grpreg: Regularization Paths for Regression Models with Grouped Covariates

Efficient algorithms for fitting the regularization path of linear regression, GLM, and Cox regression models with grouped penalties. This includes group selection methods such as group lasso, group MCP, and group SCAD as well as bi-level selection methods such as the group exponential lasso, the composite MCP, and the group bridge. For more information, see Breheny and Huang (2009) <doi:10.4310/sii.2009.v2.n3.a10>, Huang, Breheny, and Ma (2012) <doi:10.1214/12-sts392>, Breheny and Huang (2015) <doi:10.1007/s11222-013-9424-2>, and Breheny (2015) <doi:10.1111/biom.12300>, or visit the package homepage <>.

Version: 3.4.0
Depends: R (≥ 3.1.0)
Imports: Matrix
Suggests: knitr, rmarkdown, splines, survival, tinytest
Published: 2021-07-26
DOI: 10.32614/CRAN.package.grpreg
Author: Patrick Breheny ORCID iD [aut, cre], Yaohui Zeng [ctb], Ryan Kurth [ctb]
Maintainer: Patrick Breheny <patrick-breheny at>
License: GPL-3
NeedsCompilation: yes
Citation: grpreg citation info
Materials: README NEWS
In views: MachineLearning
CRAN checks: grpreg results


Reference manual: grpreg.pdf
Vignettes: Getting started


Package source: grpreg_3.4.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): grpreg_3.4.0.tgz, r-oldrel (arm64): grpreg_3.4.0.tgz, r-release (x86_64): grpreg_3.4.0.tgz, r-oldrel (x86_64): grpreg_3.4.0.tgz
Old sources: grpreg archive

Reverse dependencies:

Reverse depends: fsemipar
Reverse imports: bestglm, DMRnet, geoGAM, kko, mixedLSR, MTAFT, naivereg, NVCSSL, PCLassoReg, refund, sparseGAM, SSGL
Reverse suggests: riskRegression, spfda


Please use the canonical form to link to this page.