are fit using INLA, and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>.

Version: 1.7.1
Depends: Matrix (≥ 1.2.0), raster, sp, R (≥ 3.0.0)
Imports: abind, numDeriv, methods, stats
LinkingTo: Matrix
Suggests: RandomFields, rgdal, parallel, mapmisc, ellipse, pracma, knitr
Enhances: INLA, diseasemapping, geoR, rgeos, mvtnorm
Published: 2018-04-19
Author: Patrick Brown[aut, cre], Robert Hijmans [ctb]
Maintainer: Patrick Brown <patrick.brown at utoronto.ca>
License: GPL-2 | GPL-3 [expanded from: GPL]
NeedsCompilation: yes
Citation: geostatsp citation info
In views: Spatial
CRAN checks: geostatsp results

Downloads:

Reference manual: geostatsp.pdf
Vignettes: Various GLGM examples
LGCP with PC priors
Package source: geostatsp_1.7.1.tar.gz
Windows binaries: r-devel: geostatsp_1.7.1.zip, r-release: geostatsp_1.7.1.zip, r-oldrel: geostatsp_1.6.0.zip
OS X binaries: r-release: geostatsp_1.7.1.tgz, r-oldrel: not available
Old sources: geostatsp archive

Reverse dependencies:

Reverse imports: spatsurv
Reverse suggests: diseasemapping

Linking:

Please use the canonical form https://CRAN.R-project.org/package=geostatsp to link to this page.