
Package ‘httr’
August 29, 2016

Version 1.2.1

Title Tools for Working with URLs and HTTP

Description Useful tools for working with HTTP organised by HTTP verbs
(GET(), POST(), etc). Configuration functions make it easy to control
additional request components (authenticate(), add_headers() and so on).

Depends R (>= 3.0.0)

Imports jsonlite, mime, curl (>= 0.9.1), openssl (>= 0.8), R6

Suggests httpuv, jpeg, knitr, png, testthat (>= 0.8.0), readr, xml2,
rmarkdown

VignetteBuilder knitr

License MIT + file LICENSE

URL https://github.com/hadley/httr

RoxygenNote 5.0.1

NeedsCompilation no

Author Hadley Wickham [aut, cre],
RStudio [cph]

Maintainer Hadley Wickham <hadley@rstudio.com>

Repository CRAN

Date/Publication 2016-07-03 22:33:34

R topics documented:
add_headers . 3
authenticate . 3
BROWSE . 4
cache_info . 5
config . 6
content . 7
content_type . 9
cookies . 10
DELETE . 10

1

https://github.com/hadley/httr

2 R topics documented:

GET . 12
handle . 13
HEAD . 14
headers . 15
http_error . 16
http_status . 17
http_type . 18
httr . 18
httr_dr . 19
httr_options . 19
modify_url . 20
oauth1.0_token . 21
oauth2.0_token . 22
oauth_app . 23
oauth_endpoint . 24
oauth_endpoints . 24
oauth_service_token . 25
parse_http_date . 26
parse_url . 27
PATCH . 28
POST . 29
progress . 30
PUT . 31
response . 32
RETRY . 33
revoke_all . 34
safe_callback . 35
set_config . 35
set_cookies . 36
status_code . 36
stop_for_status . 37
timeout . 38
upload_file . 38
user_agent . 39
use_proxy . 39
VERB . 40
verbose . 41
with_config . 43
write_disk . 43
write_stream . 44

Index 46

add_headers 3

add_headers Add additional headers to a request.

Description

Wikipedia provides a useful list of common http headers: http://en.wikipedia.org/wiki/
List_of_HTTP_header_fields.

Usage

add_headers(..., .headers = character())

Arguments

... named header values. To stop an existing header from being set, pass an empty
string: "".

.headers a named character vector

See Also

accept and content_type for convenience functions for setting accept and content-type headers.

Other config: authenticate, config, set_cookies, timeout, use_proxy, user_agent, verbose

Examples

add_headers(a = 1, b = 2)
add_headers(.headers = c(a = "1", b = "2"))

GET("http://httpbin.org/headers")

Add arbitrary headers
GET("http://httpbin.org/headers",
add_headers(version = version$version.string))

Override default headers with empty strings
GET("http://httpbin.org/headers", add_headers(Accept = ""))

authenticate Use http authentication.

Description

It’s not obvious how to turn authentication off after using it, so I recommend using custom handles
with authentication.

http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

4 BROWSE

Usage

authenticate(user, password, type = "basic")

Arguments

user user name

password password

type type of HTTP authentication. Should be one of the following types supported
by Curl: basic, digest, digest_ie, gssnegotiate, ntlm, any. It defaults to "basic",
the most common type.

See Also

Other config: add_headers, config, set_cookies, timeout, use_proxy, user_agent, verbose

Examples

GET("http://httpbin.org/basic-auth/user/passwd")
GET("http://httpbin.org/basic-auth/user/passwd",

authenticate("user", "passwd"))

BROWSE Open specified url in browser.

Description

(This isn’t really a http verb, but it seems to follow the same format).

Usage

BROWSE(url = NULL, config = list(), ..., handle = NULL)

Arguments

url the url of the page to retrieve

config All configuration options are ignored because the request is handled by the
browser, not RCurl.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

cache_info 5

Details

Only works in interactive sessions.

See Also

Other http methods: DELETE, GET, HEAD, PATCH, POST, PUT, VERB

Examples

BROWSE("http://google.com")
BROWSE("http://had.co.nz")

cache_info Compute caching information for a response.

Description

cache_info() gives details of cacheability of a response, rerequest() re-performs the original re-
quest doing as little work as possible (if not expired, returns response as is, or performs revalidation
if Etag or Last-Modified headers are present).

Usage

cache_info(r)

rerequest(r)

Arguments

r A response

Examples

Never cached, always causes redownload
r1 <- GET("https://www.google.com")
cache_info(r1)
r1$date
rerequest(r1)$date

Expires in a year
r2 <- GET("https://www.google.com/images/srpr/logo11w.png")
cache_info(r2)
r2$date
rerequest(r2)$date

Has last-modified and etag, so does revalidation
r3 <- GET("http://httpbin.org/cache")
cache_info(r3)
r3$date

6 config

rerequest(r3)$date

Expires after 5 seconds
Not run:
r4 <- GET("http://httpbin.org/cache/5")
cache_info(r4)
r4$date
rerequest(r4)$date
Sys.sleep(5)
cache_info(r4)
rerequest(r4)$date

End(Not run)

config Set curl options.

Description

Generally you should only need to use this function to set CURL options directly if there isn’t
already a helpful wrapper function, like set_cookies, add_headers or authenticate. To use this
function effectively requires some knowledge of CURL, and CURL options. Use httr_options
to see a complete list of available options. To see the libcurl documentation for a given option, use
curl_docs.

Usage

config(..., token = NULL)

Arguments

... named Curl options.

token An OAuth token (1.0 or 2.0)

Details

Unlike Curl (and RCurl), all configuration options are per request, not per handle.

See Also

set_config to set global config defaults, and with_config to temporarily run code with set op-
tions.

All known available options are listed in httr_options

Other config: add_headers, authenticate, set_cookies, timeout, use_proxy, user_agent,
verbose

Other ways to set configuration: set_config, with_config

content 7

Examples

There are a number of ways to modify the configuration of a request
* you can add directly to a request
HEAD("https://www.google.com", verbose())

* you can wrap with with_config()
with_config(verbose(), HEAD("https://www.google.com"))

* you can set global with set_config()
old <- set_config(verbose())
HEAD("https://www.google.com")
and re-establish the previous settings with
set_config(old, override = TRUE)
HEAD("https://www.google.com")
or
reset_config()
HEAD("https://www.google.com")

If available, you should use a friendly httr wrapper over RCurl
options. But you can pass Curl options (as listed in httr_options())
in config
HEAD("https://www.google.com/", config(verbose = TRUE))

content Extract content from a request.

Description

There are currently three ways to retrieve the contents of a request: as a raw object (as = "raw"), as
a character vector, (as = "text"), and as parsed into an R object where possible, (as = "parsed").
If as is not specified, content does its best to guess which output is most appropriate.

Usage

content(x, as = NULL, type = NULL, encoding = NULL, ...)

Arguments

x request object

as desired type of output: raw, text or parsed. content attempts to automatically
figure out which one is most appropriate, based on the content-type.

type MIME type (aka internet media type) used to override the content type returned
by the server. See http://en.wikipedia.org/wiki/Internet_media_type
for a list of common types.

encoding For text, overrides the charset or the Latin1 (ISO-8859-1) default, if you know
that the server is returning the incorrect encoding as the charset in the content-
type. Use for text and parsed outputs.

... Other parameters parsed on to the parsing functions, if as = "parsed"

http://en.wikipedia.org/wiki/Internet_media_type

8 content

Details

content currently knows about the following mime types:

• text/html: read_html

• text/xml: read_xml

• text/csv: read_csv

• text/tab-separated-values: read_tsv

• application/json: fromJSON

• application/x-www-form-urlencoded: parse_query

• image/jpeg: readJPEG

• image/png: readPNG

as = "parsed" is provided as a convenience only: if the type you are trying to parse is not available,
use as = "text" and parse yourself.

Value

For "raw", a raw vector.

For "text", a character vector of length 1. The character vector is always re-encoded to UTF-8. If
this encoding fails (usually because the page declares an incorrect encoding), content() will return
NA.

For "auto", a parsed R object.

WARNING

When using content() in a package, DO NOT use on as = "parsed". Instead, check the mime-
type is what you expect, and then parse yourself. This is safer, as you will fail informatively if the
API changes, and you will protect yourself against changes to httr.

See Also

Other response methods: http_error, http_status, response, stop_for_status

Examples

r <- POST("http://httpbin.org/post", body = list(a = 1, b = 2))
content(r) # automatically parses JSON
cat(content(r, "text"), "\n") # text content
content(r, "raw") # raw bytes from server

rlogo <- content(GET("http://cran.r-project.org/Rlogo.jpg"))
plot(0:1, 0:1, type = "n")
rasterImage(rlogo, 0, 0, 1, 1)

content_type 9

content_type Set content-type and accept headers.

Description

These are convenient wrappers aroud add_headers.

Usage

content_type(type)

content_type_json()

content_type_xml()

accept(type)

accept_json()

accept_xml()

Arguments

type A mime type or a file extension. If a file extension (i.e. starts with .) will guess
the mime type using guess_type.

Details

accept_json/accept_xml and content_type_json/content_type_xml are useful shortcuts to
ask for json or xml responses or tell the server you are sending json/xml.

Examples

GET("http://httpbin.org/headers")

GET("http://httpbin.org/headers", accept_json())
GET("http://httpbin.org/headers", accept("text/csv"))
GET("http://httpbin.org/headers", accept(".doc"))

GET("http://httpbin.org/headers", content_type_xml())
GET("http://httpbin.org/headers", content_type("text/csv"))
GET("http://httpbin.org/headers", content_type(".xml"))

10 DELETE

cookies Access cookies in a response.

Description

Access cookies in a response.

Usage

cookies(x)

Arguments

x A response.

See Also

set_cookies() to send cookies in request.

Examples

r <- GET("http://httpbin.org/cookies/set", query = list(a = 1, b = 2))
cookies(r)

DELETE Send a DELETE request.

Description

Send a DELETE request.

Usage

DELETE(url = NULL, config = list(), ..., body = NULL,
encode = c("multipart", "form", "json", "raw"), handle = NULL)

Arguments

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

body One of the following:

DELETE 11

• FALSE: No body. This is typically not used with POST, PUT, or PATCH, but
can be useful if you need to send a bodyless request (like GET) with VERB().

• NULL: An empty body
• "": A length 0 body
• upload_file("path/"): The contents of a file. The mime type will be

guessed from the extension, or can be supplied explicitly as the second
argument to upload_file()

• A character or raw vector: sent as is in body. Use content_type to tell the
server what sort of data you are sending.

• A named list: See details for encode.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file.
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

RFC2616

The DELETE method requests that the origin server delete the resource identified by the Request-
URI. This method MAY be overridden by human intervention (or other means) on the origin server.
The client cannot be guaranteed that the operation has been carried out, even if the status code
returned from the origin server indicates that the action has been completed successfully. However,
the server SHOULD NOT indicate success unless, at the time the response is given, it intends to
delete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an entity describing the
status, 202 (Accepted) if the action has not yet been enacted, or 204 (No Content) if the action has
been enacted but the response does not include an entity.

If the request passes through a cache and the Request-URI identifies one or more currently cached
entities, those entries SHOULD be treated as stale. Responses to this method are not cacheable.

See Also

Other http methods: BROWSE, GET, HEAD, PATCH, POST, PUT, VERB

Examples

DELETE("http://httpbin.org/delete")
POST("http://httpbin.org/delete")

12 GET

GET GET a url.

Description

GET a url.

Usage

GET(url = NULL, config = list(), ..., handle = NULL)

Arguments

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

RFC2616

The GET method means retrieve whatever information (in the form of an entity) is identified by the
Request-URI. If the Request-URI refers to a data-producing process, it is the produced data which
shall be returned as the entity in the response and not the source text of the process, unless that text
happens to be the output of the process.

The semantics of the GET method change to a "conditional GET" if the request message includes
an If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, or If-Range header field.
A conditional GET method requests that the entity be transferred only under the circumstances
described by the conditional header field(s). The conditional GET method is intended to reduce
unnecessary network usage by allowing cached entities to be refreshed without requiring multiple
requests or transferring data already held by the client.

The semantics of the GET method change to a "partial GET" if the request message includes a
Range header field. A partial GET requests that only part of the entity be transferred, as described
in http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35 The partial GET
method is intended to reduce unnecessary network usage by allowing partially-retrieved entities to
be completed without transferring data already held by the client.

See Also

Other http methods: BROWSE, DELETE, HEAD, PATCH, POST, PUT, VERB

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35

handle 13

Examples

GET("http://google.com/")
GET("http://google.com/", path = "search")
GET("http://google.com/", path = "search", query = list(q = "ham"))

See what GET is doing with httpbin.org
url <- "http://httpbin.org/get"
GET(url)
GET(url, add_headers(a = 1, b = 2))
GET(url, set_cookies(a = 1, b = 2))
GET(url, add_headers(a = 1, b = 2), set_cookies(a = 1, b = 2))
GET(url, authenticate("username", "password"))
GET(url, verbose())

You might want to manually specify the handle so you can have multiple
independent logins to the same website.
google <- handle("http://google.com")
GET(handle = google, path = "/")
GET(handle = google, path = "search")

handle Create a handle tied to a particular host.

Description

This handle preserves settings and cookies across multiple requests. It is the foundation of all
requests performed through the httr package, although it will mostly be hidden from the user.

Usage

handle(url, cookies = TRUE)

Arguments

url full url to site

cookies DEPRECATED

Note

Because of the way argument dispatch works in R, using handle() in the http methods (See GET)
will cause problems when trying to pass configuration arguments (See examples below). Directly
specifying the handle when using http methods is not recommended in general, since the selection
of the correct handle is taken care of when the user passes an url (See handle_pool).

14 HEAD

Examples

handle("http://google.com")
handle("https://google.com")

h <- handle("http://google.com")
GET(handle = h)
Should see cookies sent back to server
GET(handle = h, config = verbose())

h <- handle("http://google.com", cookies = FALSE)
GET(handle = h)$cookies

Not run:
Using the preferred way of configuring the http methods
will not work when using handle():
GET(handle = h, timeout(10))
Passing named arguments will work properly:
GET(handle = h, config = list(timeout(10), add_headers(Accept = "")))

End(Not run)

HEAD Get url HEADers.

Description

Get url HEADers.

Usage

HEAD(url = NULL, config = list(), ..., handle = NULL)

Arguments

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

headers 15

RFC2616

The HEAD method is identical to GET except that the server MUST NOT return a message-body in
the response. The metainformation contained in the HTTP headers in response to a HEAD request
SHOULD be identical to the information sent in response to a GET request. This method can be
used for obtaining metainformation about the entity implied by the request without transferring the
entity-body itself. This method is often used for testing hypertext links for validity, accessibility,
and recent modification.

The response to a HEAD request MAY be cacheable in the sense that the information contained in
the response MAY be used to update a previously cached entity from that resource. If the new field
values indicate that the cached entity differs from the current entity (as would be indicated by a
change in Content-Length, Content-MD5, ETag or Last-Modified), then the cache MUST treat the
cache entry as stale.

See Also

Other http methods: BROWSE, DELETE, GET, PATCH, POST, PUT, VERB

Examples

HEAD("http://google.com")
headers(HEAD("http://google.com"))

headers Extract the headers from a response

Description

Extract the headers from a response

Usage

headers(x)

Arguments

x A request object

See Also

add_headers() to send additional headers in a request

Examples

r <- GET("http://httpbin.org/get")
headers(r)

16 http_error

http_error Check for an http error.

Description

Check for an http error.

Usage

http_error(x, ...)

Arguments

x Object to check. Default methods are provided for strings (which perform an
HEAD request), responses, and integer status codes.

... Other arguments passed on to methods.

Value

TRUE if the request fails (status code 400 or above), otherwise FALSE.

See Also

Other response methods: content, http_status, response, stop_for_status

Examples

You can pass a url:
http_error("http://www.google.com")
http_error("http://httpbin.org/status/404")

Or a request
r <- GET("http://httpbin.org/status/201")
http_error(r)

Or an (integer) status code
http_error(200L)
http_error(404L)

http_status 17

http_status Give information on the status of a request.

Description

Extract the http status code and convert it into a human readable message.

Usage

http_status(x)

Arguments

x a request object or a number.

Details

http servers send a status code with the response to each request. This code gives information
regarding the outcome of the execution of the request on the server. Roughly speaking, codes in the
100s and 200s mean the request was successfully executed; codes in the 300s mean the page was
redirected; codes in the 400s mean there was a mistake in the way the client sent the request; codes
in the 500s mean the server failed to fulfill an apparently valid request. More details on the codes
can be found at http://en.wikipedia.org/wiki/Http_error_codes.

Value

If the status code does not match a known status, an error. Otherwise, a list with components

category the broad category of the status
message the meaning of the status code

See Also

Other response methods: content, http_error, response, stop_for_status

Examples

http_status(100)
http_status(404)

x <- GET("http://httpbin.org/status/200")
http_status(x)

http_status(GET("http://httpbin.org/status/300"))
http_status(GET("http://httpbin.org/status/301"))
http_status(GET("http://httpbin.org/status/404"))

errors out on unknown status
Not run: http_status(GET("http://httpbin.org/status/320"))

18 httr

http_type Extract the content type of a response

Description

Extract the content type of a response

Usage

http_type(x)

Arguments

x A response

Value

A string giving the complete mime type, with all parameters stripped off.

Examples

r1 <- GET("http://httpbin.org/image/png")
http_type(r1)
headers(r1)[["Content-Type"]]

r2 <- GET("http://httpbin.org/ip")
http_type(r2)
headers(r2)[["Content-Type"]]

httr httr makes http easy.

Description

httr is organised around the five most common http verbs: GET, PATCH, POST, HEAD, PUT, and
DELETE.

Details

Each request returns a response object which provides easy access to status code, cookies, headers,
timings, and other useful info. The content of the request is available as a raw vector (content),
character vector (text_content), or parsed into an R object (parsed_content), currently for html,
xml, json, png and jpeg).

Requests can be modified by various config options like set_cookies, add_headers, authenticate,
use_proxy, verbose, and timeout

httr_dr 19

httr supports OAuth 1.0 and 2.0. Use oauth1.0_token and oauth2.0_token to get user tokens, and
sign_oauth1.0 and sign_oauth2.0 to sign requests. The demos directory has six demos of using
OAuth: three for 1.0 (linkedin, twitter and vimeo) and three for 2.0 (facebook, github, google).

httr_dr Diagnose common configuration problems

Description

Currently one check: that curl uses nss.

Usage

httr_dr()

httr_options List available options.

Description

This function lists all available options for config(). It provides both the short R name which
you use with httr, and the longer Curl name, which is useful when searching the documentation.
curl_doc opens a link to the libcurl documentation for an option in your browser.

Usage

httr_options(matches)

curl_docs(x)

Arguments

matches If not missing, this restricts the output so that either the httr or curl option
matches this regular expression.

x An option name (either short or full).

Details

RCurl and httr use slightly different names to libcurl: the initial CURLOPT_ is removed, all under-
scores are converted to periods and the option is given in lower case. Thus "CURLOPT_SSLENGINE_DEFAULT"
becomes "sslengine.default".

20 modify_url

Value

A data frame with three columns:

httr The short name used in httr

libcurl The full name used by libcurl

type The type of R object that the option accepts

Examples

httr_options()
httr_options("post")

Use curl_docs to read the curl documentation for each option.
You can use either the httr or curl option name.
curl_docs("userpwd")
curl_docs("CURLOPT_USERPWD")

modify_url Modify a url.

Description

Modify a url by first parsing it and then replacing components with the non-NULL arguments of
this function.

Usage

modify_url(url, scheme = NULL, hostname = NULL, port = NULL,
path = NULL, query = NULL, params = NULL, fragment = NULL,
username = NULL, password = NULL)

Arguments

url the url to modify

scheme, hostname, port, path, query, params, fragment, username, password

components of the url to change

oauth1.0_token 21

oauth1.0_token Generate an oauth1.0 token.

Description

This is the final object in the OAuth dance - it encapsulates the app, the endpoint, other parameters
and the received credentials.

Usage

oauth1.0_token(endpoint, app, permission = NULL, as_header = TRUE,
private_key = NULL, cache = getOption("httr_oauth_cache"))

Arguments

endpoint An OAuth endpoint, created by oauth_endpoint

app An OAuth consumer application, created by oauth_app

permission optional, a string of permissions to ask for.

as_header If TRUE, the default, sends oauth in header. If FALSE, adds as parameter to url.

private_key Optional, a key provided by read_key. Used for signed OAuth 1.0.

cache A logical value or a string. TRUE means to cache using the default cache file
.httr-oauth, FALSE means don’t cache, and NA means to guess using some
sensible heuristics. A string mean use the specified path as the cache file.

Details

See Token for full details about the token object, and the caching policies used to store credentials
across sessions.

Value

A Token1.0 reference class (RC) object.

See Also

Other OAuth: oauth2.0_token, oauth_app, oauth_endpoint, oauth_service_token

22 oauth2.0_token

oauth2.0_token Generate an oauth2.0 token.

Description

This is the final object in the OAuth dance - it encapsulates the app, the endpoint, other parameters
and the received credentials. It is a reference class so that it can be seamlessly updated (e.g. using
$refresh()) when access expires.

Usage

oauth2.0_token(endpoint, app, scope = NULL, user_params = NULL,
type = NULL, use_oob = getOption("httr_oob_default"), as_header = TRUE,
use_basic_auth = FALSE, cache = getOption("httr_oauth_cache"))

Arguments

endpoint An OAuth endpoint, created by oauth_endpoint

app An OAuth consumer application, created by oauth_app

scope a character vector of scopes to request.

user_params Named list holding endpoint specific parameters to pass to the server when post-
ing the request for obtaining or refreshing the access token.

type content type used to override incorrect server response

use_oob if FALSE, use a local webserver for the OAuth dance. Otherwise, provide
a URL to the user and prompt for a validation code. Defaults to the of the
"httr_oob_default" default, or TRUE if httpuv is not installed.

as_header If TRUE, the default, configures the token to add itself to the bearer header of sub-
sequent requests. If FALSE, configures the token to add itself as a url parameter
of subsequent requests.

use_basic_auth if TRUE use http basic authentication to retrieve the token. Some authorization
servers require this. If FALSE, the default, retrieve the token by including the app
key and secret in the request body.

cache A logical value or a string. TRUE means to cache using the default cache file
.httr-oauth, FALSE means don’t cache, and NA means to guess using some
sensible heuristics. A string mean use the specified path as the cache file.

Details

See Token for full details about the token object, and the caching policies used to store credentials
across sessions.

Value

A Token2.0 reference class (RC) object.

oauth_app 23

See Also

Other OAuth: oauth1.0_token, oauth_app, oauth_endpoint, oauth_service_token

oauth_app Create an OAuth application.

Description

The OAuth framework doesn’t match perfectly to use from R. Each user of the package for a partic-
ular OAuth enabled site must create their own application. See the demos for instructions on how
to do this for linkedin, twitter, vimeo, facebook, github and google.

Usage

oauth_app(appname, key, secret = NULL)

Arguments

appname name of the application. This is not used for OAuth, but is used to make it easier
to identify different applications and provide a consistent way of storing secrets
in environment variables.

key consumer key (equivalent to a user name)

secret consumer secret. This is not equivalent to a password, and is not really a secret.
If you are writing an API wrapper package, it is fine to include this secret in
your package code.
Use NULL to not store a secret: this is useful if you’re relying on cached OAuth
tokens.

See Also

Other OAuth: oauth1.0_token, oauth2.0_token, oauth_endpoint, oauth_service_token

Examples

Not run:
These work on my computer because I have the right envvars set up
linkedin_app <- oauth_app("linkedin", key = "outmkw3859gy")
github_app <- oauth_app("github", "56b637a5baffac62cad9")

End(Not run)

If you're relying on caching, supply an explicit NULL to
suppress the warning message
oauth_app("my_app", "mykey")
oauth_app("my_app", "mykey", NULL)

24 oauth_endpoints

oauth_endpoint Describe an OAuth endpoint.

Description

See oauth_endpoints for a list of popular OAuth endpoints baked into httr.

Usage

oauth_endpoint(request = NULL, authorize, access, ..., base_url = NULL)

Arguments

request url used to request initial (unauthenticated) token. If using OAuth2.0, leave as
NULL.

authorize url to send client to for authorisation

access url used to exchange unauthenticated for authenticated token.

... other additional endpoints.

base_url option url to use as base for request, authorize and access urls.

See Also

Other OAuth: oauth1.0_token, oauth2.0_token, oauth_app, oauth_service_token

Examples

linkedin <- oauth_endpoint("requestToken", "authorize", "accessToken",
base_url = "https://api.linkedin.com/uas/oauth")

github <- oauth_endpoint(NULL, "authorize", "access_token",
base_url = "https://github.com/login/oauth")

facebook <- oauth_endpoint(
authorize = "https://www.facebook.com/dialog/oauth",
access = "https://graph.facebook.com/oauth/access_token")

oauth_endpoints

oauth_endpoints Popular oauth endpoints.

Description

Provides some common OAuth endpoints.

Usage

oauth_endpoints(name)

oauth_service_token 25

Arguments

name One of the following endpoints: linkedin, twitter, vimeo, google, facebook,
github, azure.

Examples

oauth_endpoints("twitter")

oauth_service_token Generate OAuth token for service accounts.

Description

Service accounts provide a way of using OAuth2 without user intervention. They instead assume
that the server has access to a private key used to sign requests. The OAuth app is not needed for
service accounts: that information is embedded in the account itself.

Usage

oauth_service_token(endpoint, secrets, scope = NULL)

Arguments

endpoint An OAuth endpoint, created by oauth_endpoint

secrets Secrets loaded from JSON file, downloaded from console.

scope a character vector of scopes to request.

See Also

Other OAuth: oauth1.0_token, oauth2.0_token, oauth_app, oauth_endpoint

Examples

Not run:
endpoint <- oauth_endpoints("google")
secrets <- jsonlite::fromJSON("~/Desktop/httrtest-45693cbfac92.json")
scope <- "https://www.googleapis.com/auth/bigquery.readonly"

token <- oauth_service_token(endpoint, secrets, scope)

End(Not run)

26 parse_http_date

parse_http_date Parse and print http dates.

Description

As defined in RFC2616, http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.
3, there are three valid formats:

• Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

• Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

• Sun Nov 6 08:49:37 1994 ; ANSI C’s asctime() format

Usage

parse_http_date(x, failure = NA)

http_date(x)

Arguments

x For parse_http_date, a character vector of strings to parse. All elements must
be of the same type.

For http_date, a POSIXt vector.

failure What to return on failure?

Value

A POSIXct object if succesful, otherwise failure

Examples

parse_http_date("Sun, 06 Nov 1994 08:49:37 GMT")
parse_http_date("Sunday, 06-Nov-94 08:49:37 GMT")
parse_http_date("Sun Nov 6 08:49:37 1994")

http_date(Sys.time())

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.3

parse_url 27

parse_url Parse and build urls according to RFC1808.

Description

See http://tools.ietf.org/html/rfc1808.html for details of parsing algorithm.

Usage

parse_url(url)

build_url(url)

Arguments

url a character vector (of length 1) to parse into components, or for build_url a url
to turn back into a string.

Value

a list containing:

• scheme

• hostname

• port

• path

• params

• fragment

• query, a list

• username

• password

Examples

parse_url("http://google.com/")
parse_url("http://google.com:80/")
parse_url("http://google.com:80/?a=1&b=2")

build_url(parse_url("http://google.com/"))

http://tools.ietf.org/html/rfc1808.html

28 PATCH

PATCH Send PATCH request to a server.

Description

Send PATCH request to a server.

Usage

PATCH(url = NULL, config = list(), ..., body = NULL,
encode = c("multipart", "form", "json", "raw"), handle = NULL)

Arguments

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

body One of the following:

• FALSE: No body. This is typically not used with POST, PUT, or PATCH, but
can be useful if you need to send a bodyless request (like GET) with VERB().

• NULL: An empty body
• "": A length 0 body
• upload_file("path/"): The contents of a file. The mime type will be

guessed from the extension, or can be supplied explicitly as the second
argument to upload_file()

• A character or raw vector: sent as is in body. Use content_type to tell the
server what sort of data you are sending.

• A named list: See details for encode.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file.
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

POST 29

See Also

Other http methods: BROWSE, DELETE, GET, HEAD, POST, PUT, VERB

POST POST file to a server.

Description

POST file to a server.

Usage

POST(url = NULL, config = list(), ..., body = NULL,
encode = c("multipart", "form", "json", "raw"), handle = NULL)

Arguments

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

body One of the following:

• FALSE: No body. This is typically not used with POST, PUT, or PATCH, but
can be useful if you need to send a bodyless request (like GET) with VERB().

• NULL: An empty body
• "": A length 0 body
• upload_file("path/"): The contents of a file. The mime type will be

guessed from the extension, or can be supplied explicitly as the second
argument to upload_file()

• A character or raw vector: sent as is in body. Use content_type to tell the
server what sort of data you are sending.

• A named list: See details for encode.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file.
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

30 progress

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

See Also

Other http methods: BROWSE, DELETE, GET, HEAD, PATCH, PUT, VERB

Examples

b2 <- "http://httpbin.org/post"
POST(b2, body = "A simple text string")
POST(b2, body = list(x = "A simple text string"))
POST(b2, body = list(y = upload_file(system.file("CITATION"))))
POST(b2, body = list(x = "A simple text string"), encode = "json")

Various types of empty body:
POST(b2, body = NULL, verbose())
POST(b2, body = FALSE, verbose())
POST(b2, body = "", verbose())

progress Add a progress bar.

Description

Add a progress bar.

Usage

progress(type = c("down", "up"), con = stdout())

Arguments

type Type of progress to display: either number of bytes uploaded or downloaded.

con Connection to send output too. Usually stdout() or stderr.

Examples

If file size is known, you get a progress bar:
x <- GET("http://courses.had.co.nz/12-oscon/slides.zip", progress())
Otherwise you get the number of bytes downloaded:
x <- GET("http://httpbin.org/drip?numbytes=4000&duration=3", progress())

PUT 31

PUT Send PUT request to server.

Description

Send PUT request to server.

Usage

PUT(url = NULL, config = list(), ..., body = NULL,
encode = c("multipart", "form", "json", "raw"), handle = NULL)

Arguments

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

body One of the following:

• FALSE: No body. This is typically not used with POST, PUT, or PATCH, but
can be useful if you need to send a bodyless request (like GET) with VERB().

• NULL: An empty body
• "": A length 0 body
• upload_file("path/"): The contents of a file. The mime type will be

guessed from the extension, or can be supplied explicitly as the second
argument to upload_file()

• A character or raw vector: sent as is in body. Use content_type to tell the
server what sort of data you are sending.

• A named list: See details for encode.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file.
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

32 response

See Also

Other http methods: BROWSE, DELETE, GET, HEAD, PATCH, POST, VERB

Examples

POST("http://httpbin.org/put")
PUT("http://httpbin.org/put")

b2 <- "http://httpbin.org/put"
PUT(b2, body = "A simple text string")
PUT(b2, body = list(x = "A simple text string"))
PUT(b2, body = list(y = upload_file(system.file("CITATION"))))
PUT(b2, body = list(x = "A simple text string"), encode = "json")

response The response object.

Description

The response object captures all information from a request. It includes fields:

Details

• url the url the request was actually sent to (after redirects)

• handle the handle associated with the url

• status_code the http status code

• header a named list of headers returned by the server

• cookies a named list of cookies returned by the server

• content the body of the response, as raw vector. See content for various ways to access the
content.

• time request timing information

• config configuration for the request

See Also

Other response methods: content, http_error, http_status, stop_for_status

RETRY 33

RETRY Retry a request until it succeeds.

Description

Safely retry a request until it succeeds (returns an HTTP status code below 400). It is designed to be
kind to the server: after each failure randomly waits up to twice as long. (Technically it uses expo-
nential backoff with jitter, using the approach outlined in https://www.awsarchitectureblog.
com/2015/03/backoff.html.)

Usage

RETRY(verb, url = NULL, config = list(), ..., body = NULL,
encode = c("multipart", "form", "json", "raw"), times = 3,
pause_base = 1, pause_cap = 60, handle = NULL, quiet = FALSE)

Arguments

verb Name of verb to use.

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

body One of the following:

• FALSE: No body. This is typically not used with POST, PUT, or PATCH, but
can be useful if you need to send a bodyless request (like GET) with VERB().

• NULL: An empty body
• "": A length 0 body
• upload_file("path/"): The contents of a file. The mime type will be

guessed from the extension, or can be supplied explicitly as the second
argument to upload_file()

• A character or raw vector: sent as is in body. Use content_type to tell the
server what sort of data you are sending.

• A named list: See details for encode.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file.
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

https://www.awsarchitectureblog.com/2015/03/backoff.html
https://www.awsarchitectureblog.com/2015/03/backoff.html

34 revoke_all

times Maximum number of requests to attempt.

pause_base, pause_cap

This method uses exponential back-off with full jitter - this means that each re-
quest will randomly wait between 0 and pause_base * 2 ^ attempt seconds,
up to a maximum of pause_cap seconds.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

quiet If FALSE, will print a message displaying how long until the next request.

Value

The last response. Note that if the request doesn’t succeed after times times this will be a failed
request, i.e. you still need to use stop_for_status().

Examples

Succeeds straight away
RETRY("GET", "http://httpbin.org/status/200")
Never succeeds
RETRY("GET", "http://httpbin.org/status/500")

revoke_all Revoke all OAuth tokens in the cache.

Description

Use this function if you think that your token may have been compromised, e.g. you accidentally
uploaded the cache file to github. It’s not possible to automatically revoke all tokens - this function
will warn when it can’t.

Usage

revoke_all(cache_path = NA)

Arguments

cache_path Path to cache file. Defaults to ‘.httr-oauth‘ in current directory.

safe_callback 35

safe_callback Generate a safe R callback.

Description

Generate a safe R callback.

Usage

safe_callback(f)

Arguments

f A function.

set_config Set (and reset) global httr configuration.

Description

Set (and reset) global httr configuration.

Usage

set_config(config, override = FALSE)

reset_config()

Arguments

config Settings as generated by add_headers, set_cookies or authenticate.
override if TRUE, ignore existing settings, if FALSE, combine new config with old.

Value

invisibility, the old global config.

See Also

Other ways to set configuration: config, with_config

Examples

GET("http://google.com")
set_config(verbose())
GET("http://google.com")
reset_config()
GET("http://google.com")

36 status_code

set_cookies Set cookies.

Description

Set cookies.

Usage

set_cookies(..., .cookies = character(0))

Arguments

... a named cookie values

.cookies a named character vector

See Also

cookies() to see cookies in response.

Other config: add_headers, authenticate, config, timeout, use_proxy, user_agent, verbose

Examples

set_cookies(a = 1, b = 2)
set_cookies(.cookies = c(a = "1", b = "2"))

GET("http://httpbin.org/cookies")
GET("http://httpbin.org/cookies", set_cookies(a = 1, b = 2))

status_code Extract status code from response.

Description

Extract status code from response.

Usage

status_code(x)

Arguments

x A response

stop_for_status 37

stop_for_status Take action on http error.

Description

Converts http errors to R errors or warnings - these should always be used whenever you’re creating
requests inside a function, so that the user knows why a request has failed.

Usage

stop_for_status(x, task = NULL)

warn_for_status(x, task = NULL)

message_for_status(x, task = NULL)

Arguments

x a response, or numeric http code (or other object with status_code method)

task The text of the message: either NULL or a character vector. If non-NULL, the error
message will finish with "Failed to task".

Value

If request was successful, the response (invisibly). Otherwise, raised a classed http error or warning,
as generated by http_condition

See Also

http_status and http://en.wikipedia.org/wiki/Http_status_codes for more information
on http status codes.

Other response methods: content, http_error, http_status, response

Examples

x <- GET("http://httpbin.org/status/200")
stop_for_status(x) # nothing happens
warn_for_status(x)
message_for_status(x)

x <- GET("http://httpbin.org/status/300")
Not run: stop_for_status(x)
warn_for_status(x)
message_for_status(x)

x <- GET("http://httpbin.org/status/404")
Not run: stop_for_status(x)
warn_for_status(x)

38 upload_file

message_for_status(x)

You can provide more information with the task argumgnet
warn_for_status(x, "download spreadsheet")
message_for_status(x, "download spreadsheet")

timeout Set maximum request time.

Description

Set maximum request time.

Usage

timeout(seconds)

Arguments

seconds number of seconds to wait for a response until giving up. Can not be less than 1
ms.

See Also

Other config: add_headers, authenticate, config, set_cookies, use_proxy, user_agent,
verbose

Examples

Not run:
GET("http://httpbin.org/delay/3", timeout(1))
GET("http://httpbin.org/delay/1", timeout(2))

End(Not run)

upload_file Upload a file with POST or PUT.

Description

Upload a file with POST or PUT.

Usage

upload_file(path, type = NULL)

user_agent 39

Arguments

path path to file

type mime type of path. If not supplied, will be guess by guess_type when needed.

Examples

citation <- upload_file(system.file("CITATION"))
POST("http://httpbin.org/post", body = citation)
POST("http://httpbin.org/post", body = list(y = citation))

user_agent Set user agent.

Description

Override the default RCurl user agent of NULL

Usage

user_agent(agent)

Arguments

agent string giving user agent

See Also

Other config: add_headers, authenticate, config, set_cookies, timeout, use_proxy, verbose

Examples

GET("http://httpbin.org/user-agent")
GET("http://httpbin.org/user-agent", user_agent("httr"))

use_proxy Use a proxy to connect to the internet.

Description

Use a proxy to connect to the internet.

Usage

use_proxy(url, port = NULL, username = NULL, password = NULL,
auth = "basic")

40 VERB

Arguments

url, port location of proxy
username, password

login details for proxy, if needed

auth type of HTTP authentication to use. Should be one of the following: basic,
digest, digest_ie, gssnegotiate, ntlm, any.

See Also

Other config: add_headers, authenticate, config, set_cookies, timeout, user_agent, verbose

Examples

See http://www.hidemyass.com/proxy-list for a list of public proxies
to test with
GET("http://had.co.nz", use_proxy("64.251.21.73", 8080), verbose())

VERB VERB a url.

Description

Use an arbitrary verb.

Usage

VERB(verb, url = NULL, config = list(), ..., body = NULL,
encode = c("multipart", "form", "json", "raw"), handle = NULL)

Arguments

verb Name of verb to use.

url the url of the page to retrieve

config Additional configuration settings such as http authentication (authenticate),
additional headers (add_headers), cookies (set_cookies) etc. See config for
full details and list of helpers.

... Further named parameters, such as query, path, etc, passed on to modify_url.
Unnamed parameters will be combined with config.

body One of the following:

• FALSE: No body. This is typically not used with POST, PUT, or PATCH, but
can be useful if you need to send a bodyless request (like GET) with VERB().

• NULL: An empty body
• "": A length 0 body

verbose 41

• upload_file("path/"): The contents of a file. The mime type will be
guessed from the extension, or can be supplied explicitly as the second
argument to upload_file()

• A character or raw vector: sent as is in body. Use content_type to tell the
server what sort of data you are sending.

• A named list: See details for encode.

encode If the body is a named list, how should it be encoded? Can be one of form
(application/x-www-form-urlencoded), multipart, (multipart/form-data), or json
(application/json).
For "multipart", list elements can be strings or objects created by upload_file.
For "form", elements are coerced to strings and escaped, use I() to prevent
double-escaping. For "json", parameters are automatically "unboxed" (i.e. length
1 vectors are converted to scalars). To preserve a length 1 vector as a vector,
wrap in I(). For "raw", either a character or raw vector. You’ll need to make
sure to set the content_type() yourself.

handle The handle to use with this request. If not supplied, will be retrieved and reused
from the handle_pool based on the scheme, hostname and port of the url. By
default httr requests to the same scheme/host/port combo. This substantially
reduces connection time, and ensures that cookies are maintained over multiple
requests to the same host. See handle_pool for more details.

See Also

Other http methods: BROWSE, DELETE, GET, HEAD, PATCH, POST, PUT

Examples

r <- VERB("PROPFIND", "http://svn.r-project.org/R/tags/",
add_headers(depth = 1), verbose())

stop_for_status(r)
content(r)

VERB("POST", url = "http://httpbin.org/post")
VERB("POST", url = "http://httpbin.org/post", body = "foobar")

verbose Give verbose output.

Description

A verbose connection provides much more information about the flow of information between the
client and server.

Usage

verbose(data_out = TRUE, data_in = FALSE, info = FALSE, ssl = FALSE)

42 verbose

Arguments

data_out Show data sent to the server.
data_in Show data recieved from the server.
info Show informational text from curl. This is mainly useful for debugging https

and auth problems, so is disabled by default.
ssl Show even data sent/recieved over SSL connections?

Prefixes

verbose() uses the following prefixes to distinguish between different components of the http
messages:

• * informative curl messages
• -> headers sent (out)
• >> data sent (out)
• *> ssl data sent (out)
• <- headers received (in)
• << data received (in)
• <* ssl data received (in)

See Also

with_verbose() makes it easier to use verbose mode even when the requests are buried inside
another function call.

Other config: add_headers, authenticate, config, set_cookies, timeout, use_proxy, user_agent

Examples

GET("http://httpbin.org", verbose())
GET("http://httpbin.org", verbose(info = TRUE))

f <- function() {
GET("http://httpbin.org")

}
with_verbose(f())
with_verbose(f(), info = TRUE)

verbose() makes it easy to see exactly what POST requests send
POST_verbose <- function(body, ...) {

POST("https://httpbin.org/post", body = body, verbose(), ...)
invisible()

}
POST_verbose(list(x = "a", y = "b"))
POST_verbose(list(x = "a", y = "b"), encode = "form")
POST_verbose(FALSE)
POST_verbose(NULL)
POST_verbose("")
POST_verbose("xyz")

with_config 43

with_config Execute code with configuration set.

Description

Execute code with configuration set.

Usage

with_config(config = config(), expr, override = FALSE)

with_verbose(expr, ...)

Arguments

config Settings as generated by add_headers, set_cookies or authenticate.

expr code to execute under specified configuration

override if TRUE, ignore existing settings, if FALSE, combine new config with old.

... Other arguments passed on to verbose

See Also

Other ways to set configuration: config, set_config

Examples

with_config(verbose(), {
GET("http://had.co.nz")
GET("http://google.com")

})

Or even easier:
with_verbose(GET("http://google.com"))

write_disk Control where the response body is written.

Description

The default behaviour is to use write_memory(), which caches the response locally in memory.
This is useful when talking to APIs as it avoids a round-trip to disk. If you want to save a file that’s
bigger than memory, use write_disk() to save it to a known path.

44 write_stream

Usage

write_disk(path, overwrite = FALSE)

write_memory()

Arguments

path Path to content to.

overwrite Will only overwrite existing path if TRUE.

Examples

tmp <- tempfile()
r1 <- GET("https://www.google.com", write_disk(tmp))
readLines(tmp)

The default
r2 <- GET("https://www.google.com", write_memory())

Save a very large file
Not run:
GET("http://www2.census.gov/acs2011_5yr/pums/csv_pus.zip",

write_disk("csv_pus.zip"), progress())

End(Not run)

write_stream Process output in a streaming manner.

Description

This is the most general way of processing the response from the server - you receive the raw bytes
as they come in, and you can do whatever you want with them.

Usage

write_stream(f)

Arguments

f Callback function. It should have a single argument, a raw vector containing the
bytes recieved from the server. This will usually be 16k or less. The return value
of the function is ignored.

write_stream 45

Examples

GET("https://jeroenooms.github.io/data/diamonds.json",
write_stream(function(x) {
print(length(x))
length(x)

})
)

Index

∗Topic deprecated
safe_callback, 35

accept, 3
accept (content_type), 9
accept_json (content_type), 9
accept_xml (content_type), 9
add_headers, 3, 4, 6, 9, 10, 12, 14, 15, 18, 28,

29, 31, 33, 35, 36, 38–40, 42, 43
authenticate, 3, 3, 6, 10, 12, 14, 18, 28, 29,

31, 33, 35, 36, 38–40, 42, 43

BROWSE, 4, 11, 12, 15, 29, 30, 32, 41
build_url (parse_url), 27

cache_info, 5
config, 3, 4, 6, 10, 12, 14, 19, 28, 29, 31, 33,

35, 36, 38–40, 42, 43
content, 7, 16–18, 32, 37
content_type, 3, 9, 11, 28, 29, 31, 33, 41
content_type_json (content_type), 9
content_type_xml (content_type), 9
cookies, 10, 36
curl_docs, 6
curl_docs (httr_options), 19

DELETE, 5, 10, 12, 15, 18, 29, 30, 32, 41

fromJSON, 8

GET, 5, 11, 12, 13, 15, 18, 29, 30, 32, 41
guess_type, 9, 39

handle, 13
handle_pool, 4, 11–14, 28, 30, 31, 34, 41
HEAD, 5, 11, 12, 14, 16, 18, 29, 30, 32, 41
headers, 15
http_condition, 37
http_date (parse_http_date), 26
http_error, 8, 16, 17, 32, 37
http_status, 8, 16, 17, 32, 37

http_type, 18
httr, 18
httr-package (httr), 18
httr_dr, 19
httr_options, 6, 19

message_for_status (stop_for_status), 37
modify_url, 4, 10, 12, 14, 20, 28, 29, 31, 33,

40

oauth1.0_token, 19, 21, 23–25
oauth2.0_token, 19, 21, 22, 23–25
oauth_app, 21–23, 23, 24, 25
oauth_endpoint, 21–23, 24, 25
oauth_endpoints, 24, 24
oauth_service_token, 21, 23, 24, 25

parse_http_date, 26
parse_url, 27
parsed_content, 18
parsed_content (content), 7
PATCH, 5, 11, 12, 15, 18, 28, 30, 32, 41
POST, 5, 11, 12, 15, 18, 29, 29, 32, 38, 41
progress, 30
PUT, 5, 11, 12, 15, 18, 29, 30, 31, 38, 41

read_csv, 8
read_html, 8
read_key, 21
read_tsv, 8
read_xml, 8
readJPEG, 8
readPNG, 8
rerequest (cache_info), 5
reset_config (set_config), 35
response, 8, 16–18, 32, 37
RETRY, 33
revoke_all, 34

safe_callback, 35
set_config, 6, 35, 43

46

INDEX 47

set_cookies, 3, 4, 6, 10, 12, 14, 18, 28, 29,
31, 33, 35, 36, 38–40, 42, 43

sign_oauth1.0, 19
sign_oauth2.0, 19
status_code, 36
stop_for_status, 8, 16, 17, 32, 34, 37

text_content, 18
text_content (content), 7
timeout, 3, 4, 6, 18, 36, 38, 39, 40, 42
Token, 21, 22

upload_file, 11, 28, 29, 31, 33, 38, 41
url_ok (http_error), 16
url_success (http_error), 16
use_proxy, 3, 4, 6, 18, 36, 38, 39, 39, 42
user_agent, 3, 4, 6, 36, 38, 39, 40, 42

VERB, 5, 11, 12, 15, 29, 30, 32, 40
verbose, 3, 4, 6, 18, 36, 38–40, 41, 43

warn_for_status (stop_for_status), 37
with_config, 6, 35, 43
with_verbose, 42
with_verbose (with_config), 43
write_disk, 43
write_memory (write_disk), 43
write_stream, 44

	add_headers
	authenticate
	BROWSE
	cache_info
	config
	content
	content_type
	cookies
	DELETE
	GET
	handle
	HEAD
	headers
	http_error
	http_status
	http_type
	httr
	httr_dr
	httr_options
	modify_url
	oauth1.0_token
	oauth2.0_token
	oauth_app
	oauth_endpoint
	oauth_endpoints
	oauth_service_token
	parse_http_date
	parse_url
	PATCH
	POST
	progress
	PUT
	response
	RETRY
	revoke_all
	safe_callback
	set_config
	set_cookies
	status_code
	stop_for_status
	timeout
	upload_file
	user_agent
	use_proxy
	VERB
	verbose
	with_config
	write_disk
	write_stream
	Index

