
lbfgs: Efficient L-BFGS and OWL-QN Optimization

in R

Antonio Coppola

Harvard University
Brandon M. Stewart

Harvard University

Abstract

This vignette introduces the lbfgs package for R, which consists of a wrapper built
around the libLBFGS optimization library written by Naoaki Okazaki. The lbfgs package
implements both the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) and
the Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) optimization algorithms.
The L-BFGS algorithm solves the problem of minimizing an objective, given its gradient,
by iteratively computing approximations of the inverse Hessian matrix. The OWL-QN
algorithm finds the optimum of an objective plus the L1 norm of the problem’s parame-
ters. The package offers a fast and memory-efficient implementation of these optimization
routines, which is particularly suited for high-dimensional problems. The lbfgs package
compares favorably with other optimization packages for R in microbenchmark tests.

Keywords: optimization, optim, L-BFGS, OWL-QN, R.

1. Introduction

In this vignette we demonstrate how to use the lbfgs R package.1 While the optim function
in the R core package stats provides a variety of general purpose optimization algorithms for
differentiable objectives, there is no comparable general optimization routine for objectives
with a non-differentiable penalty. Non-differentiable penalties such as the L1 norm are at-
tractive because they promote sparse solutions (Hastie et al. 2009). However it is this same
lack of smoothness which makes the quasi-Newton methods in optim inapplicable.

The lbfgs package addresses this issue by providing access to the Orthant-Wise Limited-
memory Quasi-Newton (OWL-QN) optimization algorithm of Andrew and Gao (2007), which
allows for optimization of an objective with an L1 penalty. The package uses the libLBFGS
C++ library by Okazaki (2010), which itself is a port of the Fortran implementation by Nocedal
(1980). In addition to OWL-QN the package provides an implementation of L-BFGS which
complements optim. The linkage between R and C++ is achieved using Rcpp (Eddelbuettel
2013b).

The package provides general purpose access to these two optimization algorithms which are
suitable for large-scale applications with high-dimensional parameters. The objective and
gradient can be programmed in R or directly in C++ for high performance.

In Section 2 we provide a brief summary of the L-BFGS and OWL-QN algorithms. In Section 3

1We are extremely thankful to Dustin Tingley for his advice and guidance. We also thank Jennifer Shephard

and Harvard’s Behavioral Laboratory in the Social Sciences for providing support for this project.

http://www.chokkan.org/software/liblbfgs/

2 LBFGS

we proceed to describe the features of the package using applied examples with functions coded
in R. In Section 4 we demonstrate how to achieve higher performance by coding objective and
gradient functions in C++. Section 5 concludes.

2. Background

2.1. Notation

Throughout this vignette, we adopt notation from Andrew and Gao (2007). Let f : Rn �→ R

be the objective function to be minimized. We also let the ||·|| operator denote the L2 norm
of a vector, and ||·||1 denote the L1 norm. Bk is the Hessian matrix (or its approximation) of
f at x⃗k, and g⃗k if the gradient of f at the same point. We also let Hk = Bk

−1 be the inverse
of the (approximated) Hessian matrix.

2.2. The L-BFGS Algorithm

The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm (Liu and No-
cedal 1989) is employed for solving high-dimensional minimization problems in scenarios where
both the objective function and its gradient can be computed analytically. The L-BFGS al-
gorithm belongs to the class of quasi-Newton optimization routines, which solve the given
minimization problem by computing approximations to the Hessian matrix of the objective
function. At each iteration, quasi-Newton algorithms locally model f at the point x⃗k using a
quadratic approximation:

Q(x⃗) = f(x⃗k) + (x⃗ − x⃗k)T g⃗k +
1

2
(x⃗ − x⃗k)T Bk(x⃗ − x⃗k)

A search direction can then be found by computing the vector x⃗∗ that minimizes Q(x⃗).
Assuming that the Hessian is positive-definite, this is x⃗∗ = x⃗k − Hkg⃗k. The next search
point is then found along the ray defined by x⃗k − ³Hkg⃗k. The procedure is iterated until the
gradient is zero, with some degree of convergence tolerance.

In high dimensional settings even storing the Hessian matrix can be prohibitively expensive.
The L-BFGS algorithm avoids storing the sequential approximations of the Hessian matrix
which allows it to generalize well to the high-dimensional setting. Instead, L-BFGS stores
curvature information from the last m iterations of the algorithm, and uses them to find the
new search direction. More specifically, the algorithm stores information about the spatial
displacement and the change in gradient, and uses them to estimate a search direction without
storing or computing the Hessian explicitly. We refer interested readers to Nocedal and Wright
(2006) for additional details.

2.3. The OWL-QN Algorithm

The L-BFGS method cannot be applied to problems with an objective function of the form
r(x⃗) = C · ||x⃗||1= C ·

�
i|xi|, such as LASSO regression or L1-penalized log-linear models,

given the non-differentiability of the objective function at any point where at least one of the
parameters is zero. The OWL-QN algorithm developed by Andrew and Gao (2007), modifies
the L-BFGS algorithm to allow for L1 penalties.

Antonio Coppola, Brandon M. Stewart 3

The algorithm exploits the fact that L1-regularized objective functions will still be differen-
tiable in any given orthant of the function space. At each iteration, the algorithm chooses an
orthant within which to evaluate the function by estimating the sign of each of its parame-
ters. The algorithm then constructs a quadratic approximation to the function in the given
orthant using a regular L-BFGS procedure, and searches in the direction of the minimum of
the approximation within the same orthant. For further details regarding OWL-QN, we refer
the interested reader to the original article by Andrew and Gao (2007).

3. The lbfgs package

The lbfgs package provides a general-purpose library for numerical optimization with L-BFGS
and OWL-QN. As such, its syntax and usage closely mirror those of other popular packages for
numerical optimization in R.2 While there are many alternatives for smooth unconstrained
optimization, most optimization methods including an L1 penalty are limited to end-user
regression functions rather than general optimization frameworks. These functions can be
more efficient than lbfgs for the particular problems they solve, but they do not allow easy
extension or modification.

The following list provides brief comparisons between lbfsg and several other packages:

• optim: The lbfgs package can be used as a drop-in replacement for the L-BFGS-B
method of the optim (R Development Core Team 2008) and optimx (Nash and Varadhan
2011), with performance improvements on particular classes of problems, especially if
lbfgs is used in conjuction with C++ implementations of the objective and gradient
functions. In addition, the possibility of introducing L1 penalization of the objective
function allows for solution vectors with much higher sparsity, as most of the otherwise
near-zero parameters are driven to zero.

• penalized: The penalized package (Goeman et al. 2012) fits generalized linear models
with both L1 (lasso and fused lasso) and L2 (ridge) penalizations. However, penalized

does not permit general optimization of L1 regularized functions.

• glmnet: The glmnet package (Friedman et al. 2010) fits a regularization path for lasso
and elastic-net generalized linear models using extremely fast cyclical coordinate descent
algorithms coded in Fortran. As in the previous case, however, glmnet cannot perform
general-purpose optimization.

We also note that the mlegp package also makes use of the libLBFGS library but does not
provide general purpose access to the optimization functions (Dancik 2013).

3.1. Package API

All optimization routines are handled by the lbfgs() function. The accompanying manual
provides detailed and exhaustive documentation regarding the package API, which is closely
modeled after Okazaki (2010). Here we present some of the details that are likely to be of
greatest interest to a user who is familiarizing herself with the package.

2See for example the Optimization Taskview

http://cran.r-project.org/web/views/Optimization.html

4 LBFGS

• Basic Inputs: The objective and gradient functions should be supplied as either R
functions or external pointers to C++ functions compiled using the inline interface (see
Section 4). Extra parameters can be passed to the objective and gradient functions
using either the ... construct or by encapsulating them in an R environment, which
is then passed to lbfgs(). If the functions are implemented in R, the ... construct
should be used. If the functions are otherwise implemented in C++, users should resort
to the environment parameter.

• Hessian Approximation: As mentioned in Section 2, the L-BFGS algorithm stores
the results of its previous m iterations to approximate the inverse Hessian matrix for the
current iteration. The parameter m specifies the number of previous computations to be
stored. The default value is 6, and values less than 3 are not recommended (Okazaki
2010). Note also that optim’s equivalent parameter, lmm, defaults to 5 instead.

• Line Search Strategies: The libLBFGS library implements a number of line search
strategies for use with the L-BFGS and OWL-QN methods. The default strategy for the
L-BFGS method is the one described by More and Thuente (1994). The More-Thuente
strategy uses quadratic and cubic interpolations to find a step length that satisfies the
Wolfe conditions (Wolfe 1969).

The OWL-QN method does not support the More-Thuente strategy, and instead em-
ploys a backtracking strategy by default. Given a starting point, the algorithm back-
tracks toward zero until a certain set of conditions is met. On top of the regular Wolfe
conditions, the Armijo curvature rule (Armijo 1966) and the strong Wolfe conditions
(Nocedal and Wright 2006) are supported. We refer the readers to the referenced liter-
ature for background regarding the Wolfe and Armijo conditions.

• L1 Regularizations for OWL-QN: The OWL-QN method is invoked by specifying a
nonzero coefficient C for the L1 norm of the parameters of the objective function. Given
an objective function f(x⃗), the OWL-QN algorithm will minimize the L1-penalized
version of the function: f(x⃗) + C · ||x⃗||1. Note that several other packages built for
handling L1-penalized models (for instance, glmnet) minimize a regularized objective

of the following form: f(x⃗)
N

+ C · ||x⃗||1, where N is the number of variables in the
parameter vector. Users should be aware that lbfgs does not automatically perform any
regularization of this kind.

3.2. Simple test functions

We begin by using lbfgs to minimize a suite of simple test functions, and benchmarking the
package against the L-BFGS-B optim method.

• The Rosenbrock function: We define the Rosenbrock function (Rosenbrock 1960)
mapping R2 to R as f(x, y) = 100 · (y − x2)2 + (1 − x)2. The function has a global
minimum at (0, 0) that lies within a long, flat valley. We define the function and its
gradient as R objects, and then run the optimization routine using both lbfgs and optim.
Note that the functions must accept all variables as a single numeric vector:

> objective <- function(x) {

100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2

Antonio Coppola, Brandon M. Stewart 5

}

> gradient <- function(x) {

c(-400 * x[1] * (x[2] - x[1]^2) - 2 * (1 - x[1]),

200 * (x[2] - x[1]^2))

}

> out.lbfgs <- lbfgs(objective, gradient, c(-1.2, 1))

> out.optim <- optim(c(-1.2, 1), objective, gradient, method="L-BFGS-B")

The results are the following:

> out.lbfgs$value

[1] 3.545445e-13

> out.lbfgs$par

[1] 1.000001 1.000001

> out.optim$value

[1] 2.267577e-13

> out.optim$par

[1] 0.9999997 0.9999995

The results are essentially the same, but lbfgs achieves better running speeds in a
microbenchmark 3 test done using the microbenchmark package (Mersmann 2013):

> microbenchmark(out.lbfgs <- lbfgs(objective, gradient, c(-1.2, 1),

invisible=1), out.optim <- optim(c(-1.2, 1), objective,

gradient, method="L-BFGS-B"))

expr min lq median uq max neval

out.lbfgs <- lbfgs(...) 288.673 298.2110 303.8770 320.326 561.389 100

out.optim <- optim(...) 389.958 402.1195 411.6735 432.590 691.975 100

• Booth’s function: Booth’s function is f(x, y) = (x + 2y − 7)2 + (2x + y − 5)2. The
function has a global minimum at (1, 3). The code and microbenchmark test are as
follows:

> objective <- function(x){

(x[1] + 2*x[2] - 7)^2 + (2*x[1] + x[2] - 5)^2

}

> gradient <- function(x){

3All microbenchmark test were performed on a machine running OS X, Version 10.9.3, with a 2.9 GHz Intel

Core i7 processor, and 8 GB 1600 MHz DDR3 memory.

6 LBFGS

c(10*x[1] + 8*x[2] -34, 8*x[1] + 10*x[2] - 38)

}

> microbenchmark(out.lbfgs <- lbfgs(objective, gradient, c(-1.2, 1),

invisible=1), out.optim <- optim(c(-1.2, 1), objective,

gradient, method="L-BFGS-B"))

expr min lq median uq max neval

out.lbfgs <- lbfgs(...) 82.089 93.2145 95.3865 104.4565 242.969 100

out.optim <- optim(...) 85.198 92.0895 100.8360 116.9355 320.429 100

3.3. A Logistic Regression with L-BFGS

In the following example we use lbfgs on the Leukemia example in Friedman et al. (2010),
with data originally due to Golub et al. (1999). As in Friedman et al. (2010) we use logistic
regression for the purposes of cancer classification based on gene expression monitoring in a
microarray study. The dataset contains both a vector y⃗ of binary values specifying the cancer
class for 72 leukemia patients, and a 72 × 3571 matrix X specifying the levels of expressions
of 3571 genes for the 72 different patients. In the vector y⃗, 0 corresponds to patients with
acute lymphoblastic leukemia (ALL), and 1 to patients with acute myeloid leukemia (AML).
First, we load the data to the R workspace:

> data(Leukemia)

> X <- Leukemia$x

> y <- Leukemia$y

The likelihood function and its gradient for the standard logit setup with a ridge penalty are
specified as follows:

> likelihood <- function(par, X, y, prec) {

Xbeta <- X %*% par

-(sum(y * Xbeta - log(1 + exp(Xbeta))) - .5 * sum(par^2*prec))

}

> gradient <- function(par, X, y, prec) {

p <- 1/(1 + exp(-X %*% par))

-(crossprod(X,(y - p)) - par * prec)

}

We bind a constant term to the X matrix, and define a numerical vector with origin parameters
for the algorithm initialization:

> X1 <- cbind(1, X)

> init <- rep(0, ncol(X1))

Then we use both lbfgs and optim to run the regression with a penalty coefficient of 2:

Antonio Coppola, Brandon M. Stewart 7

> lbfgs.out <-lbfgs(likelihood, gradient, init, invisible=1,

X=X1, y=y, prec=2)

> optim.out <- optim(init, likelihood, gradient, method = "L-BFGS-B",

X=X1, y=y, prec=2)

> all.equal(optim.out$value, lbfgs.out$value)

[1] TRUE

In this particular case, optim outperforms lbfgs, but it is to be noted that this problem has
a high number of parameters and a low number of observations:

expr min lq median uq max neval

optim.out <- optim(...) 84.57455 99.03664 102.7622 119.6641 189.1403 100

lbfgs.out <- lbfgs(...) 121.46801 138.16293 150.5174 192.3550 234.5430 100

Although both optim and lbfgs are using the same algorithm here there are subtle differences
in the implementation. This underscores the importance of benchmarking performance for
the individual application of interest.

3.4. A Poisson Regression with OWL-QN

Next, we use the OWL-QN method in lbfgs to perform a L1 regularized Poisson regression
comparing performance to glmnet. We emphasize that this could not be done directly with
optim due to the presence of the L1 penalty. We set up a simulated dataset the simple data
generating process given in the manual of glmnet (Friedman et al. 2010). First, we define
the variables of interest:

> N <- 500

> p <- 20

> nzc <- 5

> x <- matrix(rnorm(N * p), N, p)

> beta <- rnorm(nzc)

> f <- x[, seq(nzc)] %*% beta

> mu <- exp(f)

> y <- rpois(N, mu)

> X1 <- cbind(1,x)

> init <- rep(0, ncol(X1))

We can perform a Poisson regression on this simulated data using glmnet:

> fit <- glmnet(x, y, family="poisson", standardize=FALSE)

We choose a value of the regularization parameter from the model fitted with glmnet as the
OWL-QN penalty coefficient to obtain analogous results using lbfgs:

> C <- fit$lambda[25]*nrow(x)

To perform the same regression with lbfgs, we define the model’s likelihood function and its
gradient in R:

8 LBFGS

> likelihood <- function(par, X, y, prec=0) {

Xbeta <- X %*% par

-(sum(y * Xbeta - exp(Xbeta)) - .5 * sum(par^2*prec))

}

> gradient <- function(par, X, y, prec=0) {

Xbeta <- X %*% par

-(crossprod(X, (y - exp(Xbeta))) - par * prec)

}

Hence we make a call to lbfgs:

out <- lbfgs(likelihood, gradient, init, X=X1, y=y, prec=0,

invisible=1, orthantwise_c=C,

linesearch_algorithm="LBFGS_LINESEARCH_BACKTRACKING",

orthantwise_start = 1,

orthantwise_end = ncol(X1))

The microbenchmark test yields:

Unit: milliseconds

expr min lq median uq max neval

out <- lbfgs(...) 2.340520 2.441575 2.544409 2.952162 10.47467 100

fit <- glmnet(...) 9.959642 10.343768 10.694795 12.425912 18.21408 100

The lbfgs solution is a little over 4 times as fast. We emphasize that this is not strictly a fair
comparison. glmnet is calculating the entire regularization path and thus is solving 100 prob-
lems of the type. Indeed using OWL-QN to calculate all 100 problems might take hundreds
of times longer than glmnet. However, as noted in Friedman et al. (2010), glmnet’s reliance
on warm starts means that there is no straightforward method for optimizing with a single
value of the regularization parameter. In GLMs it is often desirable to have the regularization
path but in iterative algorithms the additional computation may be unnecessary.

For straightforward GLMs it would be difficult to find a solution faster than glmnet’s. lbfgs

provides the additional flexibility of allowing user-defined functions and can provide signifi-
cantly faster optimization at a single value of the regularization parameter.

4. Faster Performance: Objective and Gradient in C++

4.1. The Basics

The package supports the implementation of the objective and gradient functions in C++,
which may yield significant speed improvements over the respective R implementations. The
optimization routine’s API accepts both R function objects and external pointers to com-
piled C++ functions. The C++ evaluation routines use code from Ardia et al. (2013) and

Antonio Coppola, Brandon M. Stewart 9

Eddelbuettel (2013a). 4 In order to be compatible with the lbfgs API, the C++ functions
must return an object of type Rcpp::NumericVector, and take in either one or two objects
of type SEXP. The first argument of type SEXP must be the pointer to an R numerical vector
containing the values of the function’s parameters. The second (optional) argument must be
the pointer to an R environment holding all extra parameters to be fed into the objective
and gradient functions. To perform optimization on the Rosenbrock function, we begin by
defining the C++ implementations of the objective and of the gradient as character strings,
using the Rcpp library:

> objective.include <- 'Rcpp::NumericVector rosenbrock(SEXP xs) {

Rcpp::NumericVector x(xs);

double x1 = x[0];

double x2 = x[1];

double sum = 100 * (x2 - x1 * x1) * (x2 - x1 * x1) + (1 - x1) * (1 - x1);

Rcpp::NumericVector out(1);

out[0] = sum;

return(out);

}

'

> gradient.include <- 'Rcpp::NumericVector rosengrad(SEXP xs) {

Rcpp::NumericVector x(xs);

double x1 = x[0];

double x2 = x[1];

double g1 = -400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1);

double g2 = 200 * (x2 - x1 * x1);

Rcpp::NumericVector out(2);

out[0] = g1;

out[1] = g2;

return(out);

}

'

Then we assign two character strings with the bodies of two functions to generate external
pointers to the objective and the gradient:

> objective.body <- '

typedef Rcpp::NumericVector (*funcPtr)(SEXP);

return(XPtr<funcPtr>(new funcPtr(&rosenbrock)));

'

> gradient.body <- '

typedef Rcpp::NumericVector (*funcPtr)(SEXP);

return(XPtr<funcPtr>(new funcPtr(&rosengrad)));

'

4The idea of supplying external pointers to the underlying C++ library was introduced by Dirk Eddelbuettel.

See for instance the slides from his presentation at the University of Kansas in November 2013.

http://dirk.eddelbuettel.com/papers/rcpp_ku_nov2013-part2.pdf

10 LBFGS

Finally, we compile this ensemble using the inline package by Sklyar et al. (2013):

> objective <- cxxfunction(signature(), body=objective.body,

inc=objective.include, plugin="Rcpp")

> gradient <- cxxfunction(signature(), body=gradient.body,

inc=gradient.include, plugin="Rcpp")

The external pointers to the objective and the gradient generated by the two pointer-assigners
can then be supplied to the lbfgs routine:

> out.CPP <- lbfgs(objective(), gradient(), c(-1.2,1), invisible=1)

We define the same functions in R for comparison purposes:

> objective.R <- function(x) {

100 * (x[2] - x[1]^2)^2 + (1 - x[1])^2

}

> gradient.R <- function(x) {

c(-400 * x[1] * (x[2] - x[1]^2) - 2 * (1 - x[1]),

200 * (x[2] - x[1]^2))

}

A microbenchmark comparison reveals significant speed improvements:

> microbenchmark(out.CPP <- lbfgs(objective(), gradient(), c(-1.2,1),

invisible=1), out.R <- lbfgs(objective.R, gradient.R, c(-1.2,1),

invisible=1))

The results are the following, including also the optim routine as a benchmark (neval=100

for all runs):

Unit: microseconds

expr min lq median uq max

lbfgs(objective(), ...) 79.430 85.1265 90.6680 97.7615 269.533

lbfgs(objective.R, ...) 260.552 272.8125 292.2045 312.5050 561.668

optim(...) 368.788 384.6445 412.3530 448.1345 1719.914

4.2. Extra Parameters in C++ Implementations

Much like in the R case, the passing of extra parameters with C++ implementations of the
objective and gradient is achieved through the use of R environments. The following is an
example replicating the logistic regression example with C++ function implementations. As
before, we set up the objective and gradient as character strings. We include the extra
environment argument and obtain data by evaluating it using the Rcpp::Environment class.
In order to perform matrix operations, we use the RcppArmadillo library (Eddelbuettel and
Sanderson 2014):

Antonio Coppola, Brandon M. Stewart 11

LBFGS: C++

LBFGS: R

OPTIM

100 1000

Time [microseconds]

Figure 1: The violin plots depict the distribution of running times obtained from optimizing
the Rosenbrock function in the course a microbenchmark test. From top to bottom, the
three experimental conditions were the following: optim() (L-BFGS-B method) with R-coded
inputs; lbfgs() with R-coded inputs; and lbfgs() with inputs in C++.

12 LBFGS

> likelihood.include <- 'Rcpp::NumericVector lhood(SEXP xs, SEXP env){

arma::vec par = Rcpp::as<arma::vec>(xs);

Rcpp::Environment e = Rcpp::as<Rcpp::Environment>(env);

arma::mat X = Rcpp::as<arma::mat>(e["X"]);

arma::vec y = Rcpp::as<arma::vec>(e["y"]);

double prec = Rcpp::as<double>(e["prec"]);

arma::mat Xbeta = X * par;

double sum1 = sum(y % Xbeta - log(1 + exp(Xbeta)));

arma::mat sum2 = sum(pow(par, 2 * prec));

arma::vec out = -(sum1 - 0.5 * sum2);

Rcpp::NumericVector ret = Rcpp::as<Rcpp::NumericVector>(wrap(out));

return ret;

}

'

> gradient.include <- 'Rcpp::NumericVector grad(SEXP xs, SEXP env){

arma::vec par = Rcpp::as<arma::vec>(xs);

Rcpp::Environment e = Rcpp::as<Rcpp::Environment>(env);

arma::mat X = Rcpp::as<arma::mat>(e["X"]);

arma::vec y = Rcpp::as<arma::vec>(e["y"]);

double prec = Rcpp::as<double>(e["prec"]);

arma::vec p = 1 / (1 + exp(-(X * par)));

arma::vec grad = -((trans(X) * (y - p)) - par * prec);

Rcpp::NumericVector ret = Rcpp::as<Rcpp::NumericVector>(wrap(grad));

return ret;

}

'

Then we compile the functions and their pointer-assigners, taking care to map the functions’
signatures correctly:

> likelihood.body <- '

typedef Rcpp::NumericVector (*funcPtr)(SEXP, SEXP);

return(XPtr<funcPtr>(new funcPtr(&lhood)));

'

> gradient.body <- '

typedef Rcpp::NumericVector (*funcPtr)(SEXP, SEXP);

return(XPtr<funcPtr>(new funcPtr(&grad)));

'

> likelihood.CPP <- cxxfunction(signature(), body=likelihood.body,

inc=likelihood.include, plugin="RcppArmadillo")

> gradient.CPP <- cxxfunction(signature(), body=gradient.body,

inc=gradient.include, plugin="RcppArmadillo")

Antonio Coppola, Brandon M. Stewart 13

We then instantiate a new R environment with the required objects, and run the optimization
routine:

> data(Leukemia)

> X <- Leukemia$x

> y <- Leukemia$y

> X1 <- cbind(1, X)

> init <- rep(0, ncol(X1))

> env <- new.env()

> env[["X"]] <- X1

> env[["y"]] <- y

> env[["prec"]] <- 1

> output <- lbfgs(likelihood.CPP(), gradient.CPP(), init, environment=env)

A final microbenchmark test reveals performance improvements over the corresponding R
implementation (neval = 100 for all runs):

> microbenchmark(out.CPP <- lbfgs(likelihood.CPP(), gradient.CPP(),

invisible=1, init, environment=env), out.R <- lbfgs(likelihood,

gradient, init, invisible=1, X=X1, y=y, prec=1))

Unit: milliseconds

expr min lq median uq max

lbfgs(likelihood.CPP(), ...) 121.2342 130.6826 135.0989 140.2065 322.2660

lbfgs(likelihood, ...) 126.5353 142.9137 150.2248 156.0659 397.5917

While the speed of the optimization routines is satisfying with R implementations of the
objective and gradient functions, the same interface can be used in tandem with C++ when
high performance is important.

5. Conclusion

The lbfgs package provides a generic R interface for performing numerical optimization using
the L-BFGS and OWL-QN algorithms. This vignette provides an overview of the package’s
features and usage. More detailed documentation regarding the package’s functionality and
API are available in the accompanying manual.

14 LBFGS

References

Andrew G, Gao J (2007). Scalable Training of L1-Regularized Log-Linear Models, pp. 33–
40. Association for Computing Machinery (ACM). ISBN 9781595937933. URL http:

//dx.doi.org/10.1145/1273496.1273501.

Ardia D, Mullen K, Peterson B, Ulrich J, Boudt K (2013). DEoptim: Global optimization
by Differential Evolution. URL http://cran.r-project.org/web/packages/DEoptim/

index.html.

Armijo L (1966). “Minimization of functions having Lipschitz continuous first partial deriva-
tives.” Pacific Journal of mathematics, 16(1), 1–3.

Dancik GM (2013). mlegp: Maximum Likelihood Estimates of Gaussian Processes. URL
http://cran.r-project.org/web/packages/mlegp/index.html.

Eddelbuettel D (2013a). RcppDE: Global optimization by Differential Evolution in C++.
URL http://cran.r-project.org/web/packages/RcppDE/index.html.

Eddelbuettel D (2013b). Seamless R and C++ Integration with Rcpp. Springer Sci-
ence + Business Media. ISBN 978-1-4614-6867-7. URL http://dx.doi.org/10.1007/

978-1-4614-6868-4.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. URL
http://dx.doi.org/10.1016/j.csda.2013.02.005.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization Paths for Generalized Linear
Models via Coordinate Descent.” Journal of Statistical Software, 33(1), 1–22. URL http:

//www.jstatsoft.org/v33/i01/.

Goeman J, Meijer R, Chaturvedi N (2012). penalized: L1 (lasso and fused lasso) and
L2 (ridge) Penalized Estimation in GLMs and in the Cox Model. URL http://cran.

r-project.org/web/packages/penalized/index.html.

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh
ML, Downing JR, Caligiuri MA, et al. (1999). “Molecular Classification of Cancer: Class
Discovery and Class Prediction by Gene Expression Monitoring.” Science, 286(5439), 531–
537. URL http://dx.doi.org/10.1126/science.286.5439.531.

Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R (2009). The elements
of statistical learning, volume 2. Springer.

Liu DC, Nocedal J (1989). “On the Limited Memory BFGS Method for Large Scale Opti-
mization.” Mathematical Programming, 45(1-3), 503–528. URL http://dx.doi.org/10.

1007/BF01589116.

Mersmann O (2013). microbenchmark: Sub Microsecond Accurate Timing Functions. URL
http://cran.r-project.org/web/packages/microbenchmark/index.html.

http://dx.doi.org/10.1145/1273496.1273501
http://dx.doi.org/10.1145/1273496.1273501
http://cran.r-project.org/web/packages/DEoptim/index.html
http://cran.r-project.org/web/packages/DEoptim/index.html
http://cran.r-project.org/web/packages/mlegp/index.html
http://cran.r-project.org/web/packages/RcppDE/index.html
http://dx.doi.org/10.1007/978-1-4614-6868-4
http://dx.doi.org/10.1007/978-1-4614-6868-4
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://cran.r-project.org/web/packages/penalized/index.html
http://cran.r-project.org/web/packages/penalized/index.html
http://dx.doi.org/10.1126/science.286.5439.531
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1007/BF01589116
http://cran.r-project.org/web/packages/microbenchmark/index.html

Antonio Coppola, Brandon M. Stewart 15

More JJ, Thuente DJ (1994). “Line search algorithms with guaranteed sufficient decrease.”
ACM Transactions on Mathematical Software, 20(3), 286–307. URL http://dl.acm.org/

citation.cfm?id=192132.

Nash JC, Varadhan R (2011). “Unifying Optimization Algorithms to Aid Software System
Users: optimx for R.” Journal of Statistical Software, 43(9), 1–14. URL http://www.

jstatsoft.org/v43/i09/.

Nocedal J (1980). “Updating Quasi-Newton Matrices with Limited Storage.” Math-
ematics of Computation, 35(151), 773–773. URL http://dx.doi.org/10.1090/

S0025-5718-1980-0572855-7.

Nocedal J, Wright SJ (2006). Numerical optimization. Springer. URL http://site.ebrary.

com/id/10228772.

Okazaki N (2010). libLBFGS: A Library of Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS). URL http://www.chokkan.org/software/liblbfgs/.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Rosenbrock HH (1960). “An automatic method for finding the greatest or least value of a
function.” The Computer Journal, 3(3), 175–184.

Sklyar O, Murdoch D, Smith M, Eddelbuettel D, Francois R (2013). inline: Inline C,
C++, Fortran Function Calls from R. URL http://cran.r-project.org/web/packages/

inline/index.html.

Wolfe P (1969). “Convergence conditions for ascent methods.” SIAM review, 11(2), 226–235.

Affiliation:

Antonio Coppola
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: acoppola@college.harvard.edu

Brandon M. Stewart
Department of Government
Harvard University
1737 Cambridge St, Cambridge, MA, USA
E-mail: bstewart@fas.harvard.edu

URL: http://scholar.harvard.edu/bstewart

http://dl.acm.org/citation.cfm?id=192132
http://dl.acm.org/citation.cfm?id=192132
http://www.jstatsoft.org/v43/i09/
http://www.jstatsoft.org/v43/i09/
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://dx.doi.org/10.1090/S0025-5718-1980-0572855-7
http://site.ebrary.com/id/10228772
http://site.ebrary.com/id/10228772
http://www.chokkan.org/software/liblbfgs/
http://www.R-project.org
http://www.R-project.org
http://cran.r-project.org/web/packages/inline/index.html
http://cran.r-project.org/web/packages/inline/index.html
mailto:acoppola@college.harvard.edu
mailto:bstewart@fas.harvard.edu
http://scholar.harvard.edu/bstewart

