library(outbreaks)
library(incidence2)
library(i2extras)
We provide functions to return the peak of the incidence data (grouped or ungrouped), bootstrap from the incidence data, and estimate confidence intervals around a peak.
bootstrap()
fluH7N9_china_2013
dat <- incidence(dat, date_index = date_of_onset, groups = gender)
x <-#> 10 missing observations were removed.
bootstrap(x)
#> An incidence2 object: 67 x 3
#> 126 cases from 2013-02-19 to 2013-07-27
#> interval: 1 day
#> cumulative: FALSE
#>
#> date_index gender count
#> <date> <fct> <int>
#> 1 2013-02-19 m 1
#> 2 2013-02-27 m 0
#> 3 2013-03-07 m 1
#> 4 2013-03-08 m 2
#> 5 2013-03-09 f 1
#> 6 2013-03-13 f 1
#> 7 2013-03-17 m 1
#> 8 2013-03-19 f 1
#> 9 2013-03-20 f 0
#> 10 2013-03-20 m 1
#> # … with 57 more rows
find_peak()
fluH7N9_china_2013
dat <- incidence(dat, date_index = date_of_onset, groups = gender)
x <-#> 10 missing observations were removed.
# peaks across each group
find_peak(x)
#> # A tibble: 2 x 3
#> gender date_index count
#> <fct> <date> <int>
#> 1 f 2013-04-11 3
#> 2 m 2013-04-03 6
# peak without groupings
find_peak(regroup(x))
#> # A tibble: 1 x 2
#> date_index count
#> <date> <int>
#> 1 2013-04-03 7
estimate_peak()
Note that the bootstrapping approach used for estimating the peak time makes the following assumptions:
fluH7N9_china_2013
dat <- incidence(dat, date_index = date_of_onset, groups = province)
x <-#> 10 missing observations were removed.
# regrouping for overall peak
estimate_peak(regroup(x))
#> Estimating peaks from bootstrap samples:
#>
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
#> # A tibble: 1 x 6
#> observed_peak observed_count bootstrap_peaks lower_ci median upper_ci
#> <date> <int> <list> <date> <date> <date>
#> 1 2013-04-03 7 <tibble[,2] [10… 2013-03-28 2013-04-06 2013-04-15
# across provinces and with progress bar suppressed
estimate_peak(x, progress = FALSE)
#> # A tibble: 13 x 7
#> province observed_peak observed_count bootstrap_peaks lower_ci median
#> <fct> <date> <int> <list> <date> <date>
#> 1 Anhui 2013-03-09 1 <tibble[,2] [10… 2013-03-09 2013-03-28
#> 2 Beijing 2013-04-11 1 <tibble[,2] [10… 2013-04-11 2013-04-11
#> 3 Fujian 2013-04-17 1 <tibble[,2] [10… 2013-04-17 2013-04-21
#> 4 Guangdong 2013-07-27 1 <tibble[,2] [10… 2013-07-27 2013-07-27
#> 5 Hebei 2013-07-10 1 <tibble[,2] [10… 2013-07-10 2013-07-10
#> 6 Henan 2013-04-06 1 <tibble[,2] [10… 2013-04-06 2013-04-06
#> 7 Hunan 2013-04-14 1 <tibble[,2] [10… 2013-04-14 2013-04-14
#> 8 Jiangsu 2013-03-19 2 <tibble[,2] [10… 2013-03-08 2013-03-21
#> 9 Jiangxi 2013-04-15 1 <tibble[,2] [10… 2013-04-15 2013-04-19
#> 10 Shandong 2013-04-16 1 <tibble[,2] [10… 2013-04-16 2013-04-16
#> 11 Shanghai 2013-04-01 4 <tibble[,2] [10… 2013-03-17 2013-04-01
#> 12 Taiwan 2013-04-12 1 <tibble[,2] [10… 2013-04-12 2013-04-12
#> 13 Zhejiang 2013-04-06 5 <tibble[,2] [10… 2013-03-29 2013-04-10
#> # … with 1 more variable: upper_ci <date>