pROC: Display and Analyze ROC Curves

Tools for visualizing, smoothing and comparing receiver operating characteristic (ROC curves). (Partial) area under the curve (AUC) can be compared with statistical tests based on U-statistics or bootstrap. Confidence intervals can be computed for (p)AUC or ROC curves.

Version: 1.12.1
Depends: R (≥ 2.14)
Imports: plyr, utils, methods, Rcpp (≥ 0.11.1), ggplot2
LinkingTo: Rcpp
Suggests: microbenchmark, tcltk, MASS, logcondens, doParallel, testthat, vdiffr
Published: 2018-05-06
Author: Xavier Robin ORCID iD [cre, aut], Natacha Turck [aut], Alexandre Hainard [aut], Natalia Tiberti [aut], Frédérique Lisacek [aut], Jean-Charles Sanchez [aut], Markus Müller [aut], Stefan Siegert [ctb] (Fast DeLong code)
Maintainer: Xavier Robin <pROC-cran at xavier.robin.name>
BugReports: https://github.com/xrobin/pROC/issues
License: GPL (≥ 3)
URL: http://expasy.org/tools/pROC/
NeedsCompilation: yes
Citation: pROC citation info
Materials: README NEWS
CRAN checks: pROC results

Downloads:

Reference manual: pROC.pdf
Package source: pROC_1.12.1.tar.gz
Windows binaries: r-devel: pROC_1.12.1.zip, r-release: pROC_1.12.1.zip, r-oldrel: pROC_1.12.1.zip
OS X binaries: r-release: pROC_1.12.1.tgz, r-oldrel: pROC_1.12.1.tgz
Old sources: pROC archive

Reverse dependencies:

Reverse depends: bimixt, FRESA.CAD, RatingScaleReduction, RcmdrPlugin.ROC, roccv
Reverse imports: Biocomb, biomod2, BioPET, blkbox, BootValidation, CalibratR, chemmodlab, ebmc, EFS, elo, FAMILY, finalfit, GmAMisc, gren, LANDD, LEGIT, lilikoi, LogisticDx, mcca, mlDNA, quantable, r4lineups, randomUniformForest, reportROC, sambia, SCGLR, ThresholdROC, tpAUC, TrendInTrend, wevid, yardstick
Reverse suggests: aplore3, arsenal, bst, caret, caretEnsemble, Causata, dtree, eclust, ensemblepp, fscaret, kernDeepStackNet, mldr, OSTSC, palasso, prioritylasso, RcmdrPlugin.EZR, riskRegression, sjstats, waffect

Linking:

Please use the canonical form https://CRAN.R-project.org/package=pROC to link to this page.