library(multinma)
options(mc.cores = parallel::detectCores())
This vignette describes the analysis of 10 trials comparing reduced
fat diets to control (non-reduced fat diets) for preventing mortality
(Hooper et al. 2000; Dias et al. 2011). The data are
available in this package as dietary_fat
:
head(dietary_fat)
#> studyn studyc trtn trtc r n E
#> 1 1 DART 1 Control 113 1015 1917.0
#> 2 1 DART 2 Reduced Fat 111 1018 1925.0
#> 3 2 London Corn/Olive 1 Control 1 26 43.6
#> 4 2 London Corn/Olive 2 Reduced Fat 5 28 41.3
#> 5 2 London Corn/Olive 2 Reduced Fat 3 26 38.0
#> 6 3 London Low Fat 1 Control 24 129 393.5
We begin by setting up the network - here just a pairwise
meta-analysis. We have arm-level rate data giving the number of deaths
(r
) and the person-years at risk (E
) in each
arm, so we use the function set_agd_arm()
. We set “Control”
as the reference treatment.
<- set_agd_arm(dietary_fat,
diet_net study = studyc,
trt = trtc,
r = r,
E = E,
trt_ref = "Control",
sample_size = n)
diet_net#> A network with 10 AgD studies (arm-based).
#>
#> ------------------------------------------------------- AgD studies (arm-based) ----
#> Study Treatment arms
#> DART 2: Control | Reduced Fat
#> London Corn/Olive 3: Control | Reduced Fat | Reduced Fat
#> London Low Fat 2: Control | Reduced Fat
#> Minnesota Coronary 2: Control | Reduced Fat
#> MRC Soya 2: Control | Reduced Fat
#> Oslo Diet-Heart 2: Control | Reduced Fat
#> STARS 2: Control | Reduced Fat
#> Sydney Diet-Heart 2: Control | Reduced Fat
#> Veterans Administration 2: Control | Reduced Fat
#> Veterans Diet & Skin CA 2: Control | Reduced Fat
#>
#> Outcome type: rate
#> ------------------------------------------------------------------------------------
#> Total number of treatments: 2
#> Total number of studies: 10
#> Reference treatment is: Control
#> Network is connected
We also specify the optional sample_size
argument,
although it is not strictly necessary here. In this case
sample_size
would only be required to produce a network
plot with nodes weighted by sample size, and a network plot is not
particularly informative for a meta-analysis of only two treatments.
(The sample_size
argument is more important when a
regression model is specified, since it also enables automatic centering
of predictors and production of predictions for studies in the network,
see ?set_agd_arm
.)
We fit both fixed effect (FE) and random effects (RE) models.
First, we fit a fixed effect model using the nma()
function with trt_effects = "fixed"
. We use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\) and
study-specific intercepts \(\mu_j\). We
can examine the range of parameter values implied by these prior
distributions with the summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
The model is fitted using the nma()
function. By
default, this will use a Poisson likelihood with a log link function,
auto-detected from the data.
<- nma(diet_net,
diet_fit_FE trt_effects = "fixed",
prior_intercept = normal(scale = 100),
prior_trt = normal(scale = 100))
Basic parameter summaries are given by the print()
method:
diet_fit_FE#> A fixed effects NMA with a poisson likelihood (log link).
#> Inference for Stan model: poisson.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[Reduced Fat] -0.01 0.00 0.05 -0.12 -0.04 -0.01 0.03 0.10 3295 1
#> lp__ 5386.23 0.06 2.41 5380.54 5384.77 5386.60 5388.01 5390.01 1699 1
#>
#> Samples were drawn using NUTS(diag_e) at Tue May 23 11:34:52 2023.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) are hidden, but could be examined
by changing the pars
argument:
# Not run
print(diet_fit_FE, pars = c("d", "mu"))
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
plot_prior_posterior(diet_fit_FE)
We now fit a random effects model using the nma()
function with trt_effects = "random"
. Again, we use \(\mathrm{N}(0, 100^2)\) prior distributions
for the treatment effects \(d_k\) and
study-specific intercepts \(\mu_j\),
and we additionally use a \(\textrm{half-N}(5^2)\) prior for the
heterogeneity standard deviation \(\tau\). We can examine the range of
parameter values implied by these prior distributions with the
summary()
method:
summary(normal(scale = 100))
#> A Normal prior distribution: location = 0, scale = 100.
#> 50% of the prior density lies between -67.45 and 67.45.
#> 95% of the prior density lies between -196 and 196.
summary(half_normal(scale = 5))
#> A half-Normal prior distribution: location = 0, scale = 5.
#> 50% of the prior density lies between 0 and 3.37.
#> 95% of the prior density lies between 0 and 9.8.
Fitting the RE model
<- nma(diet_net,
diet_fit_RE trt_effects = "random",
prior_intercept = normal(scale = 10),
prior_trt = normal(scale = 10),
prior_het = half_normal(scale = 5))
Basic parameter summaries are given by the print()
method:
diet_fit_RE#> A random effects NMA with a poisson likelihood (log link).
#> Inference for Stan model: poisson.
#> 4 chains, each with iter=2000; warmup=1000; thin=1;
#> post-warmup draws per chain=1000, total post-warmup draws=4000.
#>
#> mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
#> d[Reduced Fat] -0.02 0.00 0.09 -0.21 -0.07 -0.02 0.03 0.17 1269 1
#> lp__ 5378.69 0.11 3.83 5370.57 5376.27 5378.85 5381.35 5385.60 1216 1
#> tau 0.13 0.00 0.11 0.00 0.05 0.10 0.18 0.42 1008 1
#>
#> Samples were drawn using NUTS(diag_e) at Tue May 23 11:35:05 2023.
#> For each parameter, n_eff is a crude measure of effective sample size,
#> and Rhat is the potential scale reduction factor on split chains (at
#> convergence, Rhat=1).
By default, summaries of the study-specific intercepts \(\mu_j\) and study-specific relative effects
\(\delta_{jk}\) are hidden, but could
be examined by changing the pars
argument:
# Not run
print(diet_fit_RE, pars = c("d", "mu", "delta"))
The prior and posterior distributions can be compared visually using
the plot_prior_posterior()
function:
plot_prior_posterior(diet_fit_RE, prior = c("trt", "het"))
Model fit can be checked using the dic()
function:
<- dic(diet_fit_FE))
(dic_FE #> Residual deviance: 22.4 (on 21 data points)
#> pD: 11.1
#> DIC: 33.5
<- dic(diet_fit_RE))
(dic_RE #> Residual deviance: 21.4 (on 21 data points)
#> pD: 13.5
#> DIC: 34.9
Both models appear to fit the data well, as the residual deviance is close to the number of data points. The DIC is very similar between models, so the FE model may be preferred for parsimony.
We can also examine the residual deviance contributions with the
corresponding plot()
method.
plot(dic_FE)
plot(dic_RE)
Dias et al. (2011) produce absolute predictions of
the mortality rates on reduced fat and control diets, assuming a Normal
distribution on the baseline log rate of mortality with mean \(-3\) and precision \(1.77\). We can replicate these results
using the predict()
method. The baseline
argument takes a distr()
distribution object, with which we
specify the corresponding Normal distribution. We set
type = "response"
to produce predicted rates
(type = "link"
would produce predicted log rates).
<- predict(diet_fit_FE,
pred_FE baseline = distr(qnorm, mean = -3, sd = 1.77^-0.5),
type = "response")
pred_FE#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Control] 0.07 0.06 0.01 0.03 0.05 0.08 0.21 3677 3550 1
#> pred[Reduced Fat] 0.07 0.06 0.01 0.03 0.05 0.08 0.21 3626 3415 1
plot(pred_FE)
<- predict(diet_fit_RE,
pred_RE baseline = distr(qnorm, mean = -3, sd = 1.77^-0.5),
type = "response")
pred_RE#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Control] 0.07 0.06 0.01 0.03 0.05 0.08 0.21 4118 4053 1
#> pred[Reduced Fat] 0.07 0.06 0.01 0.03 0.05 0.08 0.21 4070 3967 1
plot(pred_RE)
If the baseline
argument is omitted, predicted rates
will be produced for every study in the network based on their estimated
baseline log rate \(\mu_j\):
<- predict(diet_fit_FE, type = "response")
pred_FE_studies
pred_FE_studies#> ------------------------------------------------------------------- Study: DART ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[DART: Control] 0.06 0 0.05 0.06 0.06 0.06 0.07 6174 3513 1
#> pred[DART: Reduced Fat] 0.06 0 0.05 0.06 0.06 0.06 0.07 7583 3340 1
#>
#> ------------------------------------------------------ Study: London Corn/Olive ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[London Corn/Olive: Control] 0.07 0.02 0.03 0.06 0.07 0.09 0.13 5796 3143 1
#> pred[London Corn/Olive: Reduced Fat] 0.07 0.02 0.03 0.06 0.07 0.09 0.13 5954 2981 1
#>
#> --------------------------------------------------------- Study: London Low Fat ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[London Low Fat: Control] 0.06 0.01 0.04 0.05 0.06 0.06 0.08 6876 3011 1
#> pred[London Low Fat: Reduced Fat] 0.06 0.01 0.04 0.05 0.06 0.06 0.08 7455 3008 1
#>
#> ----------------------------------------------------- Study: Minnesota Coronary ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Minnesota Coronary: Control] 0.05 0 0.05 0.05 0.05 0.06 0.06 5111 3640 1
#> pred[Minnesota Coronary: Reduced Fat] 0.05 0 0.05 0.05 0.05 0.06 0.06 5195 3409 1
#>
#> --------------------------------------------------------------- Study: MRC Soya ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[MRC Soya: Control] 0.04 0.01 0.03 0.04 0.04 0.04 0.05 6709 2955 1
#> pred[MRC Soya: Reduced Fat] 0.04 0.01 0.03 0.04 0.04 0.04 0.05 8092 3219 1
#>
#> -------------------------------------------------------- Study: Oslo Diet-Heart ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Oslo Diet-Heart: Control] 0.06 0.01 0.05 0.06 0.06 0.07 0.08 5966 2968 1
#> pred[Oslo Diet-Heart: Reduced Fat] 0.06 0.01 0.05 0.06 0.06 0.07 0.08 7419 3110 1
#>
#> ------------------------------------------------------------------ Study: STARS ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[STARS: Control] 0.02 0.01 0.01 0.01 0.02 0.03 0.05 8164 2708 1
#> pred[STARS: Reduced Fat] 0.02 0.01 0.01 0.01 0.02 0.03 0.05 7810 2666 1
#>
#> ------------------------------------------------------ Study: Sydney Diet-Heart ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS Rhat
#> pred[Sydney Diet-Heart: Control] 0.03 0 0.03 0.03 0.03 0.04 0.04 7086 3018 1
#> pred[Sydney Diet-Heart: Reduced Fat] 0.03 0 0.03 0.03 0.03 0.04 0.04 7526 3351 1
#>
#> ------------------------------------------------ Study: Veterans Administration ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS
#> pred[Veterans Administration: Control] 0.11 0.01 0.1 0.11 0.11 0.12 0.13 5454 3342
#> pred[Veterans Administration: Reduced Fat] 0.11 0.01 0.1 0.11 0.11 0.12 0.12 7123 3611
#> Rhat
#> pred[Veterans Administration: Control] 1
#> pred[Veterans Administration: Reduced Fat] 1
#>
#> ------------------------------------------------ Study: Veterans Diet & Skin CA ----
#>
#> mean sd 2.5% 25% 50% 75% 97.5% Bulk_ESS Tail_ESS
#> pred[Veterans Diet & Skin CA: Control] 0.01 0.01 0 0.01 0.01 0.02 0.03 6292 2777
#> pred[Veterans Diet & Skin CA: Reduced Fat] 0.01 0.01 0 0.01 0.01 0.02 0.03 6428 2981
#> Rhat
#> pred[Veterans Diet & Skin CA: Control] 1
#> pred[Veterans Diet & Skin CA: Reduced Fat] 1
plot(pred_FE_studies) + ggplot2::facet_grid(Study~., labeller = ggplot2::label_wrap_gen(width = 10))