
Package ‘lubridate’
September 13, 2016

Maintainer Vitalie Spinu <spinuvit@gmail.com>

License GPL-2

Title Make Dealing with Dates a Little Easier

LazyData true

Type Package

Description Functions to work with date-times and time-spans: fast and user
friendly parsing of date-time data, extraction and updating of components of
a date-time (years, months, days, hours, minutes, and seconds), algebraic
manipulation on date-time and time-span objects. The 'lubridate' package has
a consistent and memorable syntax that makes working with dates easy and
fun.

Enhances chron, timeDate, zoo, xts, its, tis, timeSeries, fts, tseries

Version 1.6.0

Depends methods, R (>= 3.0.0)

Imports stringr

Suggests testthat, knitr, covr

BugReports https://github.com/hadley/lubridate/issues

VignetteBuilder knitr

Collate 'Dates.r' 'POSIXt.r' 'util.r' 'timespans.r' 'intervals.r'
'difftimes.r' 'durations.r' 'periods.r' 'accessors-date.R'
'accessors-day.r' 'accessors-dst.r' 'accessors-hour.r'
'accessors-minute.r' 'accessors-month.r' 'accessors-quarter.r'
'accessors-second.r' 'accessors-tz.r' 'accessors-week.r'
'accessors-year.r' 'am-pm.r' 'time-zones.r' 'numeric.r'
'coercion.r' 'constants.r' 'data.r' 'decimal-dates.r'
'deprecated.r' 'guess.r' 'help.r' 'hidden.r' 'instants.r'
'leap-years.r' 'ops-addition.r' 'ops-%m+%.r' 'ops-compare.r'
'ops-division.r' 'ops-integer-division.r' 'ops-modulo.r'
'ops-multiplication.r' 'ops-subtraction.r' 'parse.r' 'pretty.r'
'round.r' 'stamp.r' 'update.r'

RoxygenNote 5.0.1

1

https://github.com/hadley/lubridate/issues

2 R topics documented:

NeedsCompilation yes

Author Garrett Grolemund [aut],
Vitalie Spinu [aut, cre],
Hadley Wickham [aut],
Ian Lyttle [ctb],
Imanuel Constigan [ctb],
Jason Law [ctb],
Doug Mitarotonda [ctb],
Joseph Larmarange [ctb],
Jonathan Boiser [ctb],
Chel Hee Lee [ctb]

Repository CRAN

Date/Publication 2016-09-13 13:11:52

R topics documented:
lubridate-package . 3
am . 5
as.duration . 6
as.interval . 7
as.period . 8
as_date . 9
date . 11
DateUpdate . 12
date_decimal . 13
day . 13
days_in_month . 15
decimal_date . 15
Deprecated-lubridate . 16
dst . 17
duration . 17
Duration-class . 19
fit_to_timeline . 19
force_tz . 20
guess_formats . 21
hour . 23
interval . 24
Interval-class . 26
is.Date . 27
is.difftime . 28
is.instant . 28
is.POSIXt . 29
is.timespan . 30
lakers . 30
leap_year . 31
make_datetime . 31
make_difftime . 32

lubridate-package 3

minute . 33
month . 34
ms . 35
now . 36
origin . 37
parse_date_time . 37
period . 41
Period-class . 43
period_to_seconds . 44
pretty_dates . 44
quarter . 45
quick_durations . 46
quick_periods . 47
rollback . 49
round_date . 50
second . 52
stamp . 53
timespan . 54
Timespan-class . 55
time_length . 56
today . 57
tz . 57
week . 59
with_tz . 60
year . 60
ymd . 61
ymd_hms . 63
%m+% . 66
%within% . 67

Index 68

lubridate-package Dates and times made easy with lubridate

Description

Lubridate provides tools that make it easier to parse and manipulate dates. These tools are grouped
below by common purpose. More information about each function can be found in its help docu-
mentation.

Details

Parsing dates

Lubridate’s parsing functions read strings into R as POSIXct date-time objects. Users should choose
the function whose name models the order in which the year (’y’), month (’m’) and day (’d’)
elements appear the string to be parsed: dmy, myd, ymd, ydm, dym, mdy, ymd_hms). A very flexible
and user friendly parser is provided by parse_date_time.

4 lubridate-package

Lubridate can also parse partial dates from strings into Period-class objects with the functions
hm, hms and ms.

Lubridate has an inbuilt very fast POSIX parser, ported from the fasttime package by Simon Ur-
banek. This functionality is as yet optional and could be activated with options(lubridate.fasttime = TRUE).
Lubridate will automatically detect POSIX strings and use fast parser instead of the default strptime
utility.

Manipulating dates

Lubridate distinguishes between moments in time (known as instants) and spans of time (known
as time spans, see Timespan-class). Time spans are further separated into Duration-class,
Period-class and Interval-class objects.

Instants

Instants are specific moments of time. Date, POSIXct, and POSIXlt are the three object classes Base
R recognizes as instants. is.Date tests whether an object inherits from the Date class. is.POSIXt
tests whether an object inherits from the POSIXlt or POSIXct classes. is.instant tests whether
an object inherits from any of the three classes.

now returns the current system time as a POSIXct object. today returns the current system date.
For convenience, 1970-01-01 00:00:00 is saved to origin. This is the instant from which POSIXct
times are calculated. Try unclass(now()) to see the numeric structure that underlies POSIXct ob-
jects. Each POSIXct object is saved as the number of seconds it occurred after 1970-01-01 00:00:00.

Conceptually, instants are a combination of measurements on different units (i.e, years, months,
days, etc.). The individual values for these units can be extracted from an instant and set with the
accessor functions second, minute, hour, day, yday, mday, wday, week, month, year, tz, and dst.
Note: the accessor functions are named after the singular form of an element. They shouldn’t be
confused with the period helper functions that have the plural form of the units as a name (e.g,
seconds).

Rounding dates

Instants can be rounded to a convenient unit using the functions ceiling_date, floor_date and
round_date.

Time zones

Lubridate provides two helper functions for working with time zones. with_tz changes the time
zone in which an instant is displayed. The clock time displayed for the instant changes, but the
moment of time described remains the same. force_tz changes only the time zone element of
an instant. The clock time displayed remains the same, but the resulting instant describes a new
moment of time.

Timespans

A timespan is a length of time that may or may not be connected to a particular instant. For example,
three months is a timespan. So is an hour and a half. Base R uses difftime class objects to record
timespans. However, people are not always consistent in how they expect time to behave. Some-
times the passage of time is a monotone progression of instants that should be as mathematically
reliable as the number line. On other occasions time must follow complex conventions and rules
so that the clock times we see reflect what we expect to observe in terms of daylight, season, and
congruence with the atomic clock. To better navigate the nuances of time, lubridate creates three
additional timespan classes, each with its own specific and consistent behavior: Interval-class,
Period-class and Duration-class.

am 5

is.difftime tests whether an object inherits from the difftime class. is.timespan tests whether
an object inherits from any of the four timespan classes.

Durations

Durations measure the exact amount of time that occurs between two instants. This can create
unexpected results in relation to clock times if a leap second, leap year, or change in daylight
savings time (DST) occurs in the interval.

Functions for working with durations include is.duration, as.duration and duration. dseconds,
dminutes, dhours, ddays, dweeks and dyears convenient lengths.

Periods

Periods measure the change in clock time that occurs between two instants. Periods provide robust
predictions of clock time in the presence of leap seconds, leap years, and changes in DST.

Functions for working with periods include is.period, as.period and period. seconds, minutes,
hours, days, weeks, months and years quickly create periods of convenient lengths.

Intervals

Intervals are timespans that begin at a specific instant and end at a specific instant. Intervals retain
complete information about a timespan. They provide the only reliable way to convert between
periods and durations.

Functions for working with intervals include is.interval, as.interval, interval, int_shift,
int_flip, int_aligns, int_overlaps, and %within%. Intervals can also be manipulated with
intersect, union, and setdiff().

Miscellaneous

decimal_date converts an instant to a decimal of its year. leap_year tests whether an instant
occurs during a leap year. pretty_dates provides a method of making pretty breaks for date-times
lakers is a data set that contains information about the Los Angeles Lakers 2008-2009 basketball
season.

References

Garrett Grolemund, Hadley Wickham (2011). Dates and Times Made Easy with lubridate. Journal
of Statistical Software, 40(3), 1-25. http://www.jstatsoft.org/v40/i03/.

am Does date time occur in the am or pm?

Description

Does date time occur in the am or pm?

Usage

am(x)

pm(x)

http://www.jstatsoft.org/v40/i03/

6 as.duration

Arguments

x a date-time object

Value

TRUE or FALSE depending on whether x occurs in the am or pm

Examples

x <- ymd("2012-03-26")
am(x)
pm(x)

as.duration Change an object to a duration.

Description

as.duration changes Interval, Period and numeric class objects to Duration objects. Numeric objects
are changed to Duration objects with the seconds unit equal to the numeric value.

Usage

as.duration(x, ...)

Arguments

x Object to be coerced to a duration

... Parameters passed to other methods. Currently unused.

Details

Durations are exact time measurements, whereas periods are relative time measurements. See
Period-class. The length of a period depends on when it occurs. Hence, a one to one map-
ping does not exist between durations and periods. When used with a period object, as.duration
provides an inexact estimate of the length of the period; each time unit is assigned its most com-
mon number of seconds. A period of one month is converted to 2628000 seconds (approximately
30.42 days). This ensures that 12 months will sum to 365 days, or one normal year. For an exact
transformation, first transform the period to an interval with as.interval.

Value

A duration object

See Also

Duration-class, duration

as.interval 7

Examples

span <- interval(ymd("2009-01-01"), ymd("2009-08-01")) #interval
as.duration(span)
as.duration(10) # numeric
dur <- duration(hours = 10, minutes = 6)
as.numeric(dur, "hours")
as.numeric(dur, "minutes")

as.interval Change an object to an interval.

Description

as.interval changes difftime, Duration, Period and numeric class objects to intervals that begin at
the specified date-time. Numeric objects are first coerced to timespans equal to the numeric value
in seconds.

Usage

as.interval(x, start, ...)

Arguments

x a duration, difftime, period, or numeric object that describes the length of the
interval

start a POSIXt or Date object that describes when the interval begins

... additional arguments to pass to as.interval

Details

as.interval can be used to create accurate transformations between Period objects, which measure
time spans in variable length units, and Duration objects, which measure timespans as an exact
number of seconds. A start date- time must be supplied to make the conversion. Lubridate uses
this start date to look up how many seconds each variable length unit (e.g. month, year) lasted for
during the time span described. See as.duration, as.period.

Value

an interval object

See Also

interval

8 as.period

Examples

diff <- make_difftime(days = 31) #difftime
as.interval(diff, ymd("2009-01-01"))
as.interval(diff, ymd("2009-02-01"))

dur <- duration(days = 31) #duration
as.interval(dur, ymd("2009-01-01"))
as.interval(dur, ymd("2009-02-01"))

per <- period(months = 1) #period
as.interval(per, ymd("2009-01-01"))
as.interval(per, ymd("2009-02-01"))

as.interval(3600, ymd("2009-01-01")) #numeric

as.period Change an object to a period.

Description

as.period changes Interval, Duration, difftime and numeric class objects to Period class objects with
the specified units.

Usage

as.period(x, unit, ...)

Arguments

x an interval, difftime, or numeric object

unit A character string that specifies which time units to build period in. unit is
only implemented for the as.period.numeric method and the as.period.interval
method. For as.period.interval, as.period will convert intervals to units no larger
than the specified unit.

... additional arguments to pass to as.period

Details

Users must specify which time units to measure the period in. The exact length of each time unit
in a period will depend on when it occurs. See Period-class and period. The choice of units is
not trivial; units that are normally equal may differ in length depending on when the time period
occurs. For example, when a leap second occurs one minute is longer than 60 seconds.

Because periods do not have a fixed length, they can not be accurately converted to and from Dura-
tion objects. Duration objects measure time spans in exact numbers of seconds, see Duration-class.
Hence, a one to one mapping does not exist between durations and periods. When used with a Du-
ration object, as.period provides an inexact estimate; the duration is broken into time units based

as_date 9

on the most common lengths of time units, in seconds. Because the length of months are particu-
larly variable, a period with a months unit can not be coerced from a duration object. For an exact
transformation, first transform the duration to an interval with as.interval.

Coercing an interval to a period may cause surprising behavior if you request periods with small
units. A leap year is 366 days long, but one year long. Such an interval will convert to 366 days
when unit is set to days and 1 year when unit is set to years. Adding 366 days to a date will often
give a different result than adding one year. Daylight savings is the one exception where this does
not apply. Interval lengths are calculated on the UTC timeline, which does not use daylight savings.
Hence, periods converted with seconds or minutes will not reflect the actual variation in seconds
and minutes that occurs due to daylight savings. These periods will show the "naive" change in
seconds and minutes that is suggested by the differences in clock time. See the examples below.

Value

a period object

See Also

Period-class, period

Examples

span <- interval(as.POSIXct("2009-01-01"), as.POSIXct("2010-02-02 01:01:01")) #interval
as.period(span)
as.period(span, units = "day")
"397d 1H 1M 1S"
leap <- interval(ymd("2016-01-01"), ymd("2017-01-01"))
as.period(leap, unit = "days")
as.period(leap, unit = "years")
dst <- interval(ymd("2016-11-06", tz = "America/Chicago"),
ymd("2016-11-07", tz = "America/Chicago"))
as.period(dst, unit = "seconds")
as.period(dst, unit = "hours")
per <- period(hours = 10, minutes = 6)
as.numeric(per, "hours")
as.numeric(per, "minutes")

as_date Convert an object to a date or date-time

Description

Convert an object to a date or date-time

10 as_date

Usage

as_date(x, ...)

as_datetime(x, ...)

S4 method for signature 'POSIXt'
as_date(x, tz = NULL)

S4 method for signature 'numeric'
as_date(x, origin = lubridate::origin)

S4 method for signature 'POSIXt'
as_datetime(x, tz = "UTC")

S4 method for signature 'numeric'
as_datetime(x, origin = lubridate::origin, tz = "UTC")

S4 method for signature 'ANY'
as_datetime(x, tz = "UTC")

Arguments

x a vector of POSIXt, numeric or character objects

... further arguments to be passed to specific methods (see above).

tz a time zone name (default: time zone of the POSIXt object x). See OlsonNames.

origin a Date object, or something which can be coerced by as.Date(origin, ...)
to such an object (default: the Unix epoch of "1970-01-01"). Note that in this
instance, x is assumed to reflect the number of days since origin at "UTC".

Value

a vector of Date objects corresponding to x.

Compare to base R

These are drop in replacements for as.Date and as.POSIXct, with a few tweaks to make them
work more intuitively.

• as_date ignores the timezone attribute, resulting in a more intuitive conversion (see examples)

• Both functions provide a default origin argument for numeric vectors.

• as_datetime defaults to using UTC.

Examples

dt_utc <- ymd_hms("2010-08-03 00:50:50")
dt_europe <- ymd_hms("2010-08-03 00:50:50", tz="Europe/London")
c(as_date(dt_utc), as.Date(dt_utc))
c(as_date(dt_europe), as.Date(dt_europe))

date 11

need not suply origin
as_date(10)

date Get/set Date component of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, and fts objects.

Usage

date(x)

date(x) <- value

Arguments

x a date-time object

value an object for which the date() function is defined

Details

date does not yet support years before 0 C.E. Also date is not defined for Period objects.

Value

the date of x as a Date

Examples

x <- as.POSIXct("2012-03-26 23:12:13", tz = "Etc/GMT+8")
date(x)
as.Date(x) # by default as.Date assumes you want to know the date in UTC
as.Date(x, tz = "Etc/GMT+8")
date(x) <- as.Date("2000-01-02")
x

12 DateUpdate

DateUpdate Changes the components of a date object

Description

update.Date and update.POSIXt return a date with the specified elements updated. Elements not
specified will be left unaltered. update.Date and update.POSIXt do not add the specified values to
the existing date, they substitute them for the appropriate parts of the existing date.

Usage

S3 method for class 'POSIXt'
update(object, ..., simple = FALSE)

Arguments

object a date-time object

... named arguments: years, months, ydays, wdays, mdays, days, hours, minutes,
seconds, tzs (time zone compnent)

simple logical, passed to fit_to_timeline. If TRUE a simple fit to time line is per-
formed and no NA are produced for invalid dates. Invalid dates are converted to
meaningful dates by extrapolating the timezones.

Value

a date object with the requested elements updated. The object will retain its original class unless an
element is updated which the original class does not support. In this case, the date returned will be
a POSIXlt date object.

Examples

date <- as.POSIXlt("2009-02-10")
update(date, year = 2010, month = 1, mday = 1)

update(date, year =2010, month = 13, mday = 1)

update(date, minute = 10, second = 3)

date_decimal 13

date_decimal Converts a decimal to a date.

Description

Converts a decimal to a date.

Usage

date_decimal(decimal, tz = "UTC")

Arguments

decimal a numeric object

tz the time zone required

Value

a POSIXct object, whose year corresponds to the integer part of decimal. The months, days, hours,
minutes and seconds elements are picked so the date-time will accurately represent the fraction of
the year expressed by decimal.

Examples

date <- ymd("2009-02-10")
decimal <- decimal_date(date) # 2009.11
date_decimal(decimal) # "2009-02-10 UTC"

day Get/set days component of a date-time.

Description

Get/set days component of a date-time.

Usage

day(x)

mday(x)

wday(x, label = FALSE, abbr = TRUE)

qday(x)

yday(x)

14 day

day(x) <- value

mday(x) <- value

qday(x) <- value

wday(x) <- value

yday(x) <- value

Arguments

x a POSIXct, POSIXlt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, or fts object.

label logical. Only available for wday. TRUE will display the day of the week as an
ordered factor of character strings, such as "Sunday." FALSE will display the
day of the week as a number.

abbr logical. Only available for wday. FALSE will display the day of the week as
an ordered factor of character strings, such as "Sunday." TRUE will display an
abbreviated version of the label, such as "Sun". abbr is disregarded if label =
FALSE.

value a numeric object

Details

day and day<- are aliases for mday and mday<- respectively.

Value

wday returns the day of the week as a decimal number (01-07, Sunday is 1) or an ordered factor
(Sunday is first).

See Also

yday, mday

Examples

x <- as.Date("2009-09-02")
wday(x) #4

wday(ymd(080101))
wday(ymd(080101), label = TRUE, abbr = FALSE)
Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < Friday < Saturday
wday(ymd(080101), label = TRUE, abbr = TRUE)
Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < Friday < Saturday
wday(ymd(080101) + days(-2:4), label = TRUE, abbr = TRUE)
Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < Friday < Saturday

days_in_month 15

x <- as.Date("2009-09-02")
yday(x) #245
mday(x) #2
yday(x) <- 1 #"2009-01-01"
yday(x) <- 366 #"2010-01-01"
mday(x) > 3

days_in_month Get the number of days in the month of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, and fts objects.

Usage

days_in_month(x)

Arguments

x a date-time object

Value

An integer of the number of days in the month component of the date-time object.

decimal_date Converts a date to a decimal of its year.

Description

Converts a date to a decimal of its year.

Usage

decimal_date(date)

Arguments

date a POSIXt or Date object

Value

a numeric object where the date is expressed as a fraction of its year

Examples

date <- ymd("2009-02-10")
decimal_date(date) # 2009.11

16 Deprecated-lubridate

Deprecated-lubridate Deprecated function in lubridate package

Description

Deprecated function in lubridate package

Usage

new_period(...)

new_interval(...)

new_duration(...)

new_difftime(...)

eseconds(x = 1)

eminutes(x = 1)

ehours(x = 1)

edays(x = 1)

eweeks(x = 1)

eyears(x = 1)

emilliseconds(x = 1)

emicroseconds(x = 1)

enanoseconds(x = 1)

epicoseconds(x = 1)

here()

olson_time_zones(order_by = c("name", "longitude"))

Arguments

... arguments to be passed to the functions (obscured to enforce the usage of new
functions)

x numeric value to be converted into duration
order_by Return names alphabetically (the default) or from West to East.

dst 17

dst Get Daylight Savings Time indicator of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, chron, yearmon, yearqtr, zoo, zooreg, timeDate, xts,
its, ti, jul, timeSeries, and fts objects.

Usage

dst(x)

Arguments

x a date-time object

Details

A date-time’s daylight savings flag can not be set because it depends on the date-time’s year, month,
day, and hour values.

Value

A logical. TRUE if DST is in force, FALSE if not, NA if unknown.

Examples

x <- ymd("2012-03-26")
dst(x)

duration Create a duration object.

Description

duration creates a duration object with the specified values. Entries for different units are cu-
mulative. durations display as the number of seconds in a time span. When this number is large,
durations also display an estimate in larger units,; however, the underlying object is always recorded
as a fixed number of seconds. For display and creation purposes, units are converted to seconds us-
ing their most common lengths in seconds. Minutes = 60 seconds, hours = 3600 seconds, days =
86400 seconds, weeks = 604800. Units larger than weeks are not used due to their variability.

Usage

duration(num = NULL, units = "seconds", ...)

is.duration(x)

18 duration

Arguments

num the number of time units to include in the duration. From v1.6.0 num can also be
a character vector that specifies durations in a convenient shorthand format. All
unambiguous name units and abbreviations are supported. See examples.

units a character string that specifies the type of units that num refers to. When num is
character, this argument is ignored.

... a list of time units to be included in the duration and their amounts. Seconds,
minutes, hours, days, and weeks are supported.

x an R object

Details

Durations record the exact number of seconds in a time span. They measure the exact passage of
time but do not always align with measurements made in larger units of time such as hours, months
and years. This is because the length of larger time units can be affected by conventions such as
leap years and Daylight Savings Time. Base R provides a second class for measuring durations, the
difftime class.

Duration objects can be easily created with the helper functions dweeks, ddays, dminutes, dseconds.
These objects can be added to and subtracted to date- times to create a user interface similar to object
oriented programming.

Value

a duration object

See Also

as.duration

Examples

duration(day = -1)
-86400s (~-1 days)
duration(90, "seconds")
duration(1.5, "minutes")
duration(-1, "days")
-86400s (~-1 days)
duration(second = 90)
duration(minute = 1.5)
duration(mins = 1.5)
duration(second = 3, minute = 1.5, hour = 2, day = 6, week = 1)
duration(hour = 1, minute = -60)
duration("2M 1sec")
duration("2hours 2minutes 1second")
duration("2d 2H 2M 2S")
duration("2days 2hours 2mins 2secs")
Missing numerals default to 1. Repeated units are added up.
duration("day day")
Comparison with characters is supported from v1.6.0.

Duration-class 19

duration("day 2 sec") > "day 1sec"
is.duration(as.Date("2009-08-03")) # FALSE
is.duration(duration(days = 12.4)) # TRUE

Duration-class Duration class

Description

Duration is an S4 class that extends the Timespan-class class. Durations record the exact number
of seconds in a time span. They measure the exact passage of time but do not always align with
measurements made in larger units of time such as hours, months and years. This is because the
exact length of larger time units can be affected by conventions such as leap years and Daylight
Savings Time.

Details

Durations provide a method for measuring generalized timespans when we wish to treat time as a
mathematical quantity that increases in a uniform, monotone manner along a continuous number-
line. They allow exact comparisons with other durations. See Period-class for an alternative way
to measure timespans that better preserves clock times.

Durations class objects have one slot: .Data, a numeric object equal to the number of seconds in the
duration.

fit_to_timeline Fit a POSIXlt date-time to the timeline

Description

The POSIXlt format allows you to create instants that do not exist in real life due to daylight savings
time and other conventions. fit_to_timeline matches POSIXlt date-times to a real times. If an instant
does not exist, fit to timeline will replace it with an NA. If an instant does exist, but has been paired
with an incorrect timezone/daylight savings time combination, fit_to_timeline returns the instant
with the correct combination.

Usage

fit_to_timeline(lt, class = "POSIXct", simple = FALSE)

Arguments

lt a POSIXlt date-time object.
class a character string that describes what type of object to return, POSIXlt or POSIXct.

Defaults to POSIXct. This is an optimization to avoid needless conversions.
simple if TRUE, lubridate makes no attempt to detect meaningless time-dates or to

correct time zones. No NAs are produced and the most meaningful valid dates
are returned instead. See examples.

20 force_tz

Value

a POSIXct or POSIXlt object that contains no illusory date-times

Examples

Not run:
tricky <- structure(list(sec = c(5, 0, 0, -1),

min = c(0L, 5L, 5L, 0L),
hour = c(2L, 0L, 2L, 2L),
mday = c(4L, 4L, 14L, 4L),
mon = c(10L, 10L, 2L, 10L),
year = c(112L, 112L, 110L, 112L),
wday = c(0L, 0L, 0L, 0L),
yday = c(308L, 308L, 72L, 308L),
isdst = c(1L, 0L, 0L, 1L)),

.Names = c("sec", "min", "hour", "mday", "mon",
"year", "wday", "yday", "isdst"),

class = c("POSIXlt", "POSIXt"),
tzone = c("America/Chicago", "CST", "CDT"))

tricky
because clocks "fall back" to 1:00 CST

CDT, not CST at this instant

##because clocks "spring forward" past this time
for daylight savings

has deceptive internal structure

fit_to_timeline(tricky)
[1] "2012-11-04 02:00:05 CST" "2012-11-04 00:05:00 CDT"
[4] NA "2012-11-04 01:59:59 CDT"

with correct timezone & DST combination

with correct timezone & DST combination

fit_to_timeline(tricky, simple = TRUE)
Reduce to valid time-dates by extrapolating CDT and CST zones

End(Not run)

force_tz Replace time zone to create new date-time

Description

force_tz returns a the date-time that has the same clock time as x in the new time zone. Although
the new date-time has the same clock time (e.g. the same values in the year, month, days, etc.

guess_formats 21

elements) it is a different moment of time than the input date-time. force_tz defaults to the Universal
Coordinated time zone (UTC) when an unrecognized time zone is inputted. See Sys.timezone for
more information on how R recognizes time zones.

Usage

force_tz(time, tzone = "")

Arguments

time a POSIXct, POSIXlt, Date, chron date-time object, or a data.frame object. When
a data.frame all POSIXt elements of a data.frame are processed with force_tz
and new data.frame is returned.

tzone a character string containing the time zone to convert to. R must recognize the
name contained in the string as a time zone on your system.

Value

a POSIXct object in the updated time zone

See Also

with_tz

Examples

x <- as.POSIXct("2009-08-07 00:00:01", tz = "America/New_York")
force_tz(x, "GMT")

guess_formats Guess formats from the supplied date-time character vector.

Description

Guess formats from the supplied date-time character vector.

Usage

guess_formats(x, orders, locale = Sys.getlocale("LC_TIME"),
preproc_wday = TRUE, print_matches = FALSE)

Arguments

x input vector of date-times
orders format orders to look for. See examples.
locale locale to use, default to the current locale
preproc_wday whether to preprocess week days names. Internal optimization used by ymd_hms

family of functions. If true week days are substituted with this format explicitly.
print_matches for development purpose mainly. If TRUE prints a matrix of matched templates.

22 guess_formats

Value

a vector of matched formats

Examples

x <- c('February 20th 1973',
"february 14, 2004",
"Sunday, May 1, 2000",
"Sunday, May 1, 2000",
"february 14, 04",
'Feb 20th 73',
"January 5 1999 at 7pm",
"jan 3 2010",
"Jan 1, 1999",
"jan 3 10",
"01 3 2010",
"1 3 10",
'1 13 89',
"5/27/1979",
"12/31/99",
"DOB:12/11/00",
"-----------",
'Thu, 1 July 2004 22:30:00',
'Thu, 1st of July 2004 at 22:30:00',
'Thu, 1July 2004 at 22:30:00',
'Thu, 1July2004 22:30:00',
'Thu, 1July04 22:30:00',
"21 Aug 2011, 11:15:34 pm",
"-----------",
"1979-05-27 05:00:59",
"1979-05-27",
"-----------",
"3 jan 2000",
"17 april 85",
"27/5/1979",
'20 01 89',
'00/13/10',
"-------",
"14 12 00",
"03:23:22 pm")

guess_formats(x, "BdY")
guess_formats(x, "Bdy")
m also matches b and B; y also matches Y
guess_formats(x, "mdy", print_matches = TRUE)

T also matches IMSp order
guess_formats(x, "T", print_matches = TRUE)

b and B are equivalent and match, both, abreviated and full names
guess_formats(x, c("mdY", "BdY", "Bdy", "bdY", "bdy"), print_matches = TRUE)

hour 23

guess_formats(x, c("dmy", "dbY", "dBy", "dBY"), print_matches = TRUE)

guess_formats(x, c("dBY HMS", "dbY HMS", "dmyHMS", "BdY H"), print_matches = TRUE)

guess_formats(x, c("ymd HMS"), print_matches = TRUE)

hour Get/set hours component of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

hour(x)

hour(x) <- value

Arguments

x a date-time object

value numeric value to be assigned to hour component

Value

the hours element of x as a decimal number

Examples

x <- ymd("2012-03-26")
hour(x)
hour(x) <- 1
hour(x) <- 25
hour(x) > 2

24 interval

interval Utilities for creation and manipulation of Interval objects.

Description

interval creates an Interval-class object with the specified start and end dates. If the start date
occurs before the end date, the interval will be positive. Otherwise, it will be negative.

%--% Creates an interval that covers the range spanned by two dates. It replaces the original behavior
of lubridate, which created an interval by default whenever two date-times were subtracted.

int_start and int_start<- are accessors the start date of an interval. Note that changing the start
date of an interval will change the length of the interval, since the end date will remain the same.

int_flip reverses the order of the start date and end date in an interval. The new interval takes
place during the same timespan as the original interval, but has the opposite direction.

int_shift shifts the start and end dates of an interval up or down the timeline by a specified
amount. Note that this may change the exact length of the interval if the interval is shifted by a
Period object. Intervals shifted by a Duration or difftime object will retain their exact length in
seconds.

int_overlaps tests if two intervals overlap.

int_standardize ensures all intervals in an interval object are positive. If an interval is not posi-
tive, flip it so that it retains its endpoints but becomes positive.

int_aligns tests if two intervals share an endpoint. The direction of each interval is ignored.
int_align tests whether the earliest or latest moments of each interval occur at the same time.

int_diff returns the intervals that occur between the elements of a vector of date-times. int_diff
is similar to the POSIXt and Date methods of diff, but returns an Interval object instead of a
difftime object.

Usage

interval(start, end, tzone = attr(start, "tzone"))

start %--% end

is.interval(x)

int_start(int)

int_start(int) <- value

int_end(int)

int_end(int) <- value

int_length(int)

interval 25

int_flip(int)

int_shift(int, by)

int_overlaps(int1, int2)

int_standardize(int)

int_aligns(int1, int2)

int_diff(times)

Arguments

start a POSIXt or Date date-time object

end a POSIXt or Date date-time object

tzone a recognized timezone to display the interval in

x an R object

int an interval object

value interval’s start/end to be assigned to int

by A period or duration object to shift by (for int_shift)

int1 an Interval object (for int_overlaps, int_aligns)

int2 an Interval object (for int_overlaps, int_aligns)

times A vector of POSIXct, POSIXlt or Date class date-times (for int_diff)

Details

Intervals are time spans bound by two real date-times. Intervals can be accurately converted to
either period or duration objects using as.period, as.duration. Since an interval is anchored to
a fixed history of time, both the exact number of seconds that passed and the number of variable
length time units that occurred during the interval can be calculated.

Value

interval - Interval object.

int_start and int_end return a POSIXct date object when used as an accessor. Nothing when
used as a setter.

int_length - numeric length of the interval in seconds. A negative number connotes a negative
interval.

int_flip - flipped interval object

int_shift - interval object

int_overlaps logical, TRUE if int1 and int2 overlap by at least one second. FALSE otherwise

int_align logical, TRUE if int1 and int2 begin or end on the same moment. FALSE otherwise

int_diff - interval object that contains the n-1 intervals between the n date-time in times

26 Interval-class

See Also

Interval-class, as.interval, %within%

Examples

interval(ymd(20090201), ymd(20090101))

date1 <- as.POSIXct("2009-03-08 01:59:59")
date2 <- as.POSIXct("2000-02-29 12:00:00")
interval(date2, date1)
interval(date1, date2)
span <- interval(ymd(20090101), ymd(20090201))

is.interval(period(months= 1, days = 15)) # FALSE
is.interval(interval(ymd(20090801), ymd(20090809))) # TRUE
int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_start(int)
int_start(int) <- ymd("2001-06-01")
int

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_end(int)
int_end(int) <- ymd("2002-06-01")
int
int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_length(int)
int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_flip(int)
int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int_shift(int, duration(days = 11))
int_shift(int, duration(hours = -1))
int1 <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int2 <- interval(ymd("2001-06-01"), ymd("2002-06-01"))
int3 <- interval(ymd("2003-01-01"), ymd("2004-01-01"))

int_overlaps(int1, int2) # TRUE
int_overlaps(int1, int3) # FALSE
int <- interval(ymd("2002-01-01"), ymd("2001-01-01"))
int_standardize(int)
int1 <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int2 <- interval(ymd("2001-06-01"), ymd("2002-01-01"))
int3 <- interval(ymd("2003-01-01"), ymd("2004-01-01"))

int_aligns(int1, int2) # TRUE
int_aligns(int1, int3) # FALSE
dates <- now() + days(1:10)
int_diff(dates)

Interval-class Interval class

is.Date 27

Description

Interval is an S4 class that extends the Timespan-class class. An Interval object records one or
more spans of time. Intervals record these timespans as a sequence of seconds that begin at a
specified date. Since intervals are anchored to a precise moment of time, they can accurately be
converted to Period-class or Duration-class class objects. This is because we can observe the
length in seconds of each period that begins on a specific date. Contrast this to a generalized period,
which may not have a consistent length in seconds (e.g. the number of seconds in a year will change
if it is a leap year).

Details

Intervals can be both negative and positive. Negative intervals progress backwards from the start
date; positive intervals progress forwards.

Interval class objects have two slots: .Data, a numeric object equal to the number of seconds in the
interval; and start, a POSIXct object that specifies the time when the interval starts.

is.Date Is x a Date object?

Description

Is x a Date object?

Usage

is.Date(x)

Arguments

x an R object

Value

TRUE if x is a Date object, FALSE otherwise.

See Also

is.instant, is.timespan, is.POSIXt

Examples

is.Date(as.Date("2009-08-03")) # TRUE
is.Date(difftime(now() + 5, now())) # FALSE

28 is.instant

is.difftime Is x a difftime object?

Description

Is x a difftime object?

Usage

is.difftime(x)

Arguments

x an R object

Value

TRUE if x is a difftime object, FALSE otherwise.

See Also

is.instant, is.timespan, is.interval, is.period.

Examples

is.difftime(as.Date("2009-08-03")) # FALSE
is.difftime(make_difftime(days = 12.4)) # TRUE

is.instant Is x a date-time object?

Description

An instant is a specific moment in time. Most common date-time objects (e.g, POSIXct, POSIXlt,
and Date objects) are instants.

Usage

is.instant(x)

is.timepoint(x)

Arguments

x an R object

is.POSIXt 29

Value

TRUE if x is a POSIXct, POSIXlt, or Date object, FALSE otherwise.

See Also

is.timespan, is.POSIXt, is.Date

Examples

is.instant(as.Date("2009-08-03")) # TRUE
is.timepoint(5) # FALSE

is.POSIXt Is x a POSIXct or POSIXlt object?

Description

Is x a POSIXct or POSIXlt object?

Usage

is.POSIXt(x)

is.POSIXlt(x)

is.POSIXct(x)

Arguments

x an R object

Value

TRUE if x is a POSIXct or POSIXlt object, FALSE otherwise.

See Also

is.instant, is.timespan, is.Date

Examples

is.POSIXt(as.Date("2009-08-03")) # FALSE
is.POSIXt(as.POSIXct("2009-08-03")) # TRUE

30 lakers

is.timespan Is x a length of time?

Description

Is x a length of time?

Usage

is.timespan(x)

Arguments

x an R object

Value

TRUE if x is a period, interval, duration, or difftime object, FALSE otherwise.

See Also

is.instant, is.duration, is.difftime, is.period, is.interval

Examples

is.timespan(as.Date("2009-08-03")) # FALSE
is.timespan(duration(second = 1)) # TRUE

lakers Lakers 2008-2009 basketball data set

Description

This data set contains play by play statistics of each Los Angeles Lakers basketball game in the
2008-2009 season. Data includes the date, opponent, and type of each game (home or away). Each
play is described by the time on the game clock when the play was made, the period in which the
play was attempted, the type of play, the player and team who made the play, the result of the play,
and the location on the court where each play was made.

References

http://www.basketballgeek.com/data/

http://www.basketballgeek.com/data/

leap_year 31

leap_year Is a year a leap year?

Description

If x is a recognized date-time object, leap_year will return whether x occurs during a leap year. If x
is a number, leap_year returns whether it would be a leap year under the Gregorian calendar.

Usage

leap_year(date)

Arguments

date a date-time object or a year

Value

TRUE if x is a leap year, FALSE otherwise

Examples

x <- as.Date("2009-08-02")
leap_year(x) # FALSE
leap_year(2009) # FALSE
leap_year(2008) # TRUE
leap_year(1900) # FALSE
leap_year(2000) # TRUE

make_datetime Efficient creation of date-times from numeric representations

Description

make_datetime is a very fast drop-in replacement for base::ISOdate and base::ISOdatetime.
make_date produces objects of class Date.

Usage

make_datetime(year = 1970L, month = 1L, day = 1L, hour = 0L, min = 0L,
sec = 0, tz = "UTC")

make_date(year = 1970L, month = 1L, day = 1L)

32 make_difftime

Arguments

year numeric year

month numeric month

day numeric day

hour numeric hour

min numeric minute

sec numeric second

tz time zone. Defaults to UTC.

Details

Input vectors are silently recycled. All inputs except sec are silently converted to integer vectors;
sec can be either integer or double.

Examples

make_datetime(year = 1999, month = 12, day = 22, sec = 10)
make_datetime(year = 1999, month = 12, day = 22, sec = c(10, 11))

make_difftime Create a difftime object.

Description

make_difftime creates a difftime object with the specified number of units. Entries for different
units are cumulative. difftime displays durations in various units, but these units are estimates given
for convenience. The underlying object is always recorded as a fixed number of seconds.

Usage

make_difftime(num = NULL, units = "auto", ...)

Arguments

num Optional number of seconds

units a character vector that lists the type of units to use for the display of the re-
turn value (see examples). If units is "auto" (the default) the display units are
computed automatically. This might create undesirable effects when converting
difftime objects to numeric values in data processing.

... a list of time units to be included in the difftime and their amounts. Seconds,
minutes, hours, days, and weeks are supported. Normally only one of num or
... are present. If both are present, the difftime objects are concatenated.

minute 33

Details

Conceptually, difftime objects are a type of duration. They measure the exact passage of time but do
not always align with measurements made in larger units of time such as hours, months and years.
This is because the length of larger time units can be affected by conventions such as leap years and
Daylight Savings Time. lubridate provides a second class for measuring durations, the Duration
class.

Value

a difftime object

See Also

duration, as.duration

Examples

make_difftime(1)
make_difftime(60)
make_difftime(3600)
make_difftime(3600, units = "minute")
Time difference of 60 mins
make_difftime(second = 90)
Time difference of 1.5 mins
make_difftime(minute = 1.5)
Time difference of 1.5 mins
make_difftime(second = 3, minute = 1.5, hour = 2, day = 6, week = 1)
Time difference of 13.08441 days
make_difftime(hour = 1, minute = -60)
Time difference of 0 secs
make_difftime(day = -1)
Time difference of -1 days
make_difftime(120, day = -1, units = "minute")
Time differences in mins

minute Get/set minutes component of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

minute(x)

minute(x) <- value

34 month

Arguments

x a date-time object

value numeric value to be assigned

Value

the minutes element of x as a decimal number

Examples

x <- ymd("2012-03-26")
minute(x)
minute(x) <- 1
minute(x) <- 61
minute(x) > 2

month Get/set months component of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

month(x, label = FALSE, abbr = TRUE)

month(x) <- value

Arguments

x a date-time object

label logical. TRUE will display the month as a character string such as "January."
FALSE will display the month as a number.

abbr logical. FALSE will display the month as a character string label, such as "Jan-
uary". TRUE will display an abbreviated version of the label, such as "Jan".
abbr is disregarded if label = FALSE.

value a numeric object

Value

the months element of x as a number (1-12) or character string. 1 = January.

ms 35

Examples

x <- ymd("2012-03-26")
month(x)
month(x) <- 1
month(x) <- 13
month(x) > 3

month(ymd(080101))
month(ymd(080101), label = TRUE)
month(ymd(080101), label = TRUE, abbr = FALSE)
month(ymd(080101) + months(0:11), label = TRUE)

ms Create a period with the specified hours, minutes, and seconds

Description

Transforms a character or numeric vector into a period object with the specified number of hours,
minutes, and seconds. hms() recognizes all non-numeric characters except ’-’ as separators (’-’ is
used for negative durations). After hours, minutes and seconds have been parsed, the remaining
input is ingored.

Usage

ms(..., quiet = FALSE, roll = FALSE)

hm(..., quiet = FALSE, roll = FALSE)

hms(..., quiet = FALSE, roll = FALSE)

Arguments

... a character vector of hour minute second triples

quiet logical. When TRUE function evalueates without displaying customary mes-
sages.

roll logica. When TRUE smaller units are rolled over to higher units if they exceed
the conventional limit. For example hms("01:59:120",roll=TRUE) produces
period "2H 1M 0S".

Value

a vector of period objects

See Also

hm, ms

36 now

Examples

ms(c("09:10", "09:02", "1:10"))
ms("7 6")
ms("6,5")
hm(c("09:10", "09:02", "1:10"))
hm("7 6")
hm("6,5")

x <- c("09:10:01", "09:10:02", "09:10:03")
hms(x)

hms("7 6 5", "3:23:::2", "2 : 23 : 33", "Finished in 9 hours, 20 min and 4 seconds")

now The current time

Description

The current time

Usage

now(tzone = "")

Arguments

tzone a character vector specifying which time zone you would like the current time
in. tzone defaults to your computer’s system timezone. You can retrieve the
current time in the Universal Coordinated Time (UTC) with now("UTC").

Value

the current date and time as a POSIXct object

See Also

here

Examples

now()
now("GMT")
now("")
now() == now() # would be true if computer processed both at the same instant
now() < now() # TRUE
now() > now() # FALSE

origin 37

origin 1970-01-01 UTC

Description

Origin is the date-time for 1970-01-01 UTC in POSIXct format. This date-time is the origin for the
numbering system used by POSIXct, POSIXlt, chron, and Date classes.

Usage

origin

Format

An object of class POSIXct (inherits from POSIXt) of length 1.

Examples

origin

parse_date_time Parse character and numeric date-time vectors with user friendly or-
der formats.

Description

parse_date_time parses an input vector into POSIXct date-time object. It differs from strptime
in two respects. First, it allows specification of the order in which the formats occur without the
need to include separators and "%" prefix. Such a formating argument is refered to as "order". Sec-
ond, it allows the user to specify several format-orders to handle heterogeneous date-time character
representations.
parse_date_time2 is a fast C parser of numeric orders.
fast_strptime is a fast C parser of numeric formats only that accepts explicit format arguments,
just as strptime.

Usage

parse_date_time(x, orders, tz = "UTC", truncated = 0, quiet = FALSE,
locale = Sys.getlocale("LC_TIME"), select_formats = .select_formats,
exact = FALSE)

parse_date_time2(x, orders, tz = "UTC", exact = FALSE, lt = FALSE)

fast_strptime(x, format, tz = "UTC", lt = TRUE)

38 parse_date_time

Arguments

x a character or numeric vector of dates
orders a character vector of date-time formats. Each order string is series of formatting

characters as listed strptime but might not include the "%" prefix, for example
"ymd" will match all the possible dates in year, month, day order. Formatting
orders might include arbitrary separators. These are discarded. See details for
implemented formats.

tz a character string that specifies the time zone with which to parse the dates
truncated integer, number of formats that can be missing. The most common type of

irregularity in date-time data is the truncation due to rounding or unavailability
of the time stamp. If truncated parameter is non-zero parse_date_time also
checks for truncated formats. For example, if the format order is "ymdHMS" and
truncated = 3, parse_date_time will correctly parse incomplete dates like
2012-06-01 12:23, 2012-06-01 12 and 2012-06-01. NOTE: ymd family of
functions are based on strptime which currently fails to parse %y-%m formats.

quiet logical. When TRUE progress messages are not printed, and "no formats found"
error is surpresed and the function simply returns a vector of NAs. This mirrors
the behavior of base R functions strptime and as.POSIXct. Default is FALSE.

locale locale to be used, see locales. On linux systems you can use system("locale -a")
to list all the installed locales.

select_formats A function to select actual formats for parsing from a set of formats which
matched a training subset of x. it receives a named integer vector and returns a
character vector of selected formats. Names of the input vector are formats (not
orders) that matched the training set. Numeric values are the number of dates
(in the training set) that matched the corresponding format. You should use this
argument if the default selection method fails to select the formats in the right
order. By default the formats with most formating tockens (%) are selected and
%Y counts as 2.5 tockens (so that it has a priority over %y%m). Se examples.

exact logical. If TRUE, orders parameter is interpreted as an exact strptime format
and no trainign or guessing are performed.

lt logical. If TRUE returned object is of class POSIXlt, and POSIXct otherwise.
For compatibility with base ‘strptime‘ function default is TRUE for ‘fast_strptime‘
and FALSE for ‘parse_date_time2‘.

format a character string of formats. It should include all the separators and each format
must be prefixed with argument of strptime.

Details

When several format-orders are specified parse_date_time sorts the supplied format-orders based
on a training set and then applies them recursively on the input vector.

parse_date_time, and all derived functions, such as ymd_hms, ymd etc, will drop into fast_strptime
instead of strptime whenever the guessed from the input data formats are all numeric.

The list below contains formats recognized by lubridate. For numeric formats leading 0s are op-
tional. As compared to base strptime, some of the formats are new or have been extended for
efficiency reasons. These formats are marked with "*". Fast parsers, parse_date_time2 and
fast_strptime, accept only formats marked with "!".

parse_date_time 39

a Abbreviated weekday name in the current locale. (Also matches full name)

A Full weekday name in the current locale. (Also matches abbreviated name).
You need not specify a and A formats explicitly. Wday is automatically handled if preproc_wday = TRUE

b! Abbreviated month name in the current locale (also matches full name). C parser understands
English months only.

B! Same as b.

d! Day of the month as decimal number (01–31 or 0–31)

H! Hours as decimal number (00–24 or 0–24).

I! Hours as decimal number (01–12 or 1–12).

j Day of year as decimal number (001–366 or 1–366).

q!* Quarter (1-4). The quarter month is added to parsed month if m format is present.

m!* Month as decimal number (01–12 or 1–12). For parse_date_time. As lubridate extension,
also matches abbreviated and full months names as b and B formats. C parser understands
only English month names.

M! Minute as decimal number (00–59 or 0–59).

p! AM/PM indicator in the locale. Normally used in conjunction with I and not with H. But lubri-
date C parser accepts H format as long as hour is not greater than 12. C parser understands
only English locale AM/PM indicator.

S! Second as decimal number (00–61 or 0–61), allowing for up to two leap-seconds (but POSIX-
compliant implementations will ignore leap seconds).

OS Fractional second.

U Week of the year as decimal number (00–53 or 0-53) using Sunday as the first day 1 of the week
(and typically with the first Sunday of the year as day 1 of week 1). The US convention.

w Weekday as decimal number (0–6, Sunday is 0).

W Week of the year as decimal number (00–53 or 0-53) using Monday as the first day of week (and
typically with the first Monday of the year as day 1 of week 1). The UK convention.

y!* Year without century (00–99 or 0–99). In parse_date_time also matches year with century
(Y format).

Y! Year with century.

z!* ISO8601 signed offset in hours and minutes from UTC. For example -0800, -08:00 or -08, all
represent 8 hours behind UTC. This format also matches the Z (Zulu) UTC indicator. Because
strptime doesn’t fully support ISO8601 this format is implemented as an union of 4 orders:
Ou (Z), Oz (-0800), OO (-08:00) and Oo (-08). You can use these four orders as any other
but it is rarely necessary. parse_date_time2 and fast_strptime support all of the timezone
formats.

Om!* Matches numeric month and English alphabetic months (Both, long and abbreviated forms).

Op!* Matches AM/PM English indicator.

r* Matches Ip and H orders.

R* Matches HM andIMp orders.

T* Matches IMSp, HMS, and HMOS orders.

40 parse_date_time

Value

a vector of POSIXct date-time objects

Note

parse_date_time (and the derivatives ymb, ymd_hms etc) rely on a sparse guesser that takes at most
501 elements from the supplied character vector in order to identify appropriate formats from the
supplied orders. If you get the error All formats failed to parse and you are confident that
your vector contains valid dates, you should either set exact argument to TRUE or use functions
that don’t perform format guessing (fast_strptime, parse_date_time2 or strptime).

For performance reasons, when timezone is not UTC, parse_date_time2 and fast_strptime per-
form no validity checks for daylight savings time. Thus, if your input string contains an invalid date
time which falls into DST gap and lt=TRUE you will get an POSIXlt object with a non-existen time.
If lt=FALSE your time instant will be adjusted to a valid time by adding an hour. See examples. If
you want to get NA for invalid date-times use fit_to_timeline explicitely.

See Also

strptime, ymd, ymd_hms

Examples

** orders are much easier to write **
x <- c("09-01-01", "09-01-02", "09-01-03")
parse_date_time(x, "ymd")
parse_date_time(x, "y m d")
parse_date_time(x, "%y%m%d")
"2009-01-01 UTC" "2009-01-02 UTC" "2009-01-03 UTC"

** heterogenuous date-times **
x <- c("09-01-01", "090102", "09-01 03", "09-01-03 12:02")
parse_date_time(x, c("ymd", "ymd HM"))

** different ymd orders **
x <- c("2009-01-01", "02022010", "02-02-2010")
parse_date_time(x, c("dmY", "ymd"))
"2009-01-01 UTC" "2010-02-02 UTC" "2010-02-02 UTC"

** truncated time-dates **
x <- c("2011-12-31 12:59:59", "2010-01-01 12:11", "2010-01-01 12", "2010-01-01")
parse_date_time(x, "Ymd HMS", truncated = 3)

** specifying exact formats and avoiding training and guessing **
parse_date_time(x, c("%m-%d-%y", "%m%d%y", "%m-%d-%y %H:%M"), exact = TRUE)
parse_date_time(c('12/17/1996 04:00:00','4/18/1950 0130'),

c('%m/%d/%Y %I:%M:%S','%m/%d/%Y %H%M'), exact = TRUE)

** quarters and partial dates **
parse_date_time(c("2016.2", "2016-04"), orders = "Yq")
parse_date_time(c("2016", "2016-04"), orders = c("Y", "Ym"))

period 41

** fast parsing **
Not run:

options(digits.secs = 3)
random times between 1400 and 3000
tt <- as.character(.POSIXct(runif(1000, -17987443200, 32503680000)))
tt <- rep.int(tt, 1000)

system.time(out <- as.POSIXct(tt, tz = "UTC"))
system.time(out1 <- ymd_hms(tt)) # constant overhead on long vectors
system.time(out2 <- parse_date_time2(tt, "YmdHMOS"))
system.time(out3 <- fast_strptime(tt, "%Y-%m-%d %H:%M:%OS"))

all.equal(out, out1)
all.equal(out, out2)
all.equal(out, out3)

End(Not run)

** how to use `select_formats` argument **
By default %Y has precedence:
parse_date_time(c("27-09-13", "27-09-2013"), "dmy")

to give priority to %y format, define your own select_format function:

my_select <- function(trained){
n_fmts <- nchar(gsub("[^%]", "", names(trained))) + grepl("%y", names(trained))*1.5
names(trained[which.max(n_fmts)])

}

parse_date_time(c("27-09-13", "27-09-2013"), "dmy", select_formats = my_select)

** invalid times with "fast" parcing **
parse_date_time("2010-03-14 02:05:06", "YmdHMS", tz = "America/New_York")
parse_date_time2("2010-03-14 02:05:06", "YmdHMS", tz = "America/New_York")
parse_date_time2("2010-03-14 02:05:06", "YmdHMS", tz = "America/New_York", lt = TRUE)

period Create a period object.

Description

period creates a period object with the specified values. period provides the behaviour of period
in a way that is more suitable for automating within a function.

Usage

period(num = NULL, units = "second", ...)

is.period(x)

42 period

Arguments

num a numeric vector that lists the number of time units to be included in the period.
From v1.6.0 num can also be a character vector that specifies durations in a
convenient shorthand format. All unambiguous name units and abbreviations
are supported. One letter "m" stands for months, "M" stands for minutes. See
examples.

units a character vector that lists the type of units to be used. The units in units are
matched to the values in num according to their order. When num is character,
this argument is ignored.

... a list of time units to be included in the period and their amounts. Seconds,
minutes, hours, days, weeks, months, and years are supported. Normally only
one of num or ... are present. If both are present, the periods are concatenated.

x an R object

Details

Within a Period object, time units do not have a fixed length (except for seconds) until they are
added to a date-time. The length of each time unit will depend on the date-time to which it is added.
For example, a year that begins on 2009-01-01 will be 365 days long. A year that begins on 2012-
01-01 will be 366 days long. When math is performed with a period object, each unit is applied
separately. How the length of a period is distributed among its units is non-trivial. For example,
when leap seconds occur 1 minute is longer than 60 seconds.

Periods track the change in the "clock time" between two date-times. They are measured in common
time related units: years, months, days, hours, minutes, and seconds. Each unit except for seconds
must be expressed in integer values.

Period objects can be easily created with the helper functions years, months, weeks, days, hours,
minutes, and seconds. These objects can be added to and subtracted to date-times to create a user
interface similar to object oriented programming.

Note: Arithmetic with periods can results in undefined behavior when non-existent dates are in-
volved (such as February 29th). Please see Period-class for more details and %m+% and add_with_rollback
for alternative operations.

Value

a period object

See Also

Period-class, quick_periods, %m+%, add_with_rollback

Examples

period(c(90, 5), c("second", "minute"))
"5M 90S"
period(-1, "days")
period(c(3, 1, 2, 13, 1), c("second", "minute", "hour", "day", "week"))
period(c(1, -60), c("hour", "minute"))

Period-class 43

period(0, "second")
period (second = 90, minute = 5)
period(day = -1)
period(second = 3, minute = 1, hour = 2, day = 13, week = 1)
period(hour = 1, minute = -60)
period(second = 0)
period(c(1, -60), c("hour", "minute"), hour = c(1, 2), minute = c(3, 4))
period("2M 1sec")
period("2hours 2minutes 1second")
period("2d 2H 2M 2S")
period("2days 2hours 2mins 2secs")
Missing numerals default to 1. Repeated units are added up.
duration("day day")
Comparison with characters is supported from v1.6.0.
duration("day 2 sec") > "day 1sec"
is.period(as.Date("2009-08-03")) # FALSE
is.period(period(months= 1, days = 15)) # TRUE

Period-class Period class

Description

Period is an S4 class that extends the Timespan-class class. Periods track the change in the "clock
time" between two date-times. They are measured in common time related units: years, months,
days, hours, minutes, and seconds. Each unit except for seconds must be expressed in integer values.

Details

The exact length of a period is not defined until the period is placed at a specific moment of time.
This is because the precise length of one year, month, day, etc. can change depending on when it
occurs due to daylight savings, leap years, and other conventions. A period can be associated with
a specific moment in time by coercing it to an Interval-class object with as.interval or by
adding it to a date-time with "+".

Periods provide a method for measuring generalized timespans when we wish to model clock times.
Periods will attain intuitive results at this task even when leap years, leap seconds, gregorian days,
daylight savings changes, and other events happen during the period. See Duration-class for an
alternative way to measure timespans that allows precise comparisons between timespans.

The logic that guides arithmetic with periods can be unintuitive. Starting with version 1.3.0, lubri-
date enforces the reversible property of arithmetic (e.g. a date + period - period = date) by returning
an NA if you create an implausible date by adding periods with months or years units to a date.
For example, adding one month to January 31st, 2013 results in February 31st, 2013, which is not
a real date. lubridate users have argued in the past that February 31st, 2013 should be rolled over
to March 3rd, 2013 or rolled back to February 28, 2013. However, each of these corrections would
destroy the reversibility of addition (Mar 3 - one month == Feb 3 != Jan 31, Feb 28 - one month ==
Jan 28 != Jan 31). If you would like to add and subtract months in a way that rolls the results back
to the last day of a month (when appropriate) use the special operators, %m+%, %m-% or a bit more
flexible add_with_rollback.

44 pretty_dates

Period class objects have six slots. 1) .Data, a numeric object. The apparent amount of seconds
to add to the period. 2) minute, a numeric object. The apparent amount of minutes to add to the
period. 3) hour, a numeric object. The apparent amount of hours to add to the period.4) day, a
numeric object. The apparent amount of days to add to the period.5) month, a numeric object. The
apparent amount of months to add to the period. 6) year, a numeric object. The apparent amount of
years to add to the period.

period_to_seconds Contrive a period to/from a given number of seconds.

Description

period_to_seconds approximately converts a period to seconds assuming there are 364.25 days
in a calendar year and 365.25/12 days in a month.
seconds_to_period create a period that has the maximum number of non-zero elements (days,
hours, minutes, seconds). This computation is exact because it doesn’t involve years or months.

Usage

period_to_seconds(x)

seconds_to_period(x)

Arguments

x A numeric object. The number of seconds to coerce into a period.

Value

A number (period) that roughly equates to the period (seconds) given.

pretty_dates Computes attractive axis breaks for date-time data

Description

pretty.dates indentifies which unit of time the sub-intervals should be measured in to provide ap-
proximately n breaks. It then chooses a "pretty" length for the sub-intervals and sets start and
endpoints that 1) span the entire range of the data, and 2) allow the breaks to occur on important
date-times (i.e. on the hour, on the first of the month, etc.)

Usage

pretty_dates(x, n, ...)

quarter 45

Arguments

x a vector of POSIXct, POSIXlt, Date, or chron date-time objects

n integer value of the desired number of breaks

... additional arguments to pass to function

Value

a vector of date-times that can be used as axis tick marks or bin breaks

Examples

x <- seq.Date(as.Date("2009-08-02"), by = "year", length.out = 2)
pretty_dates(x, 12)

quarter Get the fiscal quarter and semester of a date-time.

Description

Quarters divide the year into fourths. Semesters divide the year into halfs.

Usage

quarter(x, with_year = FALSE)

semester(x, with_year = FALSE)

Arguments

x a date-time object of class POSIXct, POSIXlt, Date, chron, yearmon, yearqtr,
zoo, zooreg, timeDate, xts, its, ti, jul, timeSeries, fts or anything else that can be
converted with as.POSIXlt

with_year logical indicating whether or not to include the quarter’s year.

Value

numeric

Examples

x <- ymd(c("2012-03-26", "2012-05-04", "2012-09-23", "2012-12-31"))
quarter(x)
quarter(x, with_year = TRUE)
semester(x)
semester(x, with_year = TRUE)

46 quick_durations

quick_durations Quickly create duration objects.

Description

Quickly create Duration objects for easy date-time manipulation. The units of the duration created
depend on the name of the function called. For Duration objects, units are equal to their most
common lengths in seconds (i.e. minutes = 60 seconds, hours = 3600 seconds, days = 86400
seconds, weeks = 604800, years = 31536000).

Usage

dseconds(x = 1)

dminutes(x = 1)

dhours(x = 1)

ddays(x = 1)

dweeks(x = 1)

dyears(x = 1)

dmilliseconds(x = 1)

dmicroseconds(x = 1)

dnanoseconds(x = 1)

dpicoseconds(x = 1)

Arguments

x numeric value of the number of units to be contained in the duration.

Details

When paired with date-times, these functions allow date-times to be manipulated in a method sim-
ilar to object oriented programming. Duration objects can be added to Date, POSIXt, and Interval
objects.

Since version 1.4.0 the following functions are deprecated: eseconds, eminutes, ehours, edays,
eweeks, eyears, emilliseconds, emicroseconds, enanoseconds, epicoseconds

Value

a duration object

quick_periods 47

See Also

duration, days

Examples

dseconds(1)
dminutes(3.5)

x <- as.POSIXct("2009-08-03")
x + ddays(1) + dhours(6) + dminutes(30)
x + ddays(100) - dhours(8)

class(as.Date("2009-08-09") + ddays(1)) # retains Date class
as.Date("2009-08-09") + dhours(12)
class(as.Date("2009-08-09") + dhours(12))
converts to POSIXt class to accomodate time units

dweeks(1) - ddays(7)
c(1:3) * dhours(1)
#
compare DST handling to durations
boundary <- as.POSIXct("2009-03-08 01:59:59")
boundary + days(1) # period
boundary + ddays(1) # duration

quick_periods Quickly create period objects.

Description

Quickly create Period objects for easy date-time manipulation. The units of the period created
depend on the name of the function called. For Period objects, units do not have a fixed length
until they are added to a specific date time, contrast this with duration. This makes periods use-
ful for manipulations with clock times because units expand or contract in length to accomodate
conventions such as leap years, leap seconds, and Daylight Savings Time.

Usage

seconds(x = 1)

minutes(x = 1)

hours(x = 1)

days(x = 1)

weeks(x = 1)

48 quick_periods

years(x = 1)

milliseconds(x = 1)

microseconds(x = 1)

nanoseconds(x = 1)

picoseconds(x = 1)

S3 method for class 'numeric'
months(x, abbreviate)

Arguments

x numeric value of the number of units to be contained in the period. With the
exception of seconds(), x must be an integer.

abbreviate Ignored. For consistency with S3 generic in base namespace.

Details

When paired with date-times, these functions allow date-times to be manipulated in a method sim-
ilar to object oriented programming. Period objects can be added to Date, POSIXct, and POSIXlt
objects to calculate new date-times.

Note: Arithmetic with periods can results in undefined behavior when non-existent dates are in-
volved (such as February 29th in non-leap years). Please see Period-class for more details and
%m+% and add_with_rollback for alternative operations.

Value

a period object

See Also

Period-class, period, ddays, %m+%, add_with_rollback

Examples

x <- as.POSIXct("2009-08-03")
x + days(1) + hours(6) + minutes(30)
x + days(100) - hours(8)

class(as.Date("2009-08-09") + days(1)) # retains Date class
as.Date("2009-08-09") + hours(12)
class(as.Date("2009-08-09") + hours(12))
converts to POSIXt class to accomodate time units

years(1) - months(7)
c(1:3) * hours(1)

rollback 49

hours(1:3)

#sequencing
y <- ymd(090101) # "2009-01-01 CST"
y + months(0:11)

compare DST handling to durations
boundary <- as.POSIXct("2009-03-08 01:59:59")
boundary + days(1) # period
boundary + ddays(1) # duration
seconds later)

rollback Roll back date to last day of previous month

Description

rollback changes a date to the last day of the previous month or to the first day of the month.
Optionally, the new date can retain the same hour, minute, and second information.

Usage

rollback(dates, roll_to_first = FALSE, preserve_hms = TRUE)

Arguments

dates A POSIXct, POSIXlt or Date class object.
roll_to_first Rollback to the first day of the month instead of the last day of the previous

month
preserve_hms Retains the same hour, minute, and second information? If FALSE, the new date

will be at 00:00:00.

Value

A date-time object of class POSIXlt, POSIXct or Date, whose day has been adjusted to the last day
of the previous month, or to the first day of the month.

Examples

date <- ymd("2010-03-03")
rollback(date)

dates <- date + months(0:2)
rollback(dates)

date <- ymd_hms("2010-03-03 12:44:22")
rollback(date)
rollback(date, roll_to_first = TRUE)
rollback(date, preserve_hms = FALSE)
rollback(date, roll_to_first = TRUE, preserve_hms = FALSE)

50 round_date

round_date Round, floor and ceiling methods for date-time objects.

Description

Rounding to the nearest unit or multiple of a unit are supported. All meaningfull specifications in
English language are supported - secs, min, mins, 2 minutes, 3 years etc.
round_date takes a date-time object and rounds it to the nearest value of the specified time unit.
For rounding date-times which is exactly halfway between two consecutive units, the convention
is to round up. Note that this is in line with the behavior of R’s base round.POSIXt function but
does not follow the convention of the base round function which "rounds to the even digit" per IEC
60559.
floor_date takes a date-time object and rounds it down to the nearest boundary of the specified
time unit.
ceiling_date takes a date-time object and rounds it up to the nearest boundary of the specified
time unit.

Usage

round_date(x, unit = "second")

floor_date(x, unit = "seconds")

ceiling_date(x, unit = "seconds", change_on_boundary = NULL)

Arguments

x a vector of date-time objects

unit a character string specifying the time unit or a multiple of a unit to be rounded to.
Valid base units are second, minute, hour, day, week, month, bimonth, quarter,
halfyear, or year. Arbitrary unique English abbreviations as in period construc-
tor are also supported. Rounding to multiple of units (except weeks) is supported
from v1.6.0.

change_on_boundary

If NULL (the default) don’t change instants on the boundary (ceiling_date(ymd_hms('2000-01-01 00:00:00'))
is 2000-01-01 00:00:00), but round up Date objects to the next boundary
(ceiling_date(ymd("2000-01-01"), "month") is "2000-02-01"). When
TRUE, instants on the boundary are rounded up to the next boundary. When
FALSE, date-time on the boundary are never rounded up (this was the default for
lubridate prior to v1.6.0. See section Rounding Up Date Objects below
for more details.

Details

In lubridate rounding of a date-time objects tries to preserve the class of the input object whenever
it is meaningful. This is done by first rounding to an instant and then converting to the original class
by usual R conventions.

round_date 51

Rounding Up Date Objects

By default rounding up Date objects follows 3 steps:

1. Convert to an instant representing lower bound of the Date: 2000-01-01 –> 2000-01-01 00:00:00

2. Round up to the next closest rounding unit boundary. For example, if the rounding unit is
month then next boundary for 2000-01-01 will be 2000-02-01 00:00:00.
The motivation for this behavior is that 2000-01-01 is conceptually an interval (2000-01-01 00:00:00 -- 2000-01-02
00:00:00) and the day hasn’t started clocking yet at the exact boundary 00:00:00. Thus, it
seems wrong to round up a day to its lower boundary.

3. If rounding unit is smaller than a day, return the instant from step 2 above (POSIXct), otherwise
return the Date immediately following that instant.

The behavior on the boundary in the second step above can be changed by setting change_on_boundary
to a non-NULL value.

See Also

round

Examples

x <- as.POSIXct("2009-08-03 12:01:59.23")
round_date(x, "second")
round_date(x, "minute")
round_date(x, "5 mins")
round_date(x, "hour")
round_date(x, "2 hours")
round_date(x, "day")
round_date(x, "week")
round_date(x, "month")
round_date(x, "bimonth")
round_date(x, "quarter") == round_date(x, "3 months")
round_date(x, "halfyear")
round_date(x, "year")

x <- as.POSIXct("2009-08-03 12:01:59.23")
floor_date(x, "second")
floor_date(x, "minute")
floor_date(x, "hour")
floor_date(x, "day")
floor_date(x, "week")
floor_date(x, "month")
floor_date(x, "bimonth")
floor_date(x, "quarter")
floor_date(x, "halfyear")
floor_date(x, "year")

x <- as.POSIXct("2009-08-03 12:01:59.23")
ceiling_date(x, "second")
ceiling_date(x, "minute")

52 second

ceiling_date(x, "5 mins")
ceiling_date(x, "hour")
ceiling_date(x, "day")
ceiling_date(x, "week")
ceiling_date(x, "month")
ceiling_date(x, "bimonth") == ceiling_date(x, "2 months")
ceiling_date(x, "quarter")
ceiling_date(x, "halfyear")
ceiling_date(x, "year")
x <- ymd("2000-01-01")
ceiling_date(x, "month")
ceiling_date(x, "month", change_on_boundary = TRUE)

second Get/set seconds component of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

Usage

second(x)

second(x) <- value

Arguments

x a date-time object

value numeric value to be assigned

Value

the seconds element of x as a decimal number

Examples

x <- ymd("2012-03-26")
second(x)
second(x) <- 1
second(x) <- 61
second(x) > 2

stamp 53

stamp Format dates and times based on human-friendly templates.

Description

Stamps are just like format, but based on human-frendly templates like "Recorded at 10 am,
September 2002" or "Meeting, Sunday May 1, 2000, at 10:20 pm".

Usage

stamp(x, orders = lubridate_formats, locale = Sys.getlocale("LC_TIME"),
quiet = FALSE)

stamp_date(x, locale = Sys.getlocale("LC_TIME"))

stamp_time(x, locale = Sys.getlocale("LC_TIME"))

Arguments

x a character vector of templates.

orders orders are sequences of formatting characters which might be used for disam-
biguation. For example "ymd hms", "aym" etc. See guess_formats for a list of
available formats.

locale locale in which x is encoded. On linux like systems use locale -a in terminal
to list available locales.

quiet whether to output informative messages.

Details

stamp is a stamping function date-time templates mainly, though it correctly handles all date and
time formats as long as they are unambiguous. stamp_date, and stamp_time are the specialized
stamps for dates and times (MHS). These function might be useful when the input template is
unambiguous and matches both a time and a date format.

Lubridate tries it’s best to figure our the formats, but often a given format can be interpreted in sev-
eral ways. One way to deal with the situation is to provide unambiguous formats like 22/05/81 in-
stead of 10/05/81 if you want d/m/y format. Another option is to use a more specialized stamp_date
and stamp_time. The core function stamp give priority to longer date-time formats.

Another option is to proved a vector of several values as x parameter. Then lubridate will choose the
format which fits x the best. Note that longer formats are preferred. If you have "22:23:00 PM" then
"HMSp" format will be given priority to shorter "HMS" order which also fits the supplied string.

Finally, you can give desired format order directly as orders argument.

Value

a function to be applied on a vector of dates

54 timespan

See Also

guess_formats, parse_date_time, strptime

Examples

D <- ymd("2010-04-05") - days(1:5)
stamp("March 1, 1999")(D)
sf <- stamp("Created on Sunday, Jan 1, 1999 3:34 pm")
sf(D)
stamp("Jan 01")(D)
stamp("Sunday, May 1, 2000", locale = "en_US")(D)
stamp("Sun Aug 5")(D) #=> "Sun Aug 04" "Sat Aug 04" "Fri Aug 04" "Thu Aug 04" "Wed Aug 03"
stamp("12/31/99")(D) #=> "06/09/11"
stamp("Sunday, May 1, 2000 22:10", locale = "en_US")(D)
stamp("2013-01-01T06:00:00Z")(D)
stamp("2013-01-01T00:00:00-06")(D)
stamp("2013-01-01T00:00:00-08:00")(force_tz(D, "America/Chicago"))

timespan Description of time span classes in lubridate.

Description

A time span can be measured in three ways: as a duration, an interval, or a period.

Details

Durations record the exact number of seconds in a time span. They measure the exact passage of
time but do not always align with measurements made in larger units of time such as hours, months
and years. This is because the exact length of larger time units can be affected by conventions
such as leap years and Daylight Savings Time. Base R measures durations with the difftime class.
lubridate provides an additional class, the duration class, to facilitate working with durations.

durations display as the number of seconds that occur during a time span. If the number is large, a
duration object will also display the length in a more convenient unit, but these measurements are
only estimates given for convenience. The underlying object is always recorded as a fixed number
of seconds. For display and creation purposes, units are converted to seconds using their most
common lengths in seconds. Minutes = 60 seconds, hours = 3600 seconds, days = 86400 seconds.
Units larger than days are not used due to their variability.

duration objects can be easily created with the helper functions dweeks, ddays, dhours, dminutes
and dseconds. These objects can be added to and subtracted from date- times to create a user
interface similar to object oriented programming. Duration objects can be added to Date, POSIXct,
and POSIXlt objects to return a new date-time.

Periods record the change in the clock time between two date-times. They are measured in common
time related units: years, months, days, hours, minutes, and seconds. Each unit except for seconds
must be expressed in integer values. With the exception of seconds, none of these units have a fixed
length. Leap years, leap seconds, and Daylight Savings Time can expand or contract a unit of time
depending on when it occurs. For this reason, periods do not have a fixed length until they are

Timespan-class 55

paired with a start date. Periods can be used to track changes in clock time. Because periods have a
variable length, they must be paired with a start date as an interval (as.interval) before they can
be accurately converted to and from durations.

Period objects can be easily created with the helper functions years, months, weeks, days, minutes,
seconds. These objects can be added to and subtracted to date-times to create a user interface sim-
ilar to object oriented programming. Period objects can be added to Date, POSIXct, and POSIXlt
objects to return a new date-time.

Intervals are time spans bound by two real date-times. Intervals can be accurately converted to
periods and durations. Since an interval is anchored to a fixed moment of time, the exact length
of all units of time during the interval can be calculated. To accurately convert between periods
and durations, a period or duration should first be converted to an interval with as.interval. An
interval displays as the start and end points of the time span it represents.

See Also

duration for creating duration objects and period for creating period objects, and interval for
creating interval objects.

Examples

duration(3690, "seconds")
period(3690, "seconds")
period(second = 30, minute = 1, hour = 1)
interval(ymd_hms("2009-08-09 13:01:30"), ymd_hms("2009-08-09 12:00:00"))

date <- as.POSIXct("2009-03-08 01:59:59") # DST boundary
date + days(1)
date + ddays(1)

date2 <- as.POSIXct("2000-02-29 12:00:00")
date2 + years(1)
self corrects to next real day

date3 <- as.POSIXct("2009-01-31 01:00:00")
date3 + c(0:11) * months(1)

span <- date2 %--% date #creates interval

date <- as.POSIXct("2009-01-01 00:00:00")
date + years(1)
date - days(3) + hours(6)
date + 3 * seconds(10)

months(6) + days(1)

Timespan-class Timespan class

56 time_length

Description

Timespan is an S4 class with no slots. It is extended by the Interval-class, Period-class, and
Duration-class classes.

time_length Compute the exact length of a time span.

Description

Compute the exact length of a time span.

Usage

time_length(x, unit = "second")

S4 method for signature 'Interval'
time_length(x, unit = "second")

Arguments

x a duration, period, difftime or interval

unit a character string that specifies with time units to use

Details

When x is an Interval-class object and unit are years or months, timespan_length takes into
account the fact that all months and years don’t have the same number of days.

When x is a Duration-class, Period-class or difftime object, length in months or years is
based on their most common lengths in seconds (see timespan).

Value

the length of the interval in the specified unit. A negative number connotes a negative interval or
duration

See Also

timespan

Examples

int <- interval(ymd("1980-01-01"), ymd("2014-09-18"))
time_length(int, "week")

Exact age
time_length(int, "year")

today 57

Age at last anniversary
trunc(time_length(int, "year"))

Example of difference between intervals and durations
int <- interval(ymd("1900-01-01"), ymd("1999-12-31"))
time_length(int, "year")
time_length(as.duration(int), "year")

today The current date

Description

The current date

Usage

today(tzone = "")

Arguments

tzone a character vector specifying which time zone you would like to find the current
date of. tzone defaults to the system time zone set on your computer.

Value

the current date as a Date object

Examples

today()
today("GMT")
today() == today("GMT") # not always true
today() < as.Date("2999-01-01") # TRUE (so far)

tz Get/set time zone component of a date-time.

Description

Time zones are stored as character strings in an attribute of date-time objects. tz returns a date’s
time zone attribute. When used as a settor, it changes the time zone attribute. R does not come with
a predefined list zone names, but relies on the user’s OS to interpret time zone names. As a result,
some names will be recognized on some computers but not others. Most computers, however, will
recognize names in the timezone data base originally compiled by Arthur Olson. These names
normally take the form "Country/City." A convenient listing of these timezones can be found at
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones.

http://en.wikipedia.org/wiki/List_of_tz_database_time_zones

58 tz

Usage

tz(x)

tz(x) <- value

Arguments

x a date-time object of class a POSIXct, POSIXlt, Date, chron, yearmon, yearqtr,
zoo, zooreg, timeDate, xts, its, ti, jul, timeSeries, fts or anything else that can be
coerced to POSIXlt with as.POSIXlt

value timezone value to be assigned to x’s tzone attribute

Details

Setting tz does not update a date-time to display the same moment as measured at a different time
zone. See with_tz. Setting a new time zone creates a new date-time. The numerical value of the
hours element stays the same, only the time zone attribute is replaced. This creates a new date-time
that occurs an integer value of hours before or after the original date-time.

If x is of a class that displays all date-times in the GMT timezone, such as chron, then R will update
the number in the hours element to display the new date-time in the GMT timezone.

For a description of the time zone attribute, see timezones or DateTimeClasses.

Value

the first element of x’s tzone attribute vector as a character string. If no tzone attribute exists, tz
returns "GMT".

Examples

x <- ymd("2012-03-26")
tz(x)
tz(x) <- "GMT"
x
Not run:
tz(x) <- "America/New_York"
x
tz(x) <- "America/Chicago"
x
tz(x) <- "America/Los_Angeles"
x
tz(x) <- "Pacific/Honolulu"
x
tz(x) <- "Pacific/Auckland"
x
tz(x) <- "Europe/London"
x
tz(x) <- "Europe/Berlin"
x

End(Not run)

week 59

Sys.setenv(TZ = "GMT")
now()
tz(now())
Sys.unsetenv("TZ")

week Get/set weeks component of a date-time.

Description

week returns the number of complete seven day periods that have occured between the date and
January 1st, plus one.
isoweek returns the week as it would appear in the ISO 8601 system, which uses a reoccuring leap
week.

Usage

week(x)

week(x) <- value

isoweek(x)

Arguments

x a date-time object. Must be a POSIXct, POSIXlt, Date, chron, yearmon, yearqtr,
zoo, zooreg, timeDate, xts, its, ti, jul, timeSeries, or fts object.

value a numeric object

Value

the weeks element of x as an integer number

References

http://en.wikipedia.org/wiki/ISO_week_date

See Also

isoyear

Examples

x <- ymd("2012-03-26")
week(x)
week(x) <- 1
week(x) <- 54
week(x) > 3

http://en.wikipedia.org/wiki/ISO_week_date

60 year

with_tz Get date-time in a different time zone

Description

with_tz returns a date-time as it would appear in a different time zone. The actual moment of time
measured does not change, just the time zone it is measured in. with_tz defaults to the Universal
Coordinated time zone (UTC) when an unrecognized time zone is inputted. See Sys.timezone for
more information on how R recognizes time zones.

Usage

with_tz(time, tzone = "")

Arguments

time a POSIXct, POSIXlt, Date, chron date-time object or a data.frame object. When
a data.frame all POSIXt elements of a data.frame are processed with with_tz
and new data.frame is returned.

tzone a character string containing the time zone to convert to. R must recognize the
name contained in the string as a time zone on your system.

Value

a POSIXct object in the updated time zone

See Also

force_tz

Examples

x <- as.POSIXct("2009-08-07 00:00:01", tz = "America/New_York")
with_tz(x, "GMT")

year Get/set years component of a date-time.

Description

Date-time must be a POSIXct, POSIXlt, Date, Period, chron, yearmon, yearqtr, zoo, zooreg, time-
Date, xts, its, ti, jul, timeSeries, and fts objects.

ymd 61

Usage

year(x)

year(x) <- value

isoyear(x)

Arguments

x a date-time object

value a numeric object

Details

year does not yet support years before 0 C.E.

Value

the years element of x as a decimal number

Examples

x <- ymd("2012-03-26")
year(x)
year(x) <- 2001
year(x) > 1995

ymd Parse dates according to the order in that year, month, and day ele-
ments appear in the input vector.

Description

Transforms dates stored in character and numeric vectors to Date or POSIXct objects (see tz ar-
gument). These functions recognize arbitrary non-digit separators as well as no separator. As long
as the order of formats is correct, these functions will parse dates correctly even when the input
vectors contain differently formatted dates. See examples.

Usage

ymd(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),
truncated = 0)

ydm(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),
truncated = 0)

mdy(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),

62 ymd

truncated = 0)

myd(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),
truncated = 0)

dmy(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),
truncated = 0)

dym(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"),
truncated = 0)

yq(..., quiet = FALSE, tz = NULL, locale = Sys.getlocale("LC_TIME"))

Arguments

... a character or numeric vector of suspected dates

quiet logical. When TRUE function evalueates without displaying customary mes-
sages.

tz Time zone indicator. If NULL (default) a Date object is returned. Otherwise a
POSIXct with time zone attribute set to tz.

locale locale to be used, see locales. On linux systems you can use system("locale -a")
to list all the installed locales.

truncated integer. Number of formats that can be truncated.

Details

If truncated parameter is non-zero ymd functions also check for truncated formats. For example
ymd with truncated = 2 will also parse incomplete dates like 2012-06 and 2012.

NOTE: ymd family of functions are based on ‘parse_date_time‘ and thus directly drop to internal C
parser for numeric months, but use R’s ‘strptime‘ for alphabetic months. This implies that some of
the ‘strptime‘’s limitations are inherited by lubridate’s parser. For example truncated formats (like
%Y-%b) will not be parsed. Numeric truncated formats (like %Y-%m) are handled correctly by
lubridate’s C parser.

As of version 1.3.0, lubridate’s parse functions no longer return a message that displays which
format they used to parse their input. You can change this by setting the lubridate.verbose
option to TRUE with options(lubridate.verbose = TRUE).

Value

a vector of class POSIXct if tz argument is non-NULL or Date if tz is NULL (default)

See Also

parse_date_time for an even more flexible low level mechanism.

ymd_hms 63

Examples

x <- c("09-01-01", "09-01-02", "09-01-03")
ymd(x)
x <- c("2009-01-01", "2009-01-02", "2009-01-03")
ymd(x)
ymd(090101, 90102)
now() > ymd(20090101)
TRUE
dmy(010210)
mdy(010210)

heterogenuous formats in a single vector:
x <- c(20090101, "2009-01-02", "2009 01 03", "2009-1-4",

"2009-1, 5", "Created on 2009 1 6", "200901 !!! 07")
ymd(x)

What lubridate might not handle:

Extremely weird cases when one of the separators is "" and some of the
formats are not in double digits might not be parsed correctly:
Not run: ymd("201002-01", "201002-1", "20102-1")
dmy("0312-2010", "312-2010")
End(Not run)

ymd_hms Parse dates that have hours, minutes, or seconds elements.

Description

Transform dates stored as character or numeric vectors to POSIXct objects. ymd_hms family of
functions recognize all non-alphanumeric separators (with the exception of "." if frac = TRUE)
and correctly handle heterogeneous date-time representations. For more flexibility in treatment of
heterogeneous formats, see low level parser parse_date_time.

Usage

ymd_hms(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

ymd_hm(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

ymd_h(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

dmy_hms(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

64 ymd_hms

dmy_hm(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

dmy_h(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

mdy_hms(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

mdy_hm(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

mdy_h(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

ydm_hms(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

ydm_hm(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

ydm_h(..., quiet = FALSE, tz = "UTC", locale = Sys.getlocale("LC_TIME"),
truncated = 0)

Arguments

... a character vector of dates in year, month, day, hour, minute, second format

quiet logical. When TRUE function evalueates without displaying customary mes-
sages.

tz a character string that specifies which time zone to parse the date with. The
string must be a time zone that is recognized by the user’s OS.

locale locale to be used, see locales. On linux systems you can use system("locale -a")
to list all the installed locales.

truncated integer, indicating how many formats can be missing. See details.

Details

ymd_hms() functions automatically assigns the Universal Coordinated Time Zone (UTC) to the
parsed date. This time zone can be changed with force_tz.

The most common type of irregularity in date-time data is the truncation due to rounding or un-
availability of the time stamp. If truncated parameter is non-zero ymd_hms functions also check
for truncated formats. For example ymd_hms with truncated = 3 will also parse incomplete dates
like 2012-06-01 12:23, 2012-06-01 12 and 2012-06-01. NOTE: ymd family of functions are
based on strptime which currently fails to parse %y-%m formats.

As of version 1.3.0, lubridate’s parse functions no longer return a message that displays which
format they used to parse their input. You can change this by setting the lubridate.verbose
option to true with options(lubridate.verbose = TRUE).

ymd_hms 65

Value

a vector of POSIXct date-time objects

See Also

ymd, hms. parse_date_time for underlying mechanism.

Examples

x <- c("2010-04-14-04-35-59", "2010-04-01-12-00-00")
ymd_hms(x)
x <- c("2011-12-31 12:59:59", "2010-01-01 12:00:00")
ymd_hms(x)

** heterogenuous formats **
x <- c(20100101120101, "2009-01-02 12-01-02", "2009.01.03 12:01:03",

"2009-1-4 12-1-4",
"2009-1, 5 12:1, 5",
"200901-08 1201-08",
"2009 arbitrary 1 non-decimal 6 chars 12 in between 1 !!! 6",
"OR collapsed formats: 20090107 120107 (as long as prefixed with zeros)",
"Automatic wday, Thu, detection, 10-01-10 10:01:10 and p format: AM",
"Created on 10-01-11 at 10:01:11 PM")

ymd_hms(x)

** fractional seconds **
op <- options(digits.secs=3)
dmy_hms("20/2/06 11:16:16.683")
options(op)

** different formats for ISO8601 timezone offset **
ymd_hms(c("2013-01-24 19:39:07.880-0600",
"2013-01-24 19:39:07.880", "2013-01-24 19:39:07.880-06:00",
"2013-01-24 19:39:07.880-06", "2013-01-24 19:39:07.880Z"))

** internationalization **
Not run:
x_RO <- "Ma 2012 august 14 11:28:30 "
ymd_hms(x_RO, locale = "ro_RO.utf8")

End(Not run)

** truncated time-dates **
x <- c("2011-12-31 12:59:59", "2010-01-01 12:11", "2010-01-01 12", "2010-01-01")
ymd_hms(x, truncated = 3)
x <- c("2011-12-31 12:59", "2010-01-01 12", "2010-01-01")
ymd_hm(x, truncated = 2)
** What lubridate might not handle **
Extremely weird cases when one of the separators is "" and some of the
formats are not in double digits might not be parsed correctly:

66 %m+%

Not run:
ymd_hm("20100201 07-01", "20100201 07-1", "20100201 7-01")
End(Not run)

%m+% Add and subtract months to a date without exceeding the last day of
the new month

Description

Adding months frustrates basic arithmetic because consecutive months have different lengths. With
other elements, it is helpful for arithmetic to perform automatic roll over. For example, 12:00:00
+ 61 seconds becomes 12:01:01. However, people often prefer that this behavior NOT occur with
months. For example, we sometimes want January 31 + 1 month = February 28 and not March
3. %m+% performs this type of arithmetic. Date %m+% months(n) always returns a date in the
nth month after Date. If the new date would usually spill over into the n + 1th month, %m+% will
return the last day of the nth month (rollback. Date %m-% months(n) always returns a date in the
nth month before Date.

add_with_rollback provides additional functionality to %m+% and %m-%. It allows rollback
to first day of the month instead of the last day of the previous month and controls whether HMS
component of the end date is preserved or not.

Usage

e1 %m+% e2

add_with_rollback(e1, e2, roll_to_first = FALSE, preserve_hms = TRUE)

Arguments

e1 A period or a date-time object of class POSIXlt, POSIXct or Date.

e2 A period or a date-time object of class POSIXlt, POSIXct or Date. Note that
one of e1 and e2 must be a period and the other a date-time object.

roll_to_first rollback to the first day of the month instead of the last day of the previous
month (passed to rollback)

preserve_hms retains the same hour, minute, and second information? If FALSE, the new date
will be at 00:00:00 (passed to rollback)

Details

%m+% and %m-% handle periods with components less than a month by first adding/substracting
months and then performing usual arithmetics with smaller units.

%m+% and %m-% should be used with caution as they are not one-to-one operations and results
for either will be sensitive to the order of operations.

%within% 67

Value

A date-time object of class POSIXlt, POSIXct or Date

Examples

jan <- ymd_hms("2010-01-31 03:04:05")
jan + months(1:3) # Feb 31 and April 31 returned as NA
NA "2010-03-31 03:04:05 UTC" NA
jan %m+% months(1:3) # No rollover

leap <- ymd("2012-02-29")
"2012-02-29 UTC"
leap %m+% years(1)
leap %m+% years(-1)
leap %m-% years(1)

%within% Tests whether a date or interval falls within an interval

Description

If a is an interval, both its start and end dates must fall within b to return TRUE.

Usage

a %within% b

Arguments

a An interval or date-time object

b An interval

Value

A logical

Examples

int <- interval(ymd("2001-01-01"), ymd("2002-01-01"))
int2 <- interval(ymd("2001-06-01"), ymd("2002-01-01"))

ymd("2001-05-03") %within% int # TRUE
int2 %within% int # TRUE
ymd("1999-01-01") %within% int # FALSE

Index

∗Topic POSIXt
ymd_hms, 63

∗Topic chron
am, 5
as.duration, 6
as.interval, 7
as.period, 8
date, 11
date_decimal, 13
DateUpdate, 12
day, 13
decimal_date, 15
dst, 17
duration, 17
force_tz, 20
hour, 23
is.Date, 27
is.difftime, 28
is.instant, 28
is.POSIXt, 29
is.timespan, 30
leap_year, 31
make_difftime, 32
minute, 33
month, 34
now, 36
origin, 37
parse_date_time, 37
period, 41
pretty_dates, 44
quick_durations, 46
quick_periods, 47
round_date, 50
second, 52
time_length, 56
timespan, 54
today, 57
tz, 57
week, 59

with_tz, 60
year, 60
ymd, 61

∗Topic classes
as.duration, 6
as.interval, 7
as.period, 8
duration, 17
make_difftime, 32
period, 41
timespan, 54

∗Topic data
lakers, 30
origin, 37

∗Topic dplot
pretty_dates, 44

∗Topic logic
is.Date, 27
is.difftime, 28
is.instant, 28
is.POSIXt, 29
is.timespan, 30
leap_year, 31

∗Topic manip
as.duration, 6
as.interval, 7
as.period, 8
date, 11
date_decimal, 13
DateUpdate, 12
day, 13
decimal_date, 15
force_tz, 20
hour, 23
minute, 33
month, 34
quick_durations, 46
quick_periods, 47
round_date, 50

68

INDEX 69

second, 52
tz, 57
week, 59
with_tz, 60
year, 60

∗Topic math
time_length, 56

∗Topic methods
as.duration, 6
as.interval, 7
as.period, 8
date, 11
date_decimal, 13
day, 13
decimal_date, 15
dst, 17
hour, 23
minute, 33
month, 34
second, 52
time_length, 56
tz, 57
year, 60

∗Topic parse
ymd_hms, 63

∗Topic period
ms, 35
time_length, 56

∗Topic utilities
date, 11
day, 13
dst, 17
hour, 23
minute, 33
month, 34
now, 36
pretty_dates, 44
second, 52
today, 57
tz, 57
week, 59
year, 60

*,Timespan,Timespan-method
(Timespan-class), 55

%--% (interval), 24
%/%,Timespan,Timespan-method

(Timespan-class), 55
%/%,difftime,Timespan-method

(Timespan-class), 55
%m+%,ANY,ANY-method (%m+%), 66
%m+%,ANY,Duration-method (%m+%), 66
%m+%,ANY,Interval-method (%m+%), 66
%m+%,ANY,Period-method (%m+%), 66
%m+%,Duration,ANY-method (%m+%), 66
%m+%,Interval,ANY-method (%m+%), 66
%m+%,Period,ANY-method (%m+%), 66
%m-% (%m+%), 66
%m-%,ANY,ANY-method (%m+%), 66
%m-%,ANY,Duration-method (%m+%), 66
%m-%,ANY,Interval-method (%m+%), 66
%m-%,ANY,Period-method (%m+%), 66
%m-%,Duration,ANY-method (%m+%), 66
%m-%,Interval,ANY-method (%m+%), 66
%m-%,Period,ANY-method (%m+%), 66
%within%,ANY,Interval-method

(%within%), 67
%within%,Interval,Interval-method

(%within%), 67
%m+%, 42, 43, 48, 66
%within%, 5, 26, 67

add_with_rollback, 42, 43, 48
add_with_rollback (%m+%), 66
am, 5
as.duration, 5, 6, 7, 18, 25, 33
as.duration,character-method

(as.duration), 6
as.duration,difftime-method

(as.duration), 6
as.duration,Duration-method

(as.duration), 6
as.duration,Interval-method

(as.duration), 6
as.duration,logical-method

(as.duration), 6
as.duration,numeric-method

(as.duration), 6
as.duration,Period-method

(as.duration), 6
as.interval, 5, 6, 7, 9, 26, 43, 55
as.interval,difftime-method

(as.interval), 7
as.interval,Duration-method

(as.interval), 7
as.interval,Interval-method

(as.interval), 7

70 INDEX

as.interval,logical-method
(as.interval), 7

as.interval,numeric-method
(as.interval), 7

as.interval,Period-method
(as.interval), 7

as.interval,POSIXt-method
(as.interval), 7

as.period, 5, 7, 8, 25
as.period,character-method (as.period),

8
as.period,difftime-method (as.period), 8
as.period,Duration-method (as.period), 8
as.period,Interval-method (as.period), 8
as.period,logical-method (as.period), 8
as.period,numeric-method (as.period), 8
as.period,Period-method (as.period), 8
as_date, 9
as_date,numeric-method (as_date), 9
as_date,POSIXt-method (as_date), 9
as_datetime (as_date), 9
as_datetime,ANY-method (as_date), 9
as_datetime,numeric-method (as_date), 9
as_datetime,POSIXt-method (as_date), 9

ceiling_date, 4
ceiling_date (round_date), 50

Date, 10, 66
date, 11
date<- (date), 11
date_decimal, 13
DateTimeClasses, 58
DateUpdate, 12
day, 4, 13
day<- (day), 13
days, 5, 42, 47, 55
days (quick_periods), 47
days_in_month, 15
ddays, 5, 18, 48, 54
ddays (quick_durations), 46
decimal_date, 5, 15
Deprecated-lubridate, 16
dhours, 5, 54
dhours (quick_durations), 46
diff, 24
difftime, 56
dmicroseconds (quick_durations), 46
dmilliseconds (quick_durations), 46

dminutes, 5, 18, 54
dminutes (quick_durations), 46
dmy, 3
dmy (ymd), 61
dmy_h (ymd_hms), 63
dmy_hm (ymd_hms), 63
dmy_hms (ymd_hms), 63
dnanoseconds (quick_durations), 46
dpicoseconds (quick_durations), 46
dseconds, 5, 18, 54
dseconds (quick_durations), 46
dst, 4, 17
duration, 5, 6, 17, 33, 47, 55
Duration-class, 19
dweeks, 5, 18, 54
dweeks (quick_durations), 46
dyears, 5
dyears (quick_durations), 46
dym, 3
dym (ymd), 61

edays (Deprecated-lubridate), 16
ehours (Deprecated-lubridate), 16
emicroseconds (Deprecated-lubridate), 16
emilliseconds (Deprecated-lubridate), 16
eminutes (Deprecated-lubridate), 16
enanoseconds (Deprecated-lubridate), 16
epicoseconds (Deprecated-lubridate), 16
eseconds (Deprecated-lubridate), 16
eweeks (Deprecated-lubridate), 16
eyears (Deprecated-lubridate), 16

fast_strptime (parse_date_time), 37
fit_to_timeline, 19, 40
floor_date, 4
floor_date (round_date), 50
force_tz, 4, 20, 60, 64
format, 53

guess_formats, 21, 53, 54

here, 36
here (Deprecated-lubridate), 16
hm, 4, 35
hm (ms), 35
hms, 4, 65
hms (ms), 35
hour, 4, 23
hour<- (hour), 23

INDEX 71

hours, 5, 42
hours (quick_periods), 47

instant (is.instant), 28
instants, 4
instants (is.instant), 28
int_aligns, 5
int_aligns (interval), 24
int_diff (interval), 24
int_end (interval), 24
int_end<- (interval), 24
int_flip, 5
int_flip (interval), 24
int_length (interval), 24
int_overlaps, 5
int_overlaps (interval), 24
int_shift, 5
int_shift (interval), 24
int_standardize (interval), 24
int_start (interval), 24
int_start<- (interval), 24
interval, 5, 7, 24, 55
Interval-class, 26
is.Date, 4, 27, 29
is.difftime, 5, 28, 30
is.duration, 5, 30
is.duration (duration), 17
is.instant, 4, 27, 28, 28, 29, 30
is.interval, 5, 28, 30
is.interval (interval), 24
is.period, 5, 28, 30
is.period (period), 41
is.POSIXct (is.POSIXt), 29
is.POSIXlt (is.POSIXt), 29
is.POSIXt, 4, 27, 29, 29
is.timepoint (is.instant), 28
is.timespan, 5, 27–29, 30
isoweek (week), 59
isoyear, 59
isoyear (year), 60

lakers, 5, 30
leap_year, 5, 31
locales, 38, 62, 64
lubridate (lubridate-package), 3
lubridate-package, 3

m+ (%m+%), 66
m- (%m+%), 66

make_date (make_datetime), 31
make_datetime, 31
make_difftime, 32
mday, 4, 14
mday (day), 13
mday<- (day), 13
mdy, 3
mdy (ymd), 61
mdy_h (ymd_hms), 63
mdy_hm (ymd_hms), 63
mdy_hms (ymd_hms), 63
microseconds (quick_periods), 47
milliseconds (quick_periods), 47
minute, 4, 33
minute<- (minute), 33
minutes, 5, 42, 55
minutes (quick_periods), 47
month, 4, 34
month<- (month), 34
months, 5, 42, 55
months.numeric (quick_periods), 47
ms, 4, 35, 35
myd, 3
myd (ymd), 61

nanoseconds (quick_periods), 47
new_difftime (Deprecated-lubridate), 16
new_duration (Deprecated-lubridate), 16
new_interval (Deprecated-lubridate), 16
new_period (Deprecated-lubridate), 16
now, 4, 36

olson_time_zones
(Deprecated-lubridate), 16

OlsonNames, 10
origin, 4, 37

parse_date_time, 3, 37, 54, 62, 63, 65
parse_date_time2 (parse_date_time), 37
period, 5, 8, 9, 41, 41, 48, 50, 55
Period-class, 43
period_to_seconds, 44
picoseconds (quick_periods), 47
pm (am), 5
POSIXct, 66
POSIXlt, 66
POSIXt, 10
pretty_dates, 5, 44

qday (day), 13

72 INDEX

qday<- (day), 13
quarter, 45
quick_durations, 46
quick_periods, 42, 47

rollback, 49, 66
round, 50, 51
round.POSIXt, 50
round_date, 4, 50

second, 4, 52
second<- (second), 52
seconds, 4, 5, 42, 55
seconds (quick_periods), 47
seconds_to_period (period_to_seconds),

44
semester (quarter), 45
stamp, 53
stamp_date (stamp), 53
stamp_time (stamp), 53
strptime, 4, 37, 38, 54
Sys.timezone, 21, 60

time_length, 56
time_length,Interval-method

(time_length), 56
timespan, 54, 56
Timespan-class, 55
timespans (timespan), 54
timezones, 58
today, 4, 57
tz, 4, 57
tz<- (tz), 57

update.POSIXt (DateUpdate), 12

wday, 4
wday (day), 13
wday<- (day), 13
week, 4, 59
week<- (week), 59
weeks, 5, 42, 55
weeks (quick_periods), 47
with_tz, 4, 21, 58, 60

yday, 4, 14
yday (day), 13
yday<- (day), 13
ydm, 3
ydm (ymd), 61

ydm_h (ymd_hms), 63
ydm_hm (ymd_hms), 63
ydm_hms (ymd_hms), 63
year, 4, 60
year<- (year), 60
years, 5, 42, 55
years (quick_periods), 47
ymd, 3, 40, 61, 65
ymd_h (ymd_hms), 63
ymd_hm (ymd_hms), 63
ymd_hms, 3, 40, 63
yq (ymd), 61

	lubridate-package
	am
	as.duration
	as.interval
	as.period
	as_date
	date
	DateUpdate
	date_decimal
	day
	days_in_month
	decimal_date
	Deprecated-lubridate
	dst
	duration
	Duration-class
	fit_to_timeline
	force_tz
	guess_formats
	hour
	interval
	Interval-class
	is.Date
	is.difftime
	is.instant
	is.POSIXt
	is.timespan
	lakers
	leap_year
	make_datetime
	make_difftime
	minute
	month
	ms
	now
	origin
	parse_date_time
	period
	Period-class
	period_to_seconds
	pretty_dates
	quarter
	quick_durations
	quick_periods
	rollback
	round_date
	second
	stamp
	timespan
	Timespan-class
	time_length
	today
	tz
	week
	with_tz
	year
	ymd
	ymd_hms
	%m+%
	%within%
	Index

