localIV: Estimation of Marginal Treatment Effects using Local Instrumental Variables

In the generalized Roy model, the marginal treatment effect (MTE) can be used as a building block for constructing conventional causal parameters such as the average treatment effect (ATE) and the average treatment effect on the treated (ATT) (Heckman, Urzua, and Vytlacil 2006 <doi:10.1162/rest.88.3.389>). Given a treatment selection model and an outcome model, the function mte() estimates the MTE via local instrumental variables (or via a normal selection model) and also the projection of MTE onto the 2-dimensional space of the propensity score and a latent variable representing unobserved resistance to treatment (Zhou and Xie 2018 <https://scholar.harvard.edu/files/xzhou/files/zhou-xie_mte2.pdf>). The object returned by mte() can be used to estimate conventional parameters such as ATE and ATT (via average()) or marginal policy-relevant treatment effects (via mprte()).

Version: 0.1.0
Depends: R (≥ 3.3.0)
Imports: KernSmooth (≥ 2.5.0), mgcv (≥ 1.8-19), sampleSelection (≥ 1.2-0), stats
Published: 2018-08-05
Author: Xiang Zhou [aut, cre]
Maintainer: Xiang Zhou <xiang_zhou at fas.harvard.edu>
BugReports: https://github.com/xiangzhou09/localIV
License: GPL (≥ 3)
URL: https://github.com/xiangzhou09/localIV
NeedsCompilation: no
CRAN checks: localIV results


Reference manual: localIV.pdf
Package source: localIV_0.1.0.tar.gz
Windows binaries: r-devel: localIV_0.1.0.zip, r-release: localIV_0.1.0.zip, r-oldrel: localIV_0.1.0.zip
OS X binaries: r-release: localIV_0.1.0.tgz, r-oldrel: localIV_0.1.0.tgz


Please use the canonical form https://CRAN.R-project.org/package=localIV to link to this page.