The aim of this package is to model gene expression with a general
linear mixed model (GLMM) as described in the R4RA study [1]. The most
widely used mainstream differential gene expression analysis tools (e.g
Limma, DESeq2, edgeR) are all
unable to fit mixed effects linear models. This package however fits
negative binomial mixed effects models at individual gene level using
the negative.binomial
function from MASS
and
the glmer
function in lme4
which enables random effect, as as well as mixed effects, to be
modelled.
install.packages("glmmSeq")
devtools::install_github("myles-lewis/glmmSeq")
Or you can source the functions individually:
functions = list.files("./R", full.names = TRUE)
invisible(lapply(functions, source))
But you will need to load in the additional libraries:
# Install CRAN packages
invisible(lapply(c("MASS", "car", "ggplot2", "ggpubr", "lme4","lmerTest",
"methods", "parallel", "plotly", "pbapply", "pbmcapply"),
function(p){
if(! p %in% rownames(installed.packages())) {
install.packages(p)
}
library(p, character.only=TRUE)
}))
# Install BioConductor packages
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
invisible(lapply(c("qvalue"), function(p){
if(! p %in% rownames(installed.packages())) BiocManager::install(p)
library(p, character.only=TRUE)
}))
To get started, first we load in the package:
library(glmmSeq)
set.seed(1234)
This vignette will demonstrate the power of this package using a minimal example from the PEAC data set. Here we focus on the synovial biopsy RNA-Seq data from this cohort of patients with early rheumatoid arthritis.
data(PEAC_minimal_load)
This data contains:
These are outlined in the following subsections.
metadata$EULAR_binary = NA
metadata$EULAR_binary[metadata$EULAR_6m %in%
c("Good", "Moderate" )] = "responder"
metadata$EULAR_binary[metadata$EULAR_6m %in% c("Non-response")] = "non_responder"
kable(head(metadata), row.names = F) %>% kable_styling()
PATID | Timepoint | EULAR_6m | EULAR_binary |
---|---|---|---|
PAT300 | 6 | Good | responder |
PAT209 | 6 | Good | responder |
PAT219 | 6 | Moderate | responder |
PAT211 | 6 | Good | responder |
PAT216 | 6 | Good | responder |
PAT212 | 6 | Good | responder |
kable(head(tpm)) %>% kable_styling() %>%
scroll_box(width = "100%")
S9001 | S9002 | S9003 | S9004 | S9006 | S9007 | S9008 | S9009 | S9010 | S9011 | S9012 | S9013 | S9014 | S9016 | S9017 | S9018 | S9019 | S9020 | S9021 | S9023 | S9025 | S9029 | S9034 | S9035 | S9036 | S9038 | S9039 | S9040 | S9042 | S9043 | S9044 | S9045 | S9047 | S9048 | S9049 | S9052 | S9053 | S9054 | S9056 | S9059 | S9060 | S9063 | S9065 | S9066 | S9067 | S9068 | S9069 | S9070 | S9072 | S9073 | S9074 | S9075 | S9076 | S9077 | S9078 | S9079 | S9080 | S9081 | S9083 | S9084 | S9085 | S9086 | S9087 | S9088 | S9089 | S9090 | S9091 | S9092 | S9093 | S9094 | S9095 | S9096 | S9097 | S9098 | S9099 | S9100 | S9101 | S9102 | S9103 | S9104 | S9105 | S9106 | S9107 | S9108 | S9109 | S9110 | S9111 | S9112 | S9113 | S9114 | S9115 | S9116 | S9117 | S9119 | S9120 | S9121 | S9122 | S9123 | S9124 | S9125 | S9127 | S9128 | S9129 | S9130 | S9131 | S9132 | S9133 | S9134 | S9135 | S9136 | S9137 | S9138 | S9139 | S9140 | S9141 | S9142 | S9143 | S9144 | S9145 | S9146 | S9147 | S9148 | S9149 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS4A1 | 1.622818 | 2.024451 | 0.6995153 | 15.742876 | 2.123731 | 57.280078 | 2.011160 | 0.580000 | 1.006783 | 0.391420 | 3.886618 | 2.746742 | 31.647637 | 20.16757 | 0.925393 | 3.4271907 | 3.130648 | 1.422480 | 63.14643 | 0.295537 | 12.7877279 | 4.817494 | 15.874491 | 0.569317 | 4.429667 | 1.060991 | 2.1850700 | 5.321541 | 3.542383 | 1.676829 | 5.471954 | 29.942195 | 4.5519540 | 7.252108 | 1.9540320 | 12.947362 | 73.430132 | 2.364819 | 5.2372870 | 12.281007 | 17.637846 | 72.557856 | 2.379427 | 0.444729 | 89.042394 | 2.4190970 | 226.612930 | 8.01254 | 5.328680 | 0.7414830 | 4.669566 | 5.218332 | 0.0676825 | 26.0579080 | 77.100135 | 23.2918620 | 50.306168 | 5.24953 | 1.342645 | 0.511810 | 0.2428008 | 7.756002 | 1.020052 | 0.602854 | 0.2444728 | 2.047680 | 2.110914 | 0.683498 | 24.664095 | 1.9789030 | 0.1702800 | 3.910493 | 6.5513870 | 0.8342158 | 31.7618280 | 1.136854 | 17.98745 | 3.369558 | 8.577294 | 1.453945 | 41.031738 | 42.991580 | 27.58865 | 14.876902 | 21.6405734 | 42.049748 | 75.6557000 | 2.501497 | 3.560322 | 32.1091249 | 7.008288 | 0.746264 | 10.0969886 | 92.3355460 | 0.5157370 | 0.8011538 | 5.075003 | 1.979931 | 0.2068106 | 2.717007 | 0.984857 | 0.7771422 | 0.000000 | 8.2769093 | 1.261793 | 2.361150 | 2.372850 | 0.6968002 | 43.9459380 | 5.0257346 | 0.281387 | 0.4190982 | 1.716238 | 16.25508 | 1.9852750 | 26.591585 | 27.994183 | 1.325606 | 1.323197 | 12.47092 | 2.3049434 | 1.4901770 | 0.229867 |
ADAM12 | 2.581805 | 1.110548 | 0.9573992 | 5.466742 | 2.645153 | 0.972897 | 0.658545 | 1.159264 | 0.462860 | 3.074193 | 10.947068 | 9.678026 | 1.205472 | 11.63376 | 1.772810 | 0.3506414 | 3.528288 | 17.416140 | 6.36844 | 4.064450 | 0.2666618 | 2.113812 | 0.473972 | 1.222569 | 30.012798 | 0.181003 | 2.4554526 | 4.136035 | 13.961315 | 4.195791 | 3.629029 | 8.362213 | 0.6999296 | 7.894137 | 0.3268513 | 2.847538 | 7.015717 | 0.717947 | 0.4396555 | 1.141057 | 1.069326 | 1.895644 | 0.486478 | 14.504778 | 1.897848 | 0.9943284 | 4.140489 | 41.30644 | 8.812227 | 0.3317777 | 8.699836 | 8.323936 | 0.0292791 | 0.9615935 | 2.512841 | 0.8960788 | 3.766372 | 7.13890 | 1.917924 | 8.893462 | 0.0966324 | 1.550900 | 4.760995 | 1.769894 | 4.6901815 | 1.200418 | 1.392691 | 0.439077 | 0.658254 | 0.3610814 | 0.2501964 | 0.610416 | 0.6842673 | 2.8749874 | 0.6717734 | 16.374299 | 1.36295 | 8.725470 | 0.258386 | 0.214470 | 3.573125 | 2.086027 | 13.44347 | 4.007794 | 0.0338254 | 1.595552 | 0.9645215 | 1.913151 | 5.780085 | 0.7098401 | 5.242844 | 1.115879 | 0.6499524 | 0.5397263 | 0.2299409 | 0.7178614 | 0.535170 | 0.282374 | 0.2003997 | 2.202211 | 0.310417 | 2.0991998 | 0.215329 | 0.1962535 | 25.010318 | 2.970828 | 1.461817 | 2.6506093 | 0.6501276 | 0.9633052 | 8.715446 | 32.4636380 | 4.281851 | 0.83041 | 0.9840191 | 2.363019 | 0.314493 | 1.179129 | 0.656344 | 1.57062 | 0.4597666 | 0.4707508 | 4.727155 |
IGHV7-4-1 | 0.992885 | 0.000000 | 2.2060400 | 26.381700 | 0.000000 | 2158.300000 | 0.644889 | 0.000000 | 0.000000 | 1.500990 | 4.945980 | 38.268000 | 55.570100 | 107.91600 | 0.000000 | 0.0000000 | 0.000000 | 1.080940 | 27.51650 | 0.000000 | 21.4136000 | 6.121120 | 15.190300 | 0.000000 | 0.597722 | 0.000000 | 0.0844527 | 1228.620000 | 51.561100 | 1.149330 | 1.434460 | 3728.700000 | 6.3708500 | 1.553570 | 0.0000000 | 165.928000 | 30.714000 | 0.000000 | 5.5235500 | 0.770965 | 1603.290000 | 53.605000 | 16.063900 | 6.209400 | 1021.480000 | 0.2965720 | 85.466200 | 9.18953 | 41.191800 | 5.0514200 | 47.140500 | 42.541900 | 0.4660800 | 835.2970000 | 1929.760000 | 57.2972000 | 39.990700 | 0.00000 | 0.000000 | 0.411695 | 0.0000000 | 26.176100 | 1.033220 | 2.273400 | 0.0000000 | 11.443300 | 0.272802 | 0.000000 | 81.135100 | 0.7083360 | 0.0000000 | 1.298760 | 0.5145140 | 0.1260250 | 13.9310000 | 2.345910 | 77.63540 | 2.181890 | 63.096300 | 0.000000 | 6.473680 | 20.211900 | 347.99200 | 39.273300 | 2.3200600 | 584.705000 | 2147.2900000 | 242.387000 | 14.263100 | 52.4861000 | 0.399860 | 0.000000 | 0.7025670 | 11.2577000 | 0.6126850 | 4.5281300 | 155.926000 | 320.086000 | 1.3791200 | 1.587010 | 0.167711 | 0.0000000 | 0.000000 | 5.6540200 | 0.000000 | 0.000000 | 0.560530 | 1.2747600 | 50.6122000 | 5.3320100 | 0.000000 | 0.0000000 | 0.757454 | 132.98900 | 3.4184700 | 18.130100 | 3.085550 | 1.183940 | 0.277095 | 135.99100 | 0.7799880 | 0.6956290 | 0.000000 |
IGHV3-49 | 0.000000 | 0.196831 | 8.7892000 | 345.493000 | 2.093480 | 858.980000 | 3.201300 | 0.000000 | 0.000000 | 0.000000 | 114.334000 | 17.150200 | 136.605000 | 1080.73000 | 0.196674 | 0.0000000 | 0.000000 | 0.931275 | 140.22000 | 0.000000 | 202.4950000 | 60.114600 | 145.421000 | 0.145099 | 32.808500 | 1.207290 | 3.5942600 | 467.534000 | 55.301200 | 0.869369 | 14.462700 | 928.660000 | 64.4575000 | 0.430536 | 0.0000000 | 80.024800 | 53.191800 | 0.000000 | 35.4998000 | 0.303541 | 1002.870000 | 127.201000 | 634.856000 | 22.119900 | 975.855000 | 0.0000000 | 623.330000 | 129.50800 | 180.819000 | 29.8933000 | 183.605000 | 170.369000 | 0.2201470 | 403.4460000 | 384.597000 | 24.9283000 | 426.619000 | 1.08364 | 0.591472 | 4768.210000 | 0.0000000 | 93.669200 | 9.291720 | 0.607172 | 0.0000000 | 9.736200 | 1.132510 | 0.000000 | 175.472000 | 1.0305600 | 0.0885169 | 0.972741 | 12.5531000 | 0.8804760 | 163.1520000 | 1.764370 | 37.22090 | 15.345300 | 401.861000 | 0.575801 | 11.926900 | 45.198600 | 317.65400 | 523.093000 | 171.4520000 | 174.163000 | 5414.9000000 | 5.045300 | 386.829000 | 1190.5200000 | 4.854510 | 0.169181 | 15.7114000 | 415.2760000 | 0.1668720 | 0.1950730 | 34.623200 | 26.949400 | 2.3880600 | 2.021500 | 0.000000 | 0.0000000 | 0.000000 | 1.5027300 | 0.000000 | 1.783170 | 49.278100 | 1.1861700 | 99.7745000 | 10.0077000 | 0.000000 | 0.1908660 | 3.835610 | 22.31070 | 2.4220200 | 22.133600 | 440.657000 | 0.000000 | 0.000000 | 22.10260 | 5.3278400 | 0.5799090 | 0.210089 |
IGHV3-23 | 0.715133 | 3.999940 | 87.6508000 | 2349.850000 | 5.962460 | 5180.460000 | 17.278900 | 0.000000 | 0.000000 | 1.437710 | 985.721000 | 123.982000 | 1374.860000 | 3568.60000 | 9.857240 | 0.5625450 | 2.900430 | 2.172310 | 5859.05000 | 0.000000 | 502.8400000 | 366.704000 | 1793.510000 | 2.294430 | 97.123900 | 11.607200 | 8.1870600 | 1080.330000 | 411.058000 | 9.718060 | 114.608000 | 2306.720000 | 317.0130000 | 7.954070 | 2.7908400 | 865.088000 | 3563.990000 | 0.123914 | 23.4808000 | 4.896920 | 1681.420000 | 1929.860000 | 2241.850000 | 26.191600 | 5228.450000 | 4.1899600 | 2807.770000 | 1213.59000 | 387.839000 | 203.5700000 | 374.506000 | 374.388000 | 0.3392100 | 1359.9900000 | 1535.600000 | 118.7600000 | 2708.140000 | 4.59234 | 0.607162 | 93.584600 | 0.3873680 | 1273.530000 | 1.666060 | 5.899820 | 1.8143100 | 18.921500 | 17.654300 | 0.567110 | 1593.270000 | 0.7579240 | 0.2794190 | 6.994180 | 216.3070000 | 4.8487200 | 1286.5300000 | 12.741600 | 167.65000 | 115.720000 | 2142.700000 | 3.020540 | 79.259200 | 6471.240000 | 2508.41000 | 4077.530000 | 802.0710000 | 1884.330000 | 5188.7400000 | 296.555000 | 1696.260000 | 3027.5700000 | 215.969000 | 0.249956 | 79.7680000 | 338.8720000 | 2.2993700 | 5.4541000 | 214.318000 | 152.085000 | 9.7046700 | 11.809000 | 0.300002 | 0.0000000 | 0.000000 | 15.5774000 | 0.217214 | 4.113890 | 229.482000 | 14.7361000 | 1145.9400000 | 35.9383000 | 0.613331 | 5.6297400 | 4.861760 | 188.38500 | 94.7553000 | 297.408000 | 3505.310000 | 19.762300 | 0.860007 | 208.00400 | 54.3620000 | 52.5728000 | 0.785236 |
ADAM12.1 | 2.581805 | 1.110548 | 0.9573992 | 5.466742 | 2.645153 | 0.972897 | 0.658545 | 1.159264 | 0.462860 | 3.074193 | 10.947068 | 9.678026 | 1.205472 | 11.63376 | 1.772810 | 0.3506414 | 3.528288 | 17.416140 | 6.36844 | 4.064450 | 0.2666618 | 2.113812 | 0.473972 | 1.222569 | 30.012798 | 0.181003 | 2.4554526 | 4.136035 | 13.961315 | 4.195791 | 3.629029 | 8.362213 | 0.6999296 | 7.894137 | 0.3268513 | 2.847538 | 7.015717 | 0.717947 | 0.4396555 | 1.141057 | 1.069326 | 1.895644 | 0.486478 | 14.504778 | 1.897848 | 0.9943284 | 4.140489 | 41.30644 | 8.812227 | 0.3317777 | 8.699836 | 8.323936 | 0.0292791 | 0.9615935 | 2.512841 | 0.8960788 | 3.766372 | 7.13890 | 1.917924 | 8.893462 | 0.0966324 | 1.550900 | 4.760995 | 1.769894 | 4.6901815 | 1.200418 | 1.392691 | 0.439077 | 0.658254 | 0.3610814 | 0.2501964 | 0.610416 | 0.6842673 | 2.8749874 | 0.6717734 | 16.374299 | 1.36295 | 8.725470 | 0.258386 | 0.214470 | 3.573125 | 2.086027 | 13.44347 | 4.007794 | 0.0338254 | 1.595552 | 0.9645215 | 1.913151 | 5.780085 | 0.7098401 | 5.242844 | 1.115879 | 0.6499524 | 0.5397263 | 0.2299409 | 0.7178614 | 0.535170 | 0.282374 | 0.2003997 | 2.202211 | 0.310417 | 2.0991998 | 0.215329 | 0.1962535 | 25.010318 | 2.970828 | 1.461817 | 2.6506093 | 0.6501276 | 0.9633052 | 8.715446 | 32.4636380 | 4.281851 | 0.83041 | 0.9840191 | 2.363019 | 0.314493 | 1.179129 | 0.656344 | 1.57062 | 0.4597666 | 0.4707508 | 4.727155 |
Using negative binomial models requires gene dispersion estimates to be made. This can be achieved in a number of ways. A common way to calculate this for gene i is to use the equation:
Dispersioni = (variancei - meani)/meani2
This can be calculated using:
disp <- apply(tpm, 1, function(x){
(var(x, na.rm=TRUE)-mean(x, na.rm=TRUE))/(mean(x, na.rm=TRUE)**2)
})
head(disp)
## MS4A1 ADAM12 IGHV7-4-1 IGHV3-49 IGHV3-23 ADAM12.1
## 3.789428 2.391912 11.686420 10.863156 3.262557 2.391912
Alternatively, we recommend using edgeR to estimate of the common, trended and tagwise dispersions across all tags:
disp <- setNames(edgeR::estimateDisp(tpm)$tagwise.dispersion, rownames(tpm))
head(disp)
or with DESeq2 using the raw counts:
dds <- DESeqDataSetFromTximport(txi = txi, colData = metadata, design = ~ 1)
dds <- DESeq(dds)
dispersions <- setNames(dispersions(dds), rownames(txi$counts))
There is also an option to include size factors for each gene. Again this can be estimated using:
sizeFactors <- colSums(tpm)
sizeFactors <- sizeFactors / mean(sizeFactors) # normalise to mean = 1
head(sizeFactors)
## S9001 S9002 S9003 S9004 S9006 S9007
## 0.20325747 0.09330435 0.09737100 3.13456671 0.24515015 4.19419297
Or using edgeR these can be calculated from the raw read counts:
sizeFactors <- calcNormFactors(counts, method="TMM")
Similarly, with DESeq2:
sizeFactors <- estimateSizeFactorsForMatrix(counts)
Note the sizeFactors
vector needs to be centred around
1, since it used directly as an offset of form
log(sizeFactors)
in the GLMM model.
To fit a model for one gene over time we use a formula such as:
gene expression ~ fixed effects + random effects
In R the formula is defined by both the fixed-effects and
random-effects part of the model, with the response on the left of a ~
operator and the terms, separated by + operators, on the right.
Random-effects terms are distinguished by vertical bars (“|”) separating
expressions for design matrices from grouping factors. For more
information see the ?lme4::glmer
.
In this case study we want to use time and response as fixed effects and the patients as random effects:
gene expression ~ time + response + (1 | patient)
To fit this model for all genes we can use the glmmSeq
function. Note that this analysis can take some time, with 4 cores:
results <- glmmSeq(~ Timepoint * EULAR_6m + (1 | PATID),
countdata = tpm,
metadata = metadata,
dispersion = disp,
progress = TRUE)
##
## n = 123 samples, 82 individuals
## Time difference of 3.152688 secs
## Errors in 4 gene(s): IL12A, FGF12, VIL1, IL26
or alternatively using two-factor classification with EULAR_binary:
results2 <- glmmSeq(~ Timepoint * EULAR_binary + (1 | PATID),
countdata = tpm,
metadata = metadata,
dispersion = disp)
##
## n = 123 samples, 82 individuals
## Time difference of 3.016724 secs
## Errors in 4 gene(s): IL12A, FGF12, VIL1, IL26
This creates a GlmmSeq object which contains the following slots:
names(attributes(results))
## [1] "info" "formula" "stats" "predict" "reduced" "countdata" "metadata"
## [8] "modelData" "optInfo" "errors" "vars" "class"
The variables used by the model are in the
@modeldata
:
kable(results@modelData) %>% kable_styling()
Timepoint | EULAR_6m |
---|---|
0 | Good |
6 | Good |
0 | Moderate |
6 | Moderate |
0 | Non-response |
6 | Non-response |
The model fit statistics can be viewed in the @stats
slot which is a list of items including fitted model coefficients, their
standard errors and the results of statistical tests on terms within the
model using Wald type 2 Chi square. To see the most significant
interactions we can order pvals
by
Timepoint:EULAR_6m
:
stats <- summary(results)
kable(stats[order(stats[, 'P_Timepoint:EULAR_6m']), ]) %>%
kable_styling() %>%
scroll_box(width = "100%", height = "400px")
Dispersion | AIC | logLik | meanExp | (Intercept) | Timepoint | EULAR_6mModerate | EULAR_6mNon-response | Timepoint:EULAR_6mModerate | Timepoint:EULAR_6mNon-response | se_(Intercept) | se_Timepoint | se_EULAR_6mModerate | se_EULAR_6mNon-response | se_Timepoint:EULAR_6mModerate | se_Timepoint:EULAR_6mNon-response | Chisq_Timepoint | Chisq_EULAR_6m | Chisq_Timepoint:EULAR_6m | Df_Timepoint | Df_EULAR_6m | Df_Timepoint:EULAR_6m | P_Timepoint | P_EULAR_6m | P_Timepoint:EULAR_6m | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IGHV3-23 | 3.2625571 | 1587.9550 | -785.9775 | 5.9461793 | 6.8466473 | -0.0213958 | 0.1369681 | -0.8391523 | -0.3010405 | -0.4047369 | 0.4783325 | 0.0906407 | 0.5134806 | 0.6320099 | 0.1277461 | 0.1624190 | 7.6175338 | 14.2631824 | 8.8418654 | 1 | 2 | 2 | 0.0057803 | 0.0007994 | 0.0120230 |
CXCL13 | 4.4416343 | 953.3999 | -468.7000 | 2.8488723 | 3.5376946 | -0.0405699 | 0.4921167 | -1.4651369 | -0.3181048 | 0.0958172 | 0.3701902 | 0.0971787 | 0.5619716 | 0.7302593 | 0.1464648 | 0.1781329 | 4.2900227 | 4.3648596 | 6.7344833 | 1 | 2 | 2 | 0.0383367 | 0.1127672 | 0.0344846 |
FGF14 | 0.2915518 | 375.0390 | -179.5195 | 1.0784074 | -0.0846561 | 0.1148791 | -0.0436742 | 0.9233238 | -0.0035230 | -0.1731267 | 0.2014575 | 0.0467465 | 0.3090738 | 0.3176555 | 0.0711392 | 0.0783922 | 5.5445597 | 5.0815197 | 5.6637042 | 1 | 2 | 2 | 0.0185382 | 0.0788065 | 0.0589037 |
IL24 | 0.4177215 | 376.8418 | -180.4209 | 1.0076111 | 0.3478977 | -0.0321854 | 0.2217562 | -0.7615200 | -0.1166353 | 0.1298070 | 0.1978093 | 0.0500220 | 0.2721124 | 0.4427622 | 0.0793379 | 0.1003295 | 1.9439310 | 1.0333073 | 5.5708454 | 1 | 2 | 2 | 0.1632423 | 0.5965133 | 0.0617030 |
HHIP | 1.0353883 | 537.1812 | -260.5906 | 1.4454128 | 0.7998605 | -0.0399783 | -0.1533630 | 0.5663556 | 0.1881176 | 0.0332220 | 0.2089737 | 0.0569350 | 0.3219344 | 0.3888552 | 0.0826903 | 0.0975405 | 1.0348345 | 4.7912317 | 5.5680271 | 1 | 2 | 2 | 0.3090259 | 0.0911165 | 0.0617900 |
MS4A1 | 3.7894278 | 898.6829 | -441.3414 | 2.5917399 | 2.7363666 | 0.0490839 | 0.1933006 | -1.7237593 | -0.2107974 | 0.1746154 | 0.3366868 | 0.0894115 | 0.5110345 | 0.6778010 | 0.1347788 | 0.1655778 | 0.0112466 | 5.6828754 | 5.4378747 | 1 | 2 | 2 | 0.9155427 | 0.0583417 | 0.0659448 |
ADAM12 | 2.3919119 | 635.7162 | -309.8581 | 1.6675082 | 1.6569079 | -0.1236820 | -0.2683597 | -0.5047247 | -0.0347932 | 0.2699943 | 0.2756082 | 0.0750725 | 0.4213674 | 0.5491941 | 0.1146527 | 0.1351883 | 2.5418570 | 2.3034252 | 5.2104307 | 1 | 2 | 2 | 0.1108643 | 0.3160950 | 0.0738872 |
ADAM12.1 | 2.3919119 | 635.7162 | -309.8581 | 1.6675082 | 1.6569079 | -0.1236820 | -0.2683597 | -0.5047247 | -0.0347932 | 0.2699943 | 0.2756082 | 0.0750725 | 0.4213674 | 0.5491941 | 0.1146527 | 0.1351883 | 2.5418570 | 2.3034252 | 5.2104307 | 1 | 2 | 2 | 0.1108643 | 0.3160950 | 0.0738872 |
IL2RG | 0.8332758 | 1077.5836 | -530.7918 | 4.3589131 | 3.4913720 | -0.0544559 | 0.2592216 | -0.6099765 | -0.1005384 | 0.0741224 | 0.1768209 | 0.0432425 | 0.2498525 | 0.3251603 | 0.0650989 | 0.0795735 | 6.8219047 | 3.0208070 | 4.9773656 | 1 | 2 | 2 | 0.0090046 | 0.2208209 | 0.0830192 |
IL16 | 0.2419416 | 974.1912 | -479.0956 | 4.5153510 | 3.2821832 | -0.0163058 | -0.1351425 | -0.3377962 | 0.0421528 | 0.0983179 | 0.0936429 | 0.0242321 | 0.1389855 | 0.1814160 | 0.0364868 | 0.0447041 | 1.0986627 | 0.2976437 | 4.9709614 | 1 | 2 | 2 | 0.2945598 | 0.8617226 | 0.0832855 |
EMILIN3 | 2.8558506 | 522.1530 | -253.0765 | 1.2381694 | 1.0154229 | 0.1211976 | -2.0741731 | -0.8821688 | 0.2905788 | 0.0936821 | 0.3076528 | 0.0803498 | 0.5615745 | 0.6368489 | 0.1317965 | 0.1513721 | 15.7455688 | 9.3862145 | 4.8709355 | 1 | 2 | 2 | 0.0000725 | 0.0091582 | 0.0875568 |
BLK | 1.0360018 | 532.3068 | -258.1534 | 1.4610649 | 0.9405211 | 0.0152304 | 0.2889931 | -0.6186534 | -0.1477598 | 0.0407172 | 0.2366609 | 0.0545010 | 0.3164350 | 0.4438540 | 0.0838780 | 0.1061424 | 0.6098286 | 2.2049350 | 4.1711539 | 1 | 2 | 2 | 0.4348524 | 0.3320507 | 0.1242354 |
IGHV1-69 | 6.1631087 | 1150.4929 | -567.2465 | 3.6446738 | 4.5052838 | 0.0254377 | 1.0678755 | 0.3278992 | -0.1788186 | -0.3840284 | 0.4260744 | 0.1132977 | 0.6470204 | 0.8341665 | 0.1701410 | 0.2070231 | 2.1903776 | 4.5563275 | 3.6032048 | 1 | 2 | 2 | 0.1388753 | 0.1024722 | 0.1650342 |
PADI4 | 2.0736630 | 472.8051 | -228.4025 | 1.0912063 | 0.2320863 | 0.1335275 | 0.3673813 | 0.1562910 | -0.2084779 | -0.1075547 | 0.2903619 | 0.0735494 | 0.4303320 | 0.5600252 | 0.1128728 | 0.1359462 | 0.6800223 | 0.2066687 | 3.4338579 | 1 | 2 | 2 | 0.4095790 | 0.9018254 | 0.1796169 |
LILRA5 | 0.8432028 | 787.5680 | -385.7840 | 2.8996321 | 2.1304753 | -0.0337206 | 0.3077720 | -0.0538474 | -0.0772630 | 0.0741083 | 0.1682070 | 0.0451020 |