
Package ‘nor1mix’
August 30, 2017

Title Normal (1-d) Mixture Models (S3 Classes and Methods)

Version 1.2-3

Date 2017-08-29

Author Martin Mächler

Maintainer Martin Maechler <maechler@stat.math.ethz.ch>

Description Onedimensional Normal Mixture Models Classes, for, e.g.,
density estimation or clustering algorithms research and teaching;
providing the widely used Marron-Wand densities. Efficient random
number generation and graphics; now fitting to data by ML (Maximum
Likelihood) or EM estimation.

Imports stats, graphics

Suggests cluster

License GPL (>= 2)

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2017-08-30 12:50:45 UTC

R topics documented:
clus2norMix . 2
dnorMix . 3
llnorMix . 4
MarronWand . 6
norMix . 8
norMixFit . 10
plot.norMix . 12
pnorMix . 14
r.norMix . 16
rnorMix . 17
sort.norMix . 18

Index 19

1

2 clus2norMix

clus2norMix Transform Clustering / Grouping to Normal Mixture

Description

Simple transformation of a clustering or grouping to a normal mixture object (class "norMix", see,
norMix.

Usage

clus2norMix(gr, x, name = deparse(sys.call()))

Arguments

gr a grouping/clustering vector with values in {1, ..,K}; possibly a factor.

x numeric vector of (original) data (of the same length as gr).

name name for norMix() object; constructed from the call by default.

Value

A call to norMix() with (mu, sig2, w) set to the empirical values of the groups (as defined by
split(x,gr).

Note

Via this function, any simple clustering algorithm (such pam) can be used as simple mixture model
fitting procedure.

Author(s)

Martin Maechler, Dec. 2007

See Also

norMix; further pam() (or clara()) from package cluster for sensible clusterings.

Examples

x9 <- rnorMix(500, MW.nm9)
require("cluster")
pxc <- pam(x9, k=3)
plot(pxc, which = 2)# silhouette

(nm.p9 <- clus2norMix(pxc$clustering, x9))
plot(nm.p9, p.norm=FALSE)
lines(MW.nm9, col="thistle")

dnorMix 3

dnorMix Normal Mixture Density

Description

Evaluate the density function of the normal mixture specified as norMix object.

Usage

dnorMix (x, obj, log = FALSE)

dnorMixL(obj, x = NULL, log = FALSE, xlim = NULL, n = 511)
dpnorMix(x, obj, lower.tail = TRUE)

Arguments

obj an object of class norMix.

x numeric vector with abscissa values where to evaluate the density (and probabil-
ity, for dpnorMix()). For dnorMixL() by default, when NULL, it is constructed
from n (and xlim if that is specified).

log logical indicating log-density values should be returned.

xlim range of abscissa values, used if x == NULL. By default, xlim is taken as mean
plus/minus 3 standard deviations of the normal mixture.

n number of abscissa values to generate if x is not specified.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Value

dnorMix(x) returns the numeric vector of density values f(x), logged if log is TRUE.

dnorMixL() returns a list with components

x the abscissa values.

y the density values f(x) as for dnorMix().

dpnorMix() returns a list with components

d the density values f(x) as for dnorMix().

p the probability values F (x) as for pnorMix().

See Also

rnorMix for random number generation, and norMix for the construction and further methods,
particularly plot.norMix which makes use dnorMix.

4 llnorMix

Examples

ff <- dnorMixL(MW.nm7)
str(ff)
plot(ff, type = "h", ylim = c(0,1)) # rather use plot(ff, ...)

x <- seq(-4,5, length=501)
dp <- dpnorMix(x, MW.nm7)
lines(x, dp$d, col = "tomato", lwd=3)
lines(x, dp$p, col = 3, lwd=2)# does not fit y-wise
stopifnot(all.equal(dp$d, dnorMix(x, MW.nm7), tolerance=1e-12),

all.equal(dp$p, pnorMix(x, MW.nm7), tolerance=1e-12))

llnorMix Likelihood, Parametrization and EM-Steps For 1D Normal Mixtures

Description

These functions work with an almost unconstrained parametrization of univariate normal mixtures.

llnorMix(p, *) computes the log likelihood,

obj <- par2norMix(p) maps parameter vector p to a norMix object obj,

p <- nM2par(obj) maps from a norMix object obj to parameter vector p,

where p is always a parameter vector in our parametrization.

Partly for didactical reasons, the following functions provide the basic ingredients for the EM algo-
rithm (see also norMixEM) to parameter estimation:

estep.nm(x, obj, p) computes 1 E-step for the data x, given either a "norMix" object obj or
parameter vector p.

mstep.nm(x, z) computes 1 M-step for the data x and the probability matrix z.

emstep.nm(x, obj) computes 1 E- and 1 M-step for the data x and the "norMix" object obj.

where again, p is a parameter vector in our parametrization, x is the (univariate) data, and z is a
n × m matrix of (posterior) conditional probabilities, and θ is the full parameter vector of the
mixture model.

Usage

llnorMix(p, x, m = (length(p) + 1)/3)

par2norMix(p, name = sprintf("{from %s}", deparse(substitute(p))[1]))
nM2par(obj)

estep.nm(x, obj, par)
mstep.nm(x, z)

emstep.nm(x, obj)

llnorMix 5

Arguments

p, par numeric vector: our parametrization of a univariate normal mixture, see details.
x numeric: the data for which the likelihood is to be computed.
m integer number of mixture components; this is not to be changed for a given p.
name (for par2norMix():) a name for the "norMix" object that is returned.
obj a "norMix" object, see norMix.
z a n ×m matrix of (posterior) conditional probabilities, zij = P (xi ∈ Cj |θ),

where Cj denotes the j-th group (“cluster”).

Details

We use a parametrization of a (finite) univariate normal mixture which is particularly apt for likeli-
hood maximization, namely, one whose parameter space is almost a full IRm, m = 3k − 1.

For a k-component mixture, we map to and from a parameter vector θ (== p as R-vector) of length
3k − 1. For mixture density

k∑
j=1

πjφ((t− µj)/σj)/σj ,

we logit-transform the πj (for j ≥ 2) and log-transform the σj , such that θ is partitioned into

p[1:(k-1)]: p[j]= logit(πj+1) and π1 is given implicitly as π1 = 1−
∑k

j=2 πj .
p[k:(2k-1)]: p[k-1+ j]= µj , for j=1:k.
p[2k:(3k-1)]: p[2*k-1+ j] = log(σj), i.e., σ2

j = exp(2 ∗ p[.+ j]).

Value

llnorMix() returns a number, namely the log-likelihood.

par2norMix() returns "norMix" object, see norMix.

nM2par() returns the parameter vector θ of length 3k − 1.

estep.nm() returns z, the matrix of (conditional) probabilities.

mstep.nm() returns the model parameters as a list with components w, mu, and sigma, corre-
sponding to the arguments of norMix(). (and see the ’Examples’ on using do.call(norMix, *)
with it.)

emstep.nm() returns an updated "norMix" object.

Author(s)

Martin Maechler

See Also

norMix, logLik. Note that the log likelihood of a "norMix" object is directly given by sum(dnorMix(x, obj, log=TRUE)).

To fit, using the EM algorithm, rather use norMixEM() than the e.step, m.step, or em.step func-
tions.

Note that direct likelihood maximization, i.e., MLE, is typically considerably more efficient than
the EM, and typically converges well with our parametrization, see norMixMLE.

6 MarronWand

Examples

(obj <- MW.nm10) # "the Claw" -- m = 6 components
length(pp <- nM2par(obj)) # 17 == (3*6) - 1
par2norMix(pp)
really the same as the initial 'obj' above

Log likelihood (of very artificial data):
llnorMix(pp, x = seq(-2, 2, length=1000))
set.seed(47)## of more realistic data:
x <- rnorMix(1000, obj)
llnorMix(pp, x)

Consistency check : nM2par() and par2norMix() are inverses
all.EQ <- function(x,y, tol = 1e-15, ...) all.equal(x,y, tolerance=tol, ...)
stopifnot(all.EQ(pp, nM2par(par2norMix(pp))),

all.EQ(obj, par2norMix(nM2par(obj)),
check.attributes=FALSE),

Direct computation of log-likelihood:
all.EQ(sum(dnorMix(x, obj, log=TRUE)),

llnorMix(pp, x)))

E- and M- steps : ------------------------------
rE1 <- estep.nm(x, obj)
rE2 <- estep.nm(x, par=pp) # the same as rE1
z <- rE1
str(rM <- mstep.nm(x, z))

(rEM <- emstep.nm(x, obj))

stopifnot(all.EQ(rE1, rE2),
all.EQ(rEM, do.call(norMix, c(rM, name=""))))

MarronWand Marron-Wand Densities as ’norMix’ Objects

Description

The fifteen density examples used in Marron and Wand (1992)’s simulation study have been used
in quite a few subsequent studies, can all be written as normal mixtures and are provided here for
convenience and didactical examples of normal mixtures. Number 16 has been added by Jansen et
al.

Usage

MW.nm1 # Gaussian
MW.nm2 # Skewed
MW.nm2.old # Skewed(old)
MW.nm3 # Str Skew
MW.nm4 # Kurtotic
MW.nm5 # Outlier

MarronWand 7

MW.nm6 # Bimodal
MW.nm7 # Separated (bimodal)
MW.nm8 # Asymmetric Bimodal
MW.nm9 # Trimodal
MW.nm10 # Claw
MW.nm11 # Double Claw
MW.nm12 # Asymmetric Claw
MW.nm13 # Asymm. Double Claw
MW.nm14 # Smooth Comb
MW.nm15 # Discrete Comb
MW.nm16 # Distant Bimodal

Author(s)

Martin Maechler

Source

They have been translated from Steve Marron’s Matlab code,

now at http://www.unc.edu/depts/stat-or/miscellaneous/marron/parameters/nmpar.m,
however for number 2, the Matlab code had MW.nm2.old; and I’ve defined MW.nm2 as from the
Annals paper; see also the last example below.

References

Marron, S. and Wand, M. (1992) Exact Mean Integrated Squared Error; Annals of Statistcs 20,
712–736.

For number 16,
Janssen, Marron, Verb..., Sarle (1995)

Examples

MW.nm10
plot(MW.nm14)

These are defined as norMix() calls in ../R/zMarrWand-dens.R
nms <- ls(pat="^MW.nm", "package:nor1mix")
nms <- nms[order(as.numeric(substring(nms,6)))]
for(n in nms) {

cat("\n",n,":\n"); print(get(n, "package:nor1mix"))
}

Plot all of them:
op <- par(mfrow=c(4,4), mgp = c(1.2, 0.5, 0), tcl = -0.2,

mar = .1 + c(2,2,2,1), oma = c(0,0,3,0))
for(n in nms[-17]) plot(get(n, "package:nor1mix"))
mtext("The Marron-Wand Densities", outer= TRUE, font= 2, cex= 1.6)

and their Q-Q-plots (not really fast):
prob <- ppoints(N <- 100)

http://www.unc.edu/depts/stat-or/miscellaneous/marron/parameters/nmpar.m

8 norMix

for(n in nms[-17])
qqnorm(qnorMix(prob, get(n, "package:nor1mix")), main = n)

mtext("QQ-plots of Marron-Wand Densities", outer = TRUE,
font = 2, cex = 1.6)

par(op)

"object" overview:
cbind(sapply(nms, function(n) { o <- get(n)

sprintf("%-18s: K =%2d; rng = [%3.1f, %2.1f]",
attr(o, "name"), nrow(o),
min(o[,"mu"] - 3*sqrt(o[,"sig2"])),
max(o[,"mu"] + 3*sqrt(o[,"sig2"])))
}))

Note that Marron-Wand (1992), p.720 give #2 as
MW.nm2
the parameters of which at first look quite different from
MW.nm2.old
which has been the definition in the above "Source" Matlab code.
It's easy to see that mu_{nm2} = -.3 + 1.2 * mu_{paper},
and correspondigly, s2_{nm2} = 1.2^2 * s2_{paper}
such that they are "identical" apart from scale and location:
op. <- par(mfrow=2:1, mgp= c(1.2,0.5,0), tcl= -0.2, mar=.1+c(2,2,2,1))
plot(MW.nm2)
plot(MW.nm2.old)
par(op.)

norMix Mixtures of Univariate Normal Distributions

Description

Objects of class norMix represent finite mixtures of (univariate) normal (aka Gaussian) distribu-
tions. Methods for construction, printing, plotting, and basic computations are provided.

Usage

norMix(mu, sig2 = rep(1,m), sigma = rep(1,m),
w = NULL, name = NULL, long.name = FALSE)

is.norMix(obj)
m.norMix(obj)
var.norMix(x, ...)
S3 method for class 'norMix'
mean(x, ...)
S3 method for class 'norMix'
print(x, ...)
S3 method for class 'norMix'
x[i,j, drop=TRUE]

norMix 9

Arguments

mu numeric vector of length K, say, specifying the means µ of the K normal com-
ponents.

sig2 deprecated! numeric vector of length K, specifying the variances σ2 of the K
normal components. Do specify sigma instead!

sigma numeric vector of length K, specifying the standard deviations σ of the K nor-
mal components.

w numeric vector of lengthK, specifying the mixture proportions πj of the normal
components, j = 1, . . . ,K. Defaults to equal proportions

name optional name tag of the result (used for printing).

long.name logical indicating if the name attribute should use punctuation and hence be
slightly larger than by default.

obj,x an object of class norMix.

i,j,drop for indexing, see the generic [extractor function.

... further arguments passed to methods.

Details

The (one dimensional) normal mixtures, R objects of class "norMix", are constructed by norMix
and tested for by is.norMix. m.norMix() returns the number of mixture components; the mean()
method for class "norMix" returns the (theoretical / true) mean E[X] and var.norMix() the true
variance E[(X − E[X])2] where X ∼ 〈norm.mixt〉.

The subsetting aka “extract” method (x[i,j]; for generic [)—when called as x[i,]—will typically
return a "norMix" object unless matrix indexing selects only one row in which case x[i, , drop=FALSE]
will return the normal mixture (of one component only).

For further methods (density, random number generation, fitting, . . .), see below.

Value

norMix returns objects of class "norMix" which are currently implemented as 3-column matrix
with column names mu, sigma, and w, and further attributes. The user should rarely need to access
the underlying structure directly.

Note

For estimation of the parameters of such a normal mixture, we provide a smart parametrization and
an efficient implementation of the direct MLE or also the EM algorithm, see norMixMLE() which
includes norMixEM().

Author(s)

Martin Maechler

10 norMixFit

See Also

dnorMix for the density, pnorMix for the cumulative distribution and the quantile function (qnorMix),
and rnorMix for random numbers and plot.norMix, the plot method.

MarronWand has the Marron-Wand densities as normal mixtures.

norMixMLE() and norMixEM() provide fitting of univariate normal mixtures to data.

Examples

ex <- norMix(mu = c(1,2,5))# defaults: sigma = 1, equal proportions ('w')
ex
plot(ex, p.comp = TRUE)# looks like a mixture of only 2; 'p.comp' plots components

The 2nd Marron-Wand example, see also ?MW.nm2
ex2 <- norMix(name = "#2 Skewed",

mu = c(0, .5, 13/12),
sigma = c(1, 2/3, 5/9),

w = c(.2, .2, .6))

m.norMix (ex2)
mean (ex2)
var.norMix(ex2)
(e23 <- ex2[2:3,]) # (with re-normalized weights)
stopifnot(is.norMix(e23),

all.equal(var.norMix(ex2), 719/1080, tol=1e-14),
all.equal(var.norMix(ex), 35/9, tol=1e-14),
all.equal(var.norMix(ex[2:3,]), 13/4, tol=1e-14),
all.equal(var.norMix(e23), 53^2/(12^3*4),tol=1e-14)

)

plot(ex2, log = "y")# maybe "revealing"

norMixFit EM and MLE Estimation of Univariate Normal Mixtures

Description

These functions estimate the parameters of a univariate (finite) normal mixture using the EM algo-
rithm or Likelihood Maximimization via optim(.., method = "BFGS").

Usage

norMixEM(x, m, name = NULL, sd.min = 1e-07* diff(range(x))/m,
maxiter = 100, tol = sqrt(.Machine$double.eps), trace = 1)

norMixMLE(x, m, name = NULL,
maxiter = 100, tol = sqrt(.Machine$double.eps), trace = 2)

norMixFit 11

Arguments

x numeric: the data for which the parameters are to be estimated.

m integer or factor: If m has length 1 it specifies the number of mixture components,
otherwise it is taken to be a vector of initial cluster assignments, see details
below.

name character, passed to norMix. The default, NULL, uses match.call().

sd.min number: the minimal value that the normal components’ standard deviations
(sd) are allowed to take. A warning is printed if some of the final sd’s are this
boundary.

maxiter integer: maximum number of EM iterations.

tol numeric: EM iterations stop if relative changes of the log-likelihood are smaller
than tol.

trace integer (or logical) specifying if the iterations should be traced and how much
output should be produced. The default, 1 prints a final one line summary, where
trace = 2 produces one line of output per iteration.

Details

Estimation of univariate mixtures can be very sensitive to initialization. By default, norMixEM and
norMixLME cut the data into m groups of approximately equal size. See examples below for other
initialization possibilities.

The EM algorithm consists in repeated application of E- and M- steps until convergence. Mainly
for didactical reasons, we also provide the functions estep.nm, mstep.nm, and emstep.nm.

The MLE, Maximum Likelihood Estimator, maximizes the likelihood using optim, using the same
advantageous parametrization as llnorMix.

Value

An object of class norMix.

Author(s)

EM: Friedrich Leisch, originally; Martin Maechler vectorized it in m, added trace etc.

MLE: M.Maechler

Examples

ex <- norMix(mu = c(-1,2,5), sig2 = c(1, 0.5, 3))
plot(ex, col="gray", p.norm=FALSE)

x <- rnorMix(100, ex)
lines(density(x))
rug(x)

EM estimation may fail depending on random sample
ex1 <- norMixEM(x, 3, trace=2) #-> warning (sometimes)
ex1

12 plot.norMix

plot(ex1)

initialization by cut() into intervals of equal length:
ex2 <- norMixEM(x, cut(x, 3))
ex2

initialization by kmeans():
k3 <- kmeans(x, 3)$cluster
ex3 <- norMixEM(x, k3)
ex3

Now, MLE instead of EM:
exM <- norMixMLE(x, k3, tol = 1e-12, trace=4)
exM

real data
data(faithful)
plot(density(faithful$waiting, bw = "SJ"), ylim=c(0,0.044))
rug(faithful$waiting)

(nmF <- norMixEM(faithful$waiting, 2))
lines(nmF, col=2)
are three components better?
nmF3 <- norMixEM(faithful$waiting, 3, maxiter = 200)
lines(nmF3, col="forestgreen")

plot.norMix Plotting Methods for ’norMix’ Objects

Description

The plot and lines methods for norMix objects draw the normal mixture density, optionally addi-
tonally with a fitted normal density.

Usage

S3 method for class 'norMix'
plot(x, type = "l", n = 511, xout = NULL, xlim = NULL, ylim,

xlab = "x", ylab = "f(x)", main = attr(x, "name"), lwd = 1.4,
p.norm = !p.comp, p.h0 = TRUE, p.comp = FALSE,
parNorm = list(col = 2, lty = 2, lwd = 0.4),
parH0 = list(col = 3, lty = 3, lwd = 0.4),
parComp = list(col= "blue3", lty = 3, lwd = 0.4), ...)

S3 method for class 'norMix'
lines(x, type = "l", n = 511, xout = NULL,

lwd = 1.4, p.norm = FALSE, parNorm = list(col = 2, lty = 2, lwd = 0.4),
...)

plot.norMix 13

Arguments

x object of class norMix.

type character denoting type of plot, see, e.g. lines.

n number of points to generate if xout is unspecified.

xout numeric or NULL giving the abscissae at which to draw the density.

xlim range of x values to use; particularly important if xout is not specified where
xlim is passed to dnorMix and gets a smart default if unspecified.

ylim range of y values to use; by default, if not specified (or containing NA), a smart
default is used.

xlab,ylab labels for the x and y axis with defaults.

main main title of plot, defaulting to the norMix name.

lwd line width for plotting with a non-standard default.

p.norm logical indicating if the normal density with the same mean and variance should
be drawn as well.

p.h0 logical indicating if the line y = 0 should be drawn.

p.comp logical indicating if the Gaussian components should also be drawn individually.

parNorm graphical parameters for drawing the normal density if p.norm is true.

parH0 graphical parameters for drawing the line y = 0 if p.h0 is true.

parComp graphical parameters for drawing the single components if p.comp is true.

... further arguments passed to and from methods.

Author(s)

Martin Maechler

See Also

norMix for the construction and further methods, particularly dnorMix which is used here.

Examples

plot(norMix(m=c(0,3), sigma = c(2,1))) # -> var = c(2^2, 1) = c(4, 1)

plot(MW.nm4, p.norm=FALSE, p.comp = TRUE)
plot(MW.nm4, p.norm=FALSE, p.comp = TRUE, ylim = c(0, 2))# now works
stopifnot(all.equal(c(0,2), par("yaxp")[1:2], tol= 1e-15))

Further examples in ?norMix and ?rnorMix

14 pnorMix

pnorMix Normal Mixture Cumulative Distribution and Quantiles

Description

Compute cumulative probabilities or quantiles (the inverse) for a normal mixture specified as norMix
object.

Usage

pnorMix(q, obj, lower.tail = TRUE, log.p = FALSE)

qnorMix(p, obj, lower.tail = TRUE, log.p = FALSE,
tol = .Machine$double.eps^0.25, maxiter = 1000, traceRootsearch = 0,
method = c("interpQspline", "interpspline", "eachRoot", "root2"),
l.interp = pmax(1, pmin(20, 1000 / m)), n.mu.interp = 100)

Arguments

obj an object of class norMix.

p numeric vector of probabilities. Note that for all methods but "eachRoot",
qnorMix(p, *) works with the full vector p, typically using (inverse) inter-
polation approaches; consequently the result is very slightly dependent on p as
a whole.

q numeric vector of quantiles.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

log.p logical; if TRUE, probabilities p are given as log(p).

tol, maxiter tolerance and maximal number of iterations for the root search algorithm, see
method below and uniroot.

traceRootsearch

logical or integer in {0, 1, 2, 3}, determining the amount of information printed
during root search.

method a string specifying which algorithm is used for the “root search”. Originally,
the only method was a variation of "eachRoot", which is the default now when
only very few quantiles are sought. For large m.norMix(), the default is set to
"root2", currently.

l.interp positive integer for method = "interQpspline" or "interpspline", deter-
mining the number of values in each “mu-interval”.

n.mu.interp positive integer for method = "interQpspline" or "interpspline", deter-
mining the (maximal) number of mu-values to be used as knots for inverse in-
terpolation.

pnorMix 15

Details

Whereas the distribution function pnorMix is the trivial sum of weighted normal probabilities
(pnorm), its inverse, qnorMix is computed numerically: For each p we search for q such that
pnorMix(obj, q) == p, i.e., f(q) = 0 for f(q) := pnorMix(obj, q) - p. This is a root
finding problem which can be solved by uniroot(f, lower,upper,*). If length(p) <= 2 or
method = "eachRoot", this happens one for one for the sorted p’s. Otherwise, we start by doing
this for the outermost non-trivial (0 < p < 1) values of p.

For method = "interQpspline" or "interpspline", we now compute p. <- pnorMix(q., obj)
for values q. which are a grid of length l.interp in each interval [qj , qj+1], where qj are the “X-
extremes” plus (a sub sequence of length n.mu.interp of) theordered mu[j]’s. Then, we use
montone inverse interpolation (splinefun(q., p., method="monoH.FC")) plus a few (maxi-
mally maxiter, typically one!) Newton steps. The default, "interQpspline", additionally logit-
transforms the p. values to make the interpolation more linear. This method is faster, particularly
for large length(p).

Value

a numeric vector of the same length as p or q, respectively.

Author(s)

Very first version (for length-1 p,q) by Erik Jørgensen <Erik.Jorgensen@agrsci.dk>.

See Also

dnorMix for the density function.

Examples

MW.nm3 # the "strange skew" one
plot(MW.nm3)
now the cumlative :
x <- seq(-4,4, length=1001)
plot(x, pnorMix(x, MW.nm3), type="l", col=2)
and some of its inverse :
pp <- seq(.1, .9, by=.1)
plot(qnorMix(pp, MW.nm3), pp)

The "true" median of a normal mixture:
median.norMix <- function(x) qnorMix(1/2, x)
median.norMix(MW.nm3) ## -2.32

16 r.norMix

r.norMix Ratio of Normal Mixture to Corresponding Normal

Description

Compute r(x) = f(x)/f0(x) where f() is a normal mixture density and f0 the normal density
with the same mean and variance as f .

Usage

r.norMix(obj, x = NULL, xlim = NULL, n = 511, xy.return = TRUE)

Arguments

obj an object of class norMix.

x numeric vector with abscissa values where to evaluate the density. Default is
constructed from n (and xlim if specified).

xlim range of abscissa values, used if x == NULL. By default, xlim taken as mean
plus/minus 3 standard deviations of the normal mixture.

n number of abscissa values to generate if x is not specified.

xy.return logical indicating if the result should be a list or just a numeric vector, see below.

Value

It depends on xy.return. If it’s false, a numeric vector of the same length as x, if true (as per
default), a list that can be plotted, with components

x abscissa values corresponding to argument x.

y corresponding values r(x).

f0 values of the moment matching normal density f0(x).

Note

The ratio function is used in certain semi-parametric density estimation methods (and theory).

Examples

d3 <- norMix(m = 5*(0:2), w = c(0.6, 0.3, 0.1))
plot(d3)
rd3 <- r.norMix(d3)
str(rd3)
stopifnot(rd3 $ y == r.norMix(d3, xy.ret = FALSE))
par(new = TRUE)
plot(rd3, type = "l", col = 3, axes = FALSE, xlab = "", ylab="")
axis(4, col.axis=3)

rnorMix 17

rnorMix Generate ’Normal Mixture’ Distributed Random Numbers

Description

Generate n random numbers, distributed according to a normal mixture.

Usage

rnorMix(n, obj)

Arguments

n the number of random numbers desired.

obj an object of class norMix.

Details

For a mixture of m, i.e., m.norMix(obj), components, generate the number in each component as
multinomial, and then use rnorm for each.

Value

numeric vector of length n.

See Also

dnorMix for the density, and norMix for the construction and further methods.

Examples

x <- rnorMix(5000, MW.nm10)
hist(x)# you don't see the claw
plot(density(x), ylim = c(0,0.6),

main = "Estim. and true 'MW.nm10' density")
lines(MW.nm10, col = "orange")

18 sort.norMix

sort.norMix Sort Method for "norMix" Objects

Description

Sorting a "norMix" object (see norMix), sorts along the mu values; i.e., for the default decreasing = FALSE
the resulting x[,"mu"] are sorted from left to right.

Usage

S3 method for class 'norMix'
sort(x, decreasing = FALSE, ...)

Arguments

x an object of class "norMix".

decreasing logicial indicating if sorting should be up or down.

... further arguments passed to sort(x[,"mu"],*).

Value

a "norMix" object like x.

Examples

sort(MW.nm9)
stopifnot(identical(MW.nm2, sort(MW.nm2)))

Index

∗Topic cluster
clus2norMix, 2

∗Topic datasets
MarronWand, 6

∗Topic distribution
dnorMix, 3
MarronWand, 6
norMix, 8
plot.norMix, 12
pnorMix, 14
r.norMix, 16
rnorMix, 17

∗Topic hplot
plot.norMix, 12

∗Topic models
clus2norMix, 2
llnorMix, 4

∗Topic utilities
sort.norMix, 18

[, 9
[.norMix (norMix), 8

clara, 2
class, 9
clus2norMix, 2
cut, 11

dnorMix, 3, 5, 10, 13, 15, 17
dnorMixL (dnorMix), 3
do.call, 5
dpnorMix (dnorMix), 3

emstep.nm, 11
emstep.nm (llnorMix), 4
estep.nm, 11
estep.nm (llnorMix), 4

factor, 2

is.norMix (norMix), 8

lines, 13
lines.norMix (plot.norMix), 12
list, 5
llnorMix, 4, 11
logLik, 5

m.norMix, 14
m.norMix (norMix), 8
MarronWand, 6, 10
match.call, 11
matrix, 4, 5
mean.norMix (norMix), 8
mstep.nm (llnorMix), 4
MW.nm1 (MarronWand), 6
MW.nm10 (MarronWand), 6
MW.nm11 (MarronWand), 6
MW.nm12 (MarronWand), 6
MW.nm13 (MarronWand), 6
MW.nm14 (MarronWand), 6
MW.nm15 (MarronWand), 6
MW.nm16 (MarronWand), 6
MW.nm2 (MarronWand), 6
MW.nm3 (MarronWand), 6
MW.nm4 (MarronWand), 6
MW.nm5 (MarronWand), 6
MW.nm6 (MarronWand), 6
MW.nm7 (MarronWand), 6
MW.nm8 (MarronWand), 6
MW.nm9 (MarronWand), 6

nM2par (llnorMix), 4
norMix, 2–5, 8, 11–14, 17, 18
norMixEM, 4, 5
norMixEM (norMixFit), 10
norMixFit, 10
norMixMLE, 5, 9, 10
norMixMLE (norMixFit), 10

optim, 10, 11

pam, 2

19

20 INDEX

par2norMix (llnorMix), 4
plot.norMix, 3, 10, 12
pnorm, 15
pnorMix, 10, 14, 15
print.norMix (norMix), 8

qnorMix (pnorMix), 14

r.norMix, 16
rnorm, 17
rnorMix, 3, 10, 17

sort, 18
sort.norMix, 18
splinefun, 15
split, 2

uniroot, 14, 15

var.norMix (norMix), 8

	clus2norMix
	dnorMix
	llnorMix
	MarronWand
	norMix
	norMixFit
	plot.norMix
	pnorMix
	r.norMix
	rnorMix
	sort.norMix
	Index

