glmmLasso: Variable Selection for Generalized Linear Mixed Models by L1-Penalized Estimation

A variable selection approach for generalized linear mixed models by L1-penalized estimation is provided.

Version: 1.5.0
Imports: minqa, Matrix
Published: 2017-04-28
Author: Andreas Groll
Maintainer: Andreas Groll <groll at mathematik.uni-muenchen.de>
License: GPL-2
NeedsCompilation: no
CRAN checks: glmmLasso results

Downloads:

Reference manual: glmmLasso.pdf
Package source: glmmLasso_1.5.0.tar.gz
Windows binaries: r-devel: glmmLasso_1.4.4.zip, r-release: glmmLasso_1.4.4.zip, r-oldrel: glmmLasso_1.4.4.zip
OS X El Capitan binaries: r-release: glmmLasso_1.4.4.tgz
OS X Mavericks binaries: r-oldrel: glmmLasso_1.4.4.tgz
Old sources: glmmLasso archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=glmmLasso to link to this page.