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Abstract

This introduction to the R package partsm is a (slightly) modified version of López-de
Lacalle (2005).

It is well-known that some of the macroeconomic time series display stochastic trends,
moreover, when working with seasonally observed data stochastic seasonal cycles may ex-
ist as well. When these components, trend and seasonality, do not evolve independently,
traditional differencing filters may not be suitable. According to periodic autoregressive
time series models, a seasonally varying autoregressive parameters and a periodic differ-
encing filter are proposed for that case.

This paper focuses on practical issues showing the use of the partsm R-package. This
package allows the user to check for periodicity in the data, fit a periodic autoregressive
model of order p, PAR(p), select the periodic autoregressive lag order parameter, test
for periodic integration, fit a periodically integrated autoregressive model up to order 2,
PIAR, as well as to perform out-of-sample forecasts.

Keywords: Time series, PAR models, periodic integration, R.

1. Introduction

It is well-known that some of the macroeconomic time series display stochastic trends, more-
over, when working with seasonally observed data stochastic seasonal cycles may exist as well.
When these components, trend and seasonality, do not evolve independently, traditional dif-
ferencing filters may not be suitable. According to periodic autoregressive time series models,
a seasonally varying autoregressive parameters and a periodic differencing filter are proposed
for that case. For a review of this literature see Franses (1996), Franses and Paap (2004), and
references therein.

This paper focuses on practical issues showing the use of the partsm R-package. This package
allows the user to check for periodicity in the data, fit a periodic autoregressive model of
order p, PAR(p), select the periodic autoregressive lag order parameter, test for periodic
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integration, fit a periodically integrated autoregressive model up to order 2, PIAR, as well as
to perform out-of-sample forecasts.

The remaining of the paper is organized as follows. Section 2 briefly reviews the statistical
issues the partsm R-package is concerned, namely periodic autoregressive models and periodic
integration. Section 3 describes the package. Section 4 puts into practice the tools imple-
mented in the package showing how to use them and interpreting the results accordingly.

2. Theoretical overview

This section reviews the main theoretical concerns entailed in the process of fitting periodic
models and testing for a unit root in PAR models. To have a further insight into this mod-
els see Franses (1996), Franses and Paap (2004), and references therein. PAR models are
intended for seasonally obeserved data, particularly quarterly and monthly data. To save
space, hereafter we will consider quarterly data, S = 4.

2.1. Notation and representation of PAR models

The univariate representation of a PAR(p) model is as follows,

yt = φ1syt−1 + ...+ φpsyt−p + εt, εt ∼ iid(0, 1), (1)

for s = 1, ..., 4, for t = 1, 2, ..., n, where n is the number of observations. Hence, the autore-
gressive parameters vary with the season for each lag.

Since a PAR(p) entails four different AR(p) models, one for each season, it is useful to rewrite
(1) as the multivariate representation or vector of quarters representation.

Φ0 Ys,T = Φ1 Ys,T−1 + ...+ ΦP Ys,T−P + εT , εT ∼ iid(0, 1), (2)

where Φ0,Φ1, ...,ΦP are (4× 4) parameter matrices with the parameters in (1) as follows:

Φ0 (i, j) = 1 if i = j

= 0 if j > i

= −φi−j,i if j < y

Φk (i, j) = φi+4k−j,i,

for i, j = 1, 2, 3, 4 and k = 1, 2, ..., P . The univariate model of order p turns into a multivariate
model of order P = 1 + [(p− 1)/4], where [x] is the integer part of x.

Notice that in (1) each lag leads to previous observations in the seasonally observed data,
whereas in (2) lags have effect on the anually observed data in each season. That is, yt−1 is
the observation inmediately previous to yt, and Ys,T−1 is the observation in season s previous
to the year T .

Finally, if the roots of the factorized AR(p) model related to each season are all real values,
the PAR(p) model can be represented as

yt − αs yt−1 = β1s (yt−1 − αs−1 yt−2) + ...+ (3)

+ β(p−1)s (yt−(p−1) − αs−(p−1) yt−p) + εt, εt ∼ iid(0, 1).
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called the periodically differenced form of (1).

2.2. Periodic integration

Basically, a time series with a unit root, yt, is periodically integrated if there exist some αs

for s = 1, 2, ..., 4, in such a way that the transformed series (1 − αsB) yt does not contain a
unit root, where B is the backward operator. The definition of Franses (1996) is transcribed
below.

A quarterly time series yt is said to be periodically integrated of order 1 [PI]
when the differencing filter (1−αsB) is needed to remove the stochastic trend from
yt, where αs are seasonally varying parameters with the property that α1α2α3α4 =
1 and αs 6= α for all s = 1, 2, 3, 4.

At present, the package partsm only allow to estimate periodically integrated autoregressive
models up to order 21. Taking the periodically differenced representation, the following model
can be estimated by non-linear least squares.

yt − αsyt−1 = βs(yt−1 − αs−1yt−2) + εt, εt ∼ iid(0, 1), (4)

under the non-linear restriction
∏4

s=1 αs = 1 for s = 1, ..., 4. Obviously, for a first order PIAR
process β parameters are equal to zero. This model can be estimated by non-linear least
squares.

Note that the restriction above is fulfilled in these particular cases, among others. When
αs = 1 for s = 1, 2, 3, 4, and αs = −1 for s = 1, 2, 3, 4. The former case give rise to the
(1−L) differencing filter, whereas the latter entails the (1 +L) differencing filter. Therefore,
the restriction may involve the long run unit root 1, or the seasonal unit root -1, or neither
of them.

When the hypothesis above cannot be rejected it is said that the process is a PAR process for
a I(1) times series, PARI. Otherwise, the PAR model is known as a periodically integrated
AR model, PIAR, and the periodic differencing filter is obtained from the αs estimates in
equation (4).

In Section 4 we will see how to carry out this analysis following a common strategy for the
empirical analysis. First, we will take a look at the package we will use for it.

3. The partsm package

3.1. Description

This section documents the partsm package version 1.0 built on the R language and environ-
ment for statistical computing and graphics (Chambers, 1998; R Development Core Team,
2011). The package performs some of the relevant tests and models for fitting periodic au-
toregressive time series model introduced in the previous section.

1PAR models use to be more parsimonious models and a first or second order model may be suitable for
the data. In Franses (1996), only one out of the eleven series analysed required a higher order PAR model.
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The package is distributed under the General Public License [GPL] version 2 or newer. The
terms of this license are in a file called COPYING which you should receive with R. After
reading the terms of the license, the user will understand that the datasets and software
are provided in good faith, but the author does not warrant their accuracy nor can be held
responsible for the consequences of their use.

The source code and binaries of the package are available at CRAN (http://www.cran.
r-project.org/). To add it as a package copy the binaries in the subdirectory ‘library’ where
R is installed2. Alternatively, download the package source and install it with R CMD INSTALL

partsm_1.0.tar.gz. To install it from an R-console type install.packages("partsm") and
select a mirror near to your location.

3.2. Classes and methods

To store the relevant information provided by the implemented functions, the following classes
are defined: fit.partsm and fit.piartsm contain the information from a fitted AR, PAR,
or PIAR model; Ftest.partsm and LRur.partsm store the information from the statistical
tests in the package; and pred.piartsm contains information on a PIAR model forecasts. For
more information, see the standard help pages of the package3

Likewise, some methods are defined for objects of the classes cited above. To display the infor-
mation in each object, the show method displays the main results in a friendly format, whereas
summary extends the information provided by show. To build the matrices for the multivari-
ate representation, the PAR.MVrepr method can be applied on objects of class fit.partsm or
fit.piartsm.

4. Examples and applications

This Section complements the standard help pages provided with the package carrying out an
entire application. The use and interpretation of the functions implemented in the package
is described following the same steps as in a real application, devoting a subsection for each
one of them.

It is worth describing first one of the arguments that will appear in most of the functions.
The argument called detcomp refers to the deterministic components to include in the model.
Three types of regressors can be included: regular deterministic components, seasonal deter-
ministic components, and any regressor variable previously defined by the user. This argument
must be a list object with the following elements:

• regular=c(0,0,0), if the first and/or second element are set equal to 1, it indicates
that an intercept, and/or linear trend, respectively, are included. The third element
in regular is a vector indicating which seasonal dummies should be included. If
no seasonal dummies are desired it must be set equal to zero. For example, regu-

lar=c(1,0,c(1,2,3)) would include an intercept, no trend, and the first three seasonal
dummies.

• seasonal=c(0,0), if an element is set equal to 1, it indicates that seasonal intercepts,
and/or seasonal trends, respectively, are included in the model.

2Type R.home() in an R-console to find out the home directory.
3A ‘pdf’ version is available in the ‘partsm/doc’ subdirectory.

http://www.cran.r-project.org/
http://www.cran.r-project.org/
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• regvar=0, if none regressor variables are considered, this object must be set equal
to zero, otherwise, the names of a matrix object previously defined with the desired
regressors by columns should be indicated.

We will take for the examples below the logarithms of the Real Gross Domestic Product in
Germany. This time series, along with the others provided with the package, is analysed in
Franses (1996). Let’s start loading the package and the data.

> library(partsm)

> data("gergnp")

> lgergnp <- log(gergnp, base=exp(1))

4.1. Model order selection

The first issue we will deal with is the selection of the order for the periodic autoregressive
model. The function Fnextp.test performs a test for the significance of prospective lag
parameters of order p + 1 in an AR(p) or PAR(p) model. It is performed as an F -statistic
that sets the parameters of order p+1 equal to zero. We will use this statistic and the Akaike’s
[AIC] and Schwarz’s [BIC] information criteria to select the autoregressive order. The code
below computes these statistics for PAR models of order ranged between 1 and 4.

The function fit.ar.par fits a PAR model with seasonal intercepts and stores the results in
the lmpar object of class fit.partsm. Then, the AIC and BIC statistics are computed by
means of the function AIC available in the base R-package.

Finally, the null hypothesis φ(p+1),s = 0 is checked with Fnextp.test. The F -statistics and
the correspondig p-values are stored in Fnextp and Fpval, respectively. These statistics are
computed for PAR models with seasonal intercepts.

> detcomp <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0)

> aic <- bic <- Fnextp <- Fpval <- rep(NA, 4)

> for(p in 1:4){

+ lmpar <- fit.ar.par(wts=lgergnp, detcomp=detcomp, type="PAR", p=p)

+ aic[p] <- AIC(lmpar@lm.par, k=2)

+ bic[p] <- AIC(lmpar@lm.par, k=log(length(residuals(lmpar@lm.par))))

+ Fout <- Fnextp.test(wts=lgergnp, detcomp=detcomp, p=p, type="PAR")

+ Fnextp[p] <- Fout@Fstat

+ Fpval[p] <- Fout@pval

+ }

To save space, the results of the code are reported in Table 1. PAR parameters of order 2 are
significant, whereas, lag parameters up to order 4th appear to be equal to zero. Furthermore,
the AIC and BIC criteria reach the lowest value for a second order model. Therefore, we will
analyse the properties of a second order PAR model with seasonal intercepts for the lgergnp

time series.

4.2. Test for periodic variation in the autoregressive parameters

Once a PAR model has been defined, we can check for periodicity in the autoregressive
parameters of the model. Following the notation in (1), the function Fpar.test performs an
F -test for the null hypothesis of non-peridodicity, φis = φi for s = 1, 2, ..., 4 and i = 1, 2, ..., p.

When the null hypothesis is imposed an AR(p) is estimated, whereas in the alternative a
PAR(p) model is fitted. Then, based on the residual sum of squares of each model, the
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Table 1: Periodic autoregressive order selection

Criterion Periodic autoregressive order
1 2 3 4

AIC −661.60 −680.89 −669.84 −661.54
BIC −636.30 −644.44 −622.31 −603.00
F (φp+1,s = 0) 8.54 0.80 1.35 2.91

p-value 0.00 0.53 0.26 0.03

F -statistic is computed. When four seasonal intercepts are included the statistic follows an
F -distribution with (3 p, n-(4+4 p)) degrees of freedom, where n is the number of observations.

> dcsi <- list(regular=c(0,0,0), seasonal=c(1,0), regvar=0)

> out.Fparsi <- Fpar.test(wts=lgergnp, detcomp=dcsi, p=2)

> show(out.Fparsi)

----

Test for periodicity in the autoregressive parameters .

Null hypothesis: AR( 2 ) with the selected deterministic components.

Alternative hypothesis: PAR( 2 ) with the selected deterministic components.

F-statistic: 43.46 on 6 and 116 DF, p-value: 0 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

> dcsit <- list(regular=c(0,0,0), seasonal=c(1,1), regvar=0)

> out.Fparsit <- Fpar.test(wts=lgergnp, detcomp=dcsit, p=2)

> show(out.Fparsit)

----

Test for periodicity in the autoregressive parameters .

Null hypothesis: AR( 2 ) with the selected deterministic components.

Alternative hypothesis: PAR( 2 ) with the selected deterministic components.

F-statistic: 8.37 on 6 and 112 DF, p-value: 1.674542e-07 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The results of the code above show that periodicity is not rejected, therefore, the test cor-
roborates that a periodic model fits better to the data rather than an AR model, which is
constrained to seasonally constant parameters. With regard to the so-called deterministic
components, the reader can check that seasonal trends can be left out in the PAR(2) model.
For it, type summary(out.Fparsit) and check the t-statistics and p-values in the model fitted
for the alternative hypothesis for the parameters denoted as MDT..SeasTrnd.1:4.

4.3. Diagnostic for the fitted PAR model

The function Fsh.test performs an F -statistic to check whether seasonal heteroskedasticity
exist in the residuals of the fitted model, in this case, a PAR(2) model with seasonal intercepts.
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> par2 <- fit.ar.par(wts=lgergnp, type="PAR", p=2, detcomp=detcomp)

> Fsh.out <- Fsh.test(res=residuals(par2@lm.par), s=frequency(lgergnp))

> show(Fsh.out)

----

Test for seasonal heteroskedasticity .

F-statistic: 2.77 on 3 and 121 DF, p-value: 0.04469356 *

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Results in the code above show that seasonal heteroskedasticity is rejected at the 5% signif-
icance level. This analysis is very limited to validate the model and the user is suggested to
carry out complementary tests such as Ljung-Box test for autocorrelation, Box.test; Jarque-
Bera test for normality, jarque.bera.test; or runs.test for randomness4. Nevertheless,
this analysis is beyond the scope of this paper and we will move on to analyze some proper-
ties of the selected model for the lgergnp time series.

4.4. Eigenvalues of the estimated Γ ≡ Φ−1
0 Φ1 matrix

Taking the multivariate representation, as in equation (2), we can get the eigenvalues of the
estimated Γ ≡ Φ−1

0 Φ1 matrix. These eigenvalues provide a first view on the prospective unit
roots.

The function PAR.MVrepr applied on the out.par object of class fit.partsm below, shows
the matrices defined is Secion 2 for the multivariate representation and some complementary
information.

> out.par <- fit.ar.par(wts=lgergnp, type="PAR", detcomp=detcomp, p=2)

> out.MV <- PAR.MVrepr(out.par)

> out.MV

----

Multivariate representation of a PAR model.

Phi0:

1.000 0.000 0.000 0

-0.279 1.000 0.000 0

0.320 -1.237 1.000 0

0.000 -0.422 -0.637 1

Phi1:

0 0 -0.375 1.360

0 0 0.000 0.684

0 0 0.000 0.000

0 0 0.000 0.000

Eigen values of Gamma = Phi0^{-1} %*% Phi1:

0.965 0.036 0 0

4The first function is available in the base package provided with the standard distribution of R. The other
functions can be found in the package called tseries.
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Time varing accumulation of shocks:

0.173 1.182 0.492 1.360

0.140 1.158 0.573 1.064

0.118 1.054 0.552 0.881

0.134 1.160 0.594 1.010

There is only one eigen value of the Γ ≡ Φ−1
0 Φ1 matrix close to 1, hence, it seems that there

is a single unit root . Furthermore, since this value

There are not complex eigen values in the Γ ≡ Φ−1
0 Φ1 matrix. It seems to exist a single

unit root in the model. Furthermore, the eigenvalue close to 1 suggests that it may exist the
long run unit root 1. We will take again a look at this representation and will discuss the
remaining of the output of the function.

4.5. Test for a single unit root

The next step is to carry out formal tests to check whether a unit root exists. As it has
been mention in Section 2.2, a PAR model contains a unit root if

∏4
s=1 αs = 1. We have also

noticed that this restriction is satisfied in two particular cases, when α1, α2, α3, and α4 are
either 1 or -1. In these cases the periodic filter collapses into the filter related to the long run
unit root 1, (1−B), and to the seasonal unit root -1, (1 +B), respectively, and the model is
known as a PAR process for a I(1) time series, PARI.

In other cases in which the restriction α1α2α3α4 = 1 is fulfilled, the series is said to be guided
by a periodically integrated AR process, PIAR. Then, the periodically differencing filter is
(1− αsB) for s = 1, 2, ..., 4, where αs are inferred from the data by fitting the model (4).

Taking into account these remarks, and as Franses (1996) suggests, it is a wise analysis to test
first for the non-linear restriction

∏4
s=1 αs = 1. If this hypothesis cannot be rejected the time

series contains a unit root. To see whether the process is a PARI process with the long run
seasonal unit root 1, or the seasonal unit root -1, or a PIAR process, the following hypothesis
can be checked5,

H0 : αs = 1 for s = 1, 2, 3,

H0 : αs = −1 for s = 1, 2, 3.

The function LRurpar.test performs a likelihood ratio test for the first step we desire to
check. A one-side statistic is also computed as sign(

∏4
s=1 αs − 1) ∗ LR1/2, where α̂ are the

periodic differencing filter parameters estimated under the alternative. According to this
statistics, the results of the code shows that it cannot be rejected a unit root.

> out.LR <- LRurpar.test(wts=lgergnp, detcomp=detcomp, p=2)

> show(out.LR)

----

Likelihood ratio test for a single unit root in a PAR model of order 2 .

Null hypothesis: PAR( 2 ) restricted to a unit root.

Alternative hypothesis: PAR( 2 ).

5Note that only three restrictions are checked, since αs = 1 or − 1 just for s = 1, 2, 3 entails either α4 = 1
or α4 = −1.
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LR-statistic: 4.9

---

5 and 10 per cent asymptotic critical values:

when seasonal intercepts are included: 9.24, 7.52.

when seasonal intercepts and trends are included: 12.96, 10.50.

LRtau-statistic: -2.21

---

5 and 10 per cent asymptotic critical values:

when seasonal intercepts are included: -2.86, -2.57.

when seasonal intercepts and trends are included: -3.41, -3.12.

Now it is worth checking whether αs for s = 1, 2, 3, can be either 1 or −1. The corresponding
F -statistic for the PAR(2) model with seasonal intercepts is computed by Fpari1.out. The
first hypothesis is considered when type="PARI1" is selected. According to the results below,
this hypothesis, i.e. the long run unit root 1 is rejected.

> Fpari1.out <- Fpari.piar.test(wts=lgergnp, detcomp=detcomp, p=2, type="PARI1")

> show(Fpari1.out)

----

Test for a parameter restriction in a PAR model .

F-statistic: 20.83 on 3 and 114 DF, p-value: 7.884426e-11 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The reader can check that the seasonal unit root -1 is rejected as well, as we could expect
allowing for the eigen values of the estimated matrix Φ0−1 Φ1. For it, just select type="PARI-
1".

4.6. Autocorrelation function for several transformations of the original
data

In this subsection we will take a look at the nonperiodic autocorrelation function. The function
acf.ext1 computes the ACF for several transformations of the data6. Table 2 shows the ACF
of the original data, the first differenced seriesand the periodically differenced series, removing
four seasonal intercepts in the las two cases. According to the results is sections above other
transformations are not worth considering.

The ACF of the original series shows a clearly long-memory behaviour, since autocorrelations
are significant for high orders. It can also be observed that the periodically differenced series
performs better than the first differencing filter, since the latter does not remove the stochastic
behaviour.

The periodically differenced series and the corresponding seasonal path are displayed by plot-

pdiff. This function applies on object of class fit.piartsm as out.piar built above. Figure
1 shows that the periodic differencing filter success in removing the stochastic behaviour, since
the seasonal paths (at the bottom of the Figure) are parallel to each other and do not display
trending behaviour.

6See the standard help pages to see what transformations are considered.
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Table 2: Estimated autocorrelation function for several transformations of the original data

Transformations of the original data, yt
a

Lag yt ∆ yt − δ̂s (1− αsB) yt − δ̂s
0 1.00 *** 1.00 *** 1.00 ***
1 0.95 *** −0.15 . −0.12
2 0.90 *** −0.47 *** −0.20 *
3 0.89 *** −0.08 0.00
4 0.89 *** 0.71 *** 0.37 ***
5 0.84 *** −0.15 . −0.17 .
6 0.80 *** −0.42 *** −0.10
7 0.79 *** −0.05 0.06
8 0.78 *** 0.54 *** 0.02
9 0.74 *** −0.08 −0.07
10 0.70 *** −0.40 *** −0.07
11 0.69 *** −0.06 0.03
12 0.68 *** 0.49 *** 0.03
s.e. b 0 .09 0 .09 0 .09

a The following transformations are considered: yt: Original series; ∆ yt−δ̂s: residuals of the first differences
on four seasonal dummy variables; (1 − α̂sB) yt − δ̂s: residuals of the periodic differences on four seasonal
dummy variables.

bStandard error calculated as 1/n1/2.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

4.7. Time varying impact of accumulation of shocks

The Φ0 and Φ1 matrices can be used to compute the impact of accumulation of the shocks εt
defined as Γ Φ−1

0 , where Γ is Φ−1
0 Φ0. That row in which the values of the impact matrix are

the highest, entails that the corresponding season undergoes more severe impacts from the
accumulation of all shocks. Hence, it is more likely to display fluctuations in the stochastic
trend. Likewise, the column with the highest values is related to the season that has the
largest long-run impact. Put in other words, the impact matrix allow the practitioner to get
an idea about how the stochastic trend and the seasonal fluctuations are related.

To derive those matrices, the model (4) is estimated with fit.piar is used. This function
requires some values to initialize the non-linear estimator. By default, initial values are
computed for the non-linear modeal. However, in this version there may be cases in which
the estimates do not converge, giving an error message. In this case, a numeric vector with
initial values guessed by the user can be included. The code below let fit.piar to compute
initial values, hence, there is no need to include a vector called initvalues as an argument.

> out.piar <- fit.piar(wts=lgergnp, detcomp=detcomp, p=2)

> out.MV <- PAR.MVrepr(out.piar)

> out.MV

----

Multivariate representation of a PIAR model.
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Phi0:

1.000 0.000 0.000 0

-0.962 1.000 0.000 0

0.000 -0.912 1.000 0

0.000 0.000 -1.113 1

Phi1:

0 0 0 1.025

0 0 0 0.000

0 0 0 0.000

0 0 0 0.000

Eigen values of Gamma = Phi0^{-1} %*% Phi1:

1 0 0 0

Time varing accumulation of shocks:

1.000 1.040 1.140 1.025

0.962 1.000 1.097 0.985

0.877 0.912 1.000 0.898

0.976 1.015 1.113 1.000

For the series lgergnp, the row with the highest values is the fourth column. This means
that the stochastic trend is more likely to undergo changes in the fourth quarter. Reading
the impact matrix by columns, the one with the highest is the third column, hence, the third
quarter is more sensitive to changes in the stochastic trend.

Obviously, the results above also show that the PIAR model contains a root that is exactly
equal to 1 because that is precisely the restriction imposed in the parameters of the model.
The other slots of the output not cited here are matrices for internal use when making forecast
in a PIAR model.

4.8. Out-of-sample forecasts

The function predictpiar makes prediction based on PIAR model of order up to 2. By
default seasonal intercepts are included. This function computes one-year-ahead forecasting
on the basis of the multivariate representation. The forecast for the year T+ is YT+1 =
Φ−1
0 µ+ Φ−1

0 Φ1 YT . The confidence intervals are computed deriving the multivariate moving
averages representation from the matrices for the multivariate PIAR model.

The code below peforms 24 ahead forecasts in the PIAR(2) model. For programming conve-
nience, the number of forescasts, hpred, must be a multipple of the periodicity of the data.
The output of this function provides an object of class pred.piartsm containing the forecast,
the standard errors, the upper and lower 95 per cent confidence bound, as well as the input,
i.e., the original data, the order of the model, and the number of predictions.

> out.pred <- predictpiar(wts=lgergnp, p=2, hpred=24)

> show(out.pred)

----

Forecasts for a PIAR model of order 2 .
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Figure 1: Periodically differenced data and seasonal paths
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fcast fse ucb lcb

1991.01 6.122634 0.01367962 6.149446 6.095822

1991.02 6.144360 0.01422858 6.172248 6.116472

1991.03 6.157955 0.02203231 6.201138 6.114772

1991.04 6.211668 0.02392440 6.258560 6.164776

1992.01 6.155275 0.02971129 6.213509 6.097041

1992.02 6.175753 0.02791600 6.230469 6.121038

1992.03 6.186578 0.03080438 6.246954 6.126201

1992.04 6.243526 0.03396759 6.310103 6.176950

1993.01 6.187916 0.03867463 6.263719 6.112114

1993.02 6.207147 0.03666870 6.279017 6.135276

1993.03 6.215201 0.03766017 6.289015 6.141387

1993.04 6.275385 0.04165985 6.357038 6.193731

1994.01 6.220557 0.04589661 6.310515 6.130600

1994.02 6.238540 0.04369792 6.324188 6.152892

1994.03 6.243824 0.04344970 6.328985 6.158662

1994.04 6.307243 0.04813835 6.401594 6.212892

1995.01 6.253198 0.05212672 6.355367 6.151030

1995.02 6.269933 0.04974344 6.367431 6.172436

1995.03 6.272447 0.04855380 6.367612 6.177281
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1995.04 6.339101 0.05384290 6.444633 6.233569

1996.01 6.285840 0.05768786 6.398908 6.172771

1996.02 6.301327 0.05512995 6.409382 6.193272

1996.03 6.301070 0.05317017 6.405283 6.196856

1996.04 6.370960 0.05899844 6.486597 6.255323

’fcast’: Forecast; ’fse’: Forecast standard error;

’ucb’: Upper confidence bound; ’lcb’: Lower condidence bound.

Remember that the data are scaled in logarithms, hence, for the results to be interpreted,
the original scale must be set. The code below makes this task and plots a graphic with the
forecast and confidence intervals displayed in Figure 2.

> out.pred@wts <- exp(1)^out.pred@wts

> out.pred@fcast <- exp(1)^out.pred@fcast

> out.pred@ucb <- exp(1)^out.pred@ucb

> out.pred@lcb <- exp(1)^out.pred@lcb

> plotpredpiar(out.pred)

Figure 2: Forecast and confidence intervals
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