ordinalForest: Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables

Ordinal forests (OF) are a method for ordinal regression with high-dimensional and low-dimensional data that is able to predict the values of the ordinal target variable for new observations based on a training dataset. Using a (permutation-based) variable importance measure it is moreover possible to rank the covariates with respect to their importances in the prediction of the values of the ordinal target variable. OF will be presented in an upcoming technical report by Hornung et al.. The main functions of the package are: ordfor() (construction of OF) and predict.ordfor() (prediction of the target variable values of new observations).

Version: 2.0
Imports: Rcpp (≥ 0.11.2), combinat, ggplot2
LinkingTo: Rcpp
Published: 2017-07-26
Author: Roman Hornung
Maintainer: Roman Hornung <hornung at ibe.med.uni-muenchen.de>
License: GPL-2
NeedsCompilation: yes
CRAN checks: ordinalForest results

Downloads:

Reference manual: ordinalForest.pdf
Package source: ordinalForest_2.0.tar.gz
Windows binaries: r-devel: ordinalForest_2.0.zip, r-release: ordinalForest_2.0.zip, r-oldrel: ordinalForest_2.0.zip
OS X El Capitan binaries: r-release: ordinalForest_2.0.tgz
OS X Mavericks binaries: r-oldrel: ordinalForest_2.0.tgz
Old sources: ordinalForest archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ordinalForest to link to this page.