Package ‘shiny’

June 23, 2020
Type Package
Title Web Application Framework for R
Version 1.5.0

Description Makes it incredibly easy to build interactive web
applications with R. Automatic ““reactive" binding between inputs and
outputs and extensive prebuilt widgets make it possible to build
beautiful, responsive, and powerful applications with minimal effort.

License GPL-3 | file LICENSE
Depends R (>= 3.0.2), methods

Imports utils, grDevices, httpuv (>= 1.5.2), mime (>= 0.3), jsonlite
(>=0.9.16), xtable, digest, htmltools (>= 0.4.0.9003), R6 (>=
2.0), sourcetools, later (>= 1.0.0), promises (>= 1.1.0),
tools, crayon, rlang (>= 0.4.0), fastmap (>= 1.0.0), withr,
commonmark (>= 1.7), glue (>=1.3.2)

Suggests datasets, Cairo (>= 1.5-5), testthat (>= 2.1.1), knitr (>=
1.6), markdown, rmarkdown, ggplot2, reactlog (>= 1.0.0),
magrittr, shinytest, yaml, future, dygraphs, ragg, showtext

URL http://shiny.rstudio.com

BugReports https://github.com/rstudio/shiny/issues

Collate 'app.R''app_template.R' 'bookmark-state-local.R' 'stack.R’
'bookmark-state.R' 'bootstrap-deprecated.R'
'bootstrap-layout.R' 'globals.R' 'conditions.R' 'map.R’
'utils.R' 'bootstrap.R' 'cache-context.R' 'cache-disk.R'
'cache-memory.R' 'cache-utils.R' 'diagnose.R' 'fileupload.R'
'font-awesome.R' 'graph.R' 'reactives.R' 'reactive-domains.R'
'history.R' 'hooks.R' 'html-deps.R' 'htmltools.R’
'image-interact-opts.R' 'image-interact.R' imageutils.R’
'input-action.R' 'input-checkbox.R' 'input-checkboxgroup.R'
'input-date.R' 'input-daterange.R' 'input-file.R'
'input-numeric.R' 'input-password.R' 'input-radiobuttons.R'
'input-select.R' 'input-slider.R' 'input-submit.R'

'input-text.R' 'input-textarea.R' 'input-utils.R’

http://shiny.rstudio.com
https://github.com/rstudio/shiny/issues

1.

'insert-tab.R' 'insert-ui.R' 'jqueryui.R' 'middleware-shiny.R'
'middleware.R’ 'timer.R' 'shiny.R' 'mock-session.R' 'modal.R’
'modules.R' 'notifications.R' ‘priorityqueue.R' 'progress.R’
'react.R' 'reexports.R' 'render-cached-plot.R' render-plot.R'
'render-table.R' 'run-url.R' 'serializers.R'
'server-input-handlers.R' 'server.R' 'shiny-options.R'
'shinyui.R' 'shinywrappers.R' 'showcase.R' 'snapshot.R' 'tar.R’
'test-export.R' 'test-server.R' 'test.R' 'update-input.R'

RoxygenNote 7.1.0.9000
Encoding UTF-8
NeedsCompilation no

Author Winston Chang [aut, cre],
Joe Cheng [aut],
JJ Allaire [aut],
Yihui Xie [aut],
Jonathan McPherson [aut],
RStudio [cph],
jQuery Foundation [cph] (jQuery library and jQuery UI library),
jQuery contributors [ctb, cph] (jQuery library; authors listed in
inst/www/shared/jquery-AUTHORS..txt),
jQuery UI contributors [ctb, cph] (jQuery Ul library; authors listed in
inst/www/shared/jqueryui/AUTHORS.txt),
Mark Otto [ctb] (Bootstrap library),
Jacob Thornton [ctb] (Bootstrap library),
Bootstrap contributors [ctb] (Bootstrap library),
Twitter, Inc [cph] (Bootstrap library),
Alexander Farkas [ctb, cph] (htmlS5shiv library),
Scott Jehl [ctb, cph] (Respond.js library),
Stefan Petre [ctb, cph] (Bootstrap-datepicker library),
Andrew Rowls [ctb, cph] (Bootstrap-datepicker library),
Dave Gandy [ctb, cph] (Font-Awesome font),
Brian Reavis [ctb, cph] (selectize.js library),
Kristopher Michael Kowal [ctb, cph] (es5-shim library),
es5-shim contributors [ctb, cph] (es5-shim library),
Denis Ineshin [ctb, cph] (ion.rangeSlider library),
Sami Samhuri [ctb, cph] (Javascript strftime library),
SpryMedia Limited [ctb, cph] (DataTables library),
John Fraser [ctb, cph] (showdown.js library),
John Gruber [ctb, cph] (showdown.js library),
Ivan Sagalaev [ctb, cph] (highlight.js library),
R Core Team [ctb, cph] (tar implementation from R)

Maintainer Winston Chang <winston@rstudio.com>
Repository CRAN

Date/Publication 2020-06-23 13:30:03 UTC

R topics documented: 3

R topics documented:

shiny-package L 6
absolutePanel 6
actionButton L L. e e e e 8
addResourcePath 10
bookmarkButton 11
bootstrapLib L. e 12
bootstrapPage e 13
brushedPoints e e 14
brushOpts o 16
callModule e 17
checkboxGrouplnput 18
checkboxInput. e 20
clickOpts e 21
COluMN e e e e e e e e 21
conditionalPanel 22
createRenderFunction L o 24
createWebDependency e 25
dateInput e e 26
dateRangelnput L 28
dblclickOpts 31
debounce e e e 31
diskCache e 33
domains e 37
downloadButton 38
downloadHandler L 39
enableBookmarking o oL oo 40
exportTestValues L 44
exprToFunction 46
filelnput e 47
fillPage e e 49
fillRow e 50
fixedPage 52
flowLayout e 53
fluidPage 54
freezeReactiveVal 56
getCurrentOutputInfo L 57
getQueryString L. e e e e e 59
getShinyOption L 61
helpText o 63
hoverOpts 63
htmlOutput e 64
ICON . . . e e 65
inputPanel 66
insertTab e e e e e 66
insertUL e e e e e 69

installExprFunctiono 71

R topics documented:

invalidateLater e e e 72
is.reactivevalues L e e e e e e e e e e 73
1solate e 74
iSRunning 75
knitr_methods 76
loadSupport 76
makeReactiveBinding 77
markdown L L e e e e e e e e 78
markRenderFunction 79
maskReactiveContext e 80
memoryCache e 80
MockShinySession L e 83
modalButton L e 90
modalDialog 90
moduleServer L. e e e e e e e 93
navbarPage L 95
navlistPanel 97
NS e e e 98
numericlnput Lo 99
ODSEIVE o o e e e e e 101
observeEvent e e 103
onBookmark e 107
onFlush e 111
ONSIOP .+ ¢ v v o e e e e e e 112
outputOptioNS o e e e e e e e e e e e 113
parseQueryString L L e e e e 114
passwordlnput 115
plotOutput 116
PIOtPNG e e 121
Progress e 122
radioButtons L e 125
TEACHIVE o i e e e e e e e e e 127
reactiveFileReadero 129
reactivePoll 130
reactiveTimer L 132
reactiveVal L L e 133
reactiveValues L e e 135
reactiveValuesToList 136
reactlogo e e e 137
registerlnputHandler oL o L 138
removelnputHandler 139
renderCachedPlot 140
renderDataTable 145
renderlmage L e 147
renderPlot 149
renderPrint L L 151
renderTable e 153

renderTeXt L e 154

R topics documented: 5

renderUL o L 156
repeatable L e e 157
TEO « v v o e e e e e e e e e e e e e e e e e e e 158
restorelnput oL e 161
TUNAPD + o v v e e e e e e e e e e e e e e e e 161
runExampleo 163
runGadget 164
runTests e 165
runUrl . . . L e e e e 166
safeError L L 167
selectInput L L e 169
serverInfo 171
SESSION . . v v v L e e e e e e e 172
setBookmarkExclude 175
ShinYAPD . . . o e e e 175
shinyAppTemplate 177
showBookmarkUrlModal 179
showModal e 179
showNotification e 180
showTab o . e 181
sidebarLayout 183
sizeGrowthRatio e 185
sliderInput e 186
snapshotExclude 188
snapshotPreprocessInput 189
snapshotPreprocessOutput 189
splitLayout 190
SOPADD -« « o e e e 191
submitButton Lo 191
tableOutput e 193
tabPanel e 194
tabsetPanel 195
eSESEIVET e e e e 196
textArealnput L 198
textlnputo 199
exXtOUtPUL L e e e e e e 200
titlePanel L 201
updateActionButton Lo 202
updateCheckboxGrouplnput 204
updateCheckboxInput L 206
updateDatelnput 207
updateDateRangelnput 208
updateNumericInput 210
updateQueryString L e e e e e e 212
updateRadioButtons 214
updateSelectInput L. e 216
updateSliderInput 218

updateTabsetPanel 220

6 absolutePanel

updateTextArealnput L e 221
updateTextInput 222
urlModal e 224
validate e e e e e e e 224
varSelectlnput 226
verticalLayout e e e e e e 228
VIBWET . . . o ot et e e e e e e e e e e 229
wellPanel e 230
withMathJax e 231
withProgress L 231

Index 234

shiny-package Web Application Framework for R
Description

Shiny makes it incredibly easy to build interactive web applications with R. Automatic "reactive"
binding between inputs and outputs and extensive prebuilt widgets make it possible to build beauti-
ful, responsive, and powerful applications with minimal effort.

Details

The Shiny tutorial at http://shiny.rstudio.com/tutorial/ explains the framework in depth,
walks you through building a simple application, and includes extensive annotated examples.

See Also

shiny-options for documentation about global options.

absolutePanel Panel with absolute positioning

Description

Creates a panel whose contents are absolutely positioned.

http://shiny.rstudio.com/tutorial/

absolutePanel

Usage
absolutePanel(
top = NULL,
left = NULL,
right = NULL,
bottom = NULL,
width = NULL,

height = NULL,
draggable = FALSE,
fixed = FALSE,

cursor = c("auto”, "move"”, "default”, "inherit")
)
fixedPanel(
top = NULL,
left = NULL,
right = NULL,
bottom = NULL,
width = NULL,
height = NULL,
draggable = FALSE,
cursor = c("auto”, "move", "default”, "inherit")
)
Arguments
Attributes (named arguments) or children (unnamed arguments) that should be
included in the panel.
top Distance between the top of the panel, and the top of the page or parent con-
tainer.
left Distance between the left side of the panel, and the left of the page or parent
container.
right Distance between the right side of the panel, and the right of the page or parent
container.
bottom Distance between the bottom of the panel, and the bottom of the page or parent
container.
width Width of the panel.
height Height of the panel.
draggable If TRUE, allows the user to move the panel by clicking and dragging.
fixed Positions the panel relative to the browser window and prevents it from being
scrolled with the rest of the page.
cursor The type of cursor that should appear when the user mouses over the panel. Use

"move” for a north-east-south-west icon, "default” for the usual cursor arrow,

8 actionButton

or "inherit"” for the usual cursor behavior (including changing to an I-beam
when the cursor is over text). The default is "auto”, which is equivalent to

n o ons

ifelse(draggable, "move”, "inherit").

Details

The absolutePanel function creates a <div> tag whose CSS position is set to absolute (or fixed
if fixed = TRUE). The way absolute positioning works in HTML is that absolute coordinates are
specified relative to its nearest parent element whose position is not set to static (which is the
default), and if no such parent is found, then relative to the page borders. If you’re not sure what
that means, just keep in mind that you may get strange results if you use absolutePanel from
inside of certain types of panels.

The fixedPanel function is the same as absolutePanel with fixed = TRUE.

The position (top, left, right, bottom) and size (width, height) parameters are all optional, but
you should specify exactly two of top, bottom, and height and exactly two of left, right, and
width for predictable results.

Like most other distance parameters in Shiny, the position and size parameters take a number (in-
terpreted as pixels) or a valid CSS size string, such as "100px" (100 pixels) or "25%".

For arcane HTML reasons, to have the panel fill the page or parent you should specify @ for top,
left, right, and bottom rather than the more obvious width = "100%" and height = "100%".

Value

An HTML element or list of elements.

actionButton Action button/link

Description

Creates an action button or link whose value is initially zero, and increments by one each time it is

pressed.
Usage
actionButton(inputld, label, icon = NULL, width = NULL, ...)
actionLink(inputId, label, icon = NULL, ...)
Arguments
inputId The input slot that will be used to access the value.
label The contents of the button or link—usually a text label, but you could also use
any other HTML, like an image.
icon An optional icon() to appear on the button.
width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().

Named attributes to be applied to the button or link.

actionButton 9

Server value

An integer of class "shinyActionButtonValue”. This class differs from ordinary integers in that
a value of 0 is considered "falsy". This implies two things:

* Event handlers (e.g., observeEvent(), eventReactive()) won’t execute on initial load.

* Input validation (e.g., req(), need()) will fail on initial load.

See Also

observeEvent() and eventReactive()

Other input elements: checkboxGroupInput(), checkboxInput(),dateInput(),dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”obs”, "Number of observations”, @, 1000, 500),
actionButton(”goButton”, "Go!"”, class = "btn-success"),
plotOutput("distPlot”)

)

server <- function(input, output) {
output$distPlot <- renderPlot({
Take a dependency on input$goButton. This will run once initially,
because the value changes from NULL to 0.
input$goButton

Use isolate() to avoid dependency on input$obs
dist <- isolate(rnorm(input$obs))
hist(dist)
)
3

shinyApp(ui, server)

}

Example of adding extra class values
actionButton("largeButton”, "Large Primary Button”, class = "btn-primary btn-1g")
actionLink("infoLink"”, "Information Link", class = "btn-info")

10 addResourcePath

addResourcePath Resource Publishing

Description

Add, remove, or list directory of static resources to Shiny’s web server, with the given path prefix.
Primarily intended for package authors to make supporting JavaScript/CSS files available to their
components.

Usage

addResourcePath(prefix, directoryPath)
resourcePaths()

removeResourcePath(prefix)

Arguments

prefix The URL prefix (without slashes). Valid characters are a-z, A-Z, 0-9, hyphen,
period, and underscore. For example, a value of *foo’ means that any request
paths that begin with ’/foo” will be mapped to the given directory.

directoryPath The directory that contains the static resources to be served.

Details

Shiny provides two ways of serving static files (i.e., resources):
1. Static files under the www/ directory are automatically made available under a request path
that begins with /.
2. addResourcePath() makes static files in a directoryPath available under a request path
that begins with prefix.
The second approach is primarily intended for package authors to make supporting JavaScript/CSS
files available to their components.

Tools for managing static resources published by Shiny’s web server:

* addResourcePath() adds a directory of static resources.
* resourcePaths() lists the currently active resource mappings.

* removeResourcePath() removes a directory of static resources.

See Also

singleton()

bookmarkButton 11

Examples

addResourcePath('datasets', system.file('data', package='datasets'))
resourcePaths()

removeResourcePath('datasets"')

resourcePaths()

make sure all resources are removed
lapply(names(resourcePaths()), removeResourcePath)

bookmarkButton Create a button for bookmarking/sharing

Description

A bookmarkButton is a actionButton() with a default label that consists of a link icon and the
text "Bookmark...". It is meant to be used for bookmarking state.

Usage

bookmarkButton(
label = "Bookmark...",
icon = shiny::icon("link", 1lib = "glyphicon"),
title = "Bookmark this application's state and get a URL for sharing.”,

id = "._bookmark_"

)
Arguments

label The contents of the button or link—usually a text label, but you could also use
any other HTML, like an image.

icon An optional icon() to appear on the button.

title A tooltip that is shown when the mouse cursor hovers over the button.

Named attributes to be applied to the button or link.

id An ID for the bookmark button. The only time it is necessary to set the ID unless
you have more than one bookmark button in your application. If you specify an
input ID, it should be excluded from bookmarking with setBookmarkExclude(),
and you must create an observer that does the bookmarking when the button is
pressed. See the examples below.

See Also

enableBookmarking() for more examples.

12 bootstrapLib

Examples

Only run these examples in interactive sessions
if (interactive()) {

This example shows how to use multiple bookmark buttons. If you only need
a single bookmark button, see examples in ?enableBookmarking.
ui <- function(request) {
fluidPage(
tabsetPanel(id = "tabs”,
tabPanel("One"”,
checkboxInput(”chk1", "Checkbox 1"),
bookmarkButton(id = "bookmark1")
),
tabPanel ("Two",
checkboxInput(”chk2", "Checkbox 2"),
bookmarkButton(id = "bookmark2")
)
)
)
3
server <- function(input, output, session) {
Need to exclude the buttons from themselves being bookmarked
setBookmarkExclude(c("bookmarkl1”, "bookmark2"))

Trigger bookmarking with either button
observeEvent (input$bookmarkl, {
session$doBookmark()
H
observeEvent (input$bookmark2, {
session$doBookmark()
»
3
enableBookmarking(store = "url”)
shinyApp(ui, server)

}

bootstrapLib Bootstrap libraries

Description
This function returns a set of web dependencies necessary for using Bootstrap components in a web
page.

Usage

bootstrapLib(theme = NULL)

bootstrapPage 13

Arguments
theme Alternative Bootstrap stylesheet (normally a css file within the www directory,
e.g. www/bootstrap.css)
Details

Itisn’t necessary to call this function if you use bootstrapPage () or others which use bootstrapPage,
such basicPage(), fluidPage(), fillPage(), pageWithSidebar(), and navbarPage(), be-
cause they already include the Bootstrap web dependencies.

bootstrapPage Create a Bootstrap page

Description

Create a Shiny UI page that loads the CSS and JavaScript for Bootstrap, and has no content in the
page body (other than what you provide).

Usage

bootstrapPage(..., title = NULL, responsive = NULL, theme = NULL)

basicPage(...)

Arguments
The contents of the document body.
title The browser window title (defaults to the host URL of the page)
responsive This option is deprecated; it is no longer optional with Bootstrap 3.
theme Alternative Bootstrap stylesheet (normally a css file within the www directory,
e.g. www/bootstrap.css)
Details

This function is primarily intended for users who are proficient in HTML/CSS, and know how to
lay out pages in Bootstrap. Most applications should use fluidPage () along with layout functions
like fluidRow() and sidebarLayout().

Value

A Ul defintion that can be passed to the shinyUI function.

Note

The basicPage function is deprecated, you should use the fluidPage () function instead.

http://getbootstrap.com/

See Also

fluidPage(), fix

edPage()

brushedPoints

brushedPoints

Find rows of data selected on an interactive plot.

Description

brushedPoints() returns rows from a data frame which are under a brush. nearPoints() returns
rows from a data frame which are near a click, hover, or double-click. Alternatively, set al1Rows
= TRUE to return all rows from the input data with an additional column selected_ that indicates
which rows of the would be selected.

Usage

brushedPoints(
df,
brush,
xvar = NULL,
yvar = NULL,

panelvar1 = NULL,
panelvar2 = NULL,
allRows = FALSE

)

nearPoints(
df,
coordinfo,
xvar = NULL,
yvar = NULL,

panelvar1l = NULL,
panelvar2 = NULL,

threshold

5,

maxpoints = NULL,
addDist = FALSE,
allRows = FALSE

Arguments

df
brush, coordinfo

xvar, yvar

A data frame from which to select rows.

The data from a brush or click/dblclick/hover event e.g. input$plot_brush,

input$plot_click

A string giving the name of the variable on the x or y axis. These are only
required for base graphics, and must be the name of a column in df.

brushedPoints 15

panelvarl, panelvar?2
A string giving the name of a panel variable. For expert use only; in most cases
these will be automatically derived from the ggplot2 spec.

allRows If FALSE (the default) return a data frame containing the selected rows. If
TRUE, the input data frame will have a new column, selected_, which indicates
whether the row was selected or not.

threshold A maximum distance (in pixels) to the pointer location. Rows in the data frame
will be selected if the distance to the pointer is less than threshold.

maxpoints Maximum number of rows to return. If NULL (the default), will return all rows
within the threshold distance.

addDist If TRUE, add a column named dist_ that contains the distance from the coor-
dinate to the point, in pixels. When no pointer event has yet occurred, the value
of dist_ will be NA.

Value

A data frame based on df, containing the observations selected by the brush or near the click event.
For nearPoints(), the rows will be sorted by distance to the event.

If al1Rows = TRUE, then all rows will returned, along with a new selected_ column that indicates
whether or not the point was selected. The output from nearPoints() will no longer be sorted, but
you can set addDist = TRUE to get an additional column that gives the pixel distance to the pointer.

ggplot2

For plots created with ggplot2, it is not necessary to specify the column names to xvar, yvar,
panelvari, and panelvar? as that information can be automatically derived from the plot specifi-
cation.

Note, however, that this will not work if you use a computed column, like aes(speed/2, dist)).
Instead, we recommend that you modify the data first, and then make the plot with "raw" columns
in the modified data.

Brushing

If x or y column is a factor, then it will be coerced to an integer vector. If it is a character vector, then
it will be coerced to a factor and then integer vector. This means that the brush will be considered
to cover a given character/factor value when it covers the center value.

If the brush is operating in just the x or y directions (e.g., with brushOpts(direction = "x"), then
this function will filter out points using just the x or y variable, whichever is appropriate.

See Also

plotOutput() for example usage.

Examples

Not run:
Note that in practice, these examples would need to go in reactives
or observers.

16 brushOpts

This would select all points within 5 pixels of the click
nearPoints(mtcars, input$plot_click)

Select just the nearest point within 10 pixels of the click
nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1)

End(Not run)

brushOpts Create an object representing brushing options

Description

This generates an object representing brushing options, to be passed as the brush argument of
imageOQutput () or plotOutput().

Usage

brushOpts(
id,
fill = "#9cf",
stroke = "#036",
opacity = 0.25,

delay = 300,
delayType = c("debounce”, "throttle"),
clip = TRUE,
direction = c("xy", "x", "y"),
resetOnNew = FALSE
)
Arguments
id Input value name. For example, if the value is "plot_brush”, then the coordi-
nates will be available as input$plot_brush. Multiple imageOutput/plotOutput
calls may share the same id value; brushing one image or plot will cause any
other brushes with the same id to disappear.
fill Fill color of the brush.
stroke Outline color of the brush.
opacity Opacity of the brush
delay How long to delay (in milliseconds) when debouncing or throttling, before send-
ing the brush data to the server.
delayType The type of algorithm for limiting the number of brush events. Use "throttle”

to limit the number of brush events to one every delay milliseconds. Use
"debounce” to suspend events while the cursor is moving, and wait until the
cursor has been at rest for delay milliseconds before sending an event.

callModule 17

clip Should the brush area be clipped to the plotting area? If FALSE, then the user
will be able to brush outside the plotting area, as long as it is still inside the
image.

direction The direction for brushing. If "xy", the brush can be drawn and moved in both

x and y directions. If "x", or "y", the brush wil work horizontally or vertically.

resetOnNew When a new image is sent to the browser (via renderImage()), should the brush
be reset? The default, FALSE, is useful if you want to update the plot while
keeping the brush. Using TRUE is useful if you want to clear the brush whenever
the plot is updated.

callModule Invoke a Shiny module

Description

Note: As of Shiny 1.5.0, we recommend using moduleServer () instead of callModule (), because
the syntax is a little easier to understand, and modules created with moduleServer can be tested
with testServer().

Usage
callModule(module, id, ..., session = getDefaultReactiveDomain())
Arguments
module A Shiny module server function
id An ID string that corresponds with the ID used to call the module’s UI function
Additional parameters to pass to module server function
session Session from which to make a child scope (the default should almost always be
used)
Value

The return value, if any, from executing the module server function

18 checkboxGrouplnput

checkboxGroupInput Checkbox Group Input Control

Description

Create a group of checkboxes that can be used to toggle multiple choices independently. The server
will receive the input as a character vector of the selected values.

Usage

checkboxGroupInput(
inputlId,
label,
choices = NULL,
selected = NULL,
inline = FALSE,
width = NULL,
choiceNames = NULL,
choiceValues = NULL

)
Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

choices List of values to show checkboxes for. If elements of the list are named then that
name rather than the value is displayed to the user. If this argument is provided,
then choiceNames and choiceValues must not be provided, and vice-versa.
The values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

selected The values that should be initially selected, if any.

inline If TRUE, render the choices inline (i.e. horizontally)

width The width of the input, e.g. '400px "', or '100%'; see validateCssUnit().

choiceNames, choiceValues

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of UI object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

Value

A list of HTML elements that can be added to a Ul definition.

checkboxGrouplnput 19

Server value

Character vector of values corresponding to the boxes that are checked.

See Also

checkboxInput(), updateCheckboxGroupInput()

Other input elements: actionButton(), checkboxInput(), dateInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
checkboxGroupInput(”variable”, "Variables to show:",
c("Cylinders"” = "cyl",
"Transmission” = "am",
"Gears" = "gear")),
tableOutput (“data”)

)

server <- function(input, output, session) {
output$data <- renderTable({
mtcars[, c("mpg”, input$variable), drop = FALSE]
}, rownames = TRUE)

3
shinyApp(ui, server)

ui <- fluidPage(
checkboxGroupInput("”icons”, "Choose icons:",
choiceNames =
list(icon("calendar"”), icon("bed"),
icon("cog"), icon("bug")),
choiceValues =
list("calendar”, "bed”, "cog"”, "bug")
),
textOutput(”"txt")
)

server <- function(input, output, session) {
output$txt <- renderText({
icons <- paste(input$icons, collapse = ", ")
paste(”You chose”, icons)
1))
}

shinyApp(ui, server)

}

20 checkboxInput

checkboxInput Checkbox Input Control

Description

Create a checkbox that can be used to specify logical values.

Usage

checkboxInput(inputId, label, value = FALSE, width = NULL)

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value (TRUE or FALSE).

width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().
Value

A checkbox control that can be added to a UI definition.

Server value

TRUE if checked, FALSE otherwise.

See Also

checkboxGroupInput(), updateCheckboxInput()

Other input elements: actionButton(), checkboxGroupInput(), dateInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
checkboxInput("somevalue”, "Some value”, FALSE),
verbatimTextOutput("”value”)
)
server <- function(input, output) {
output$value <- renderText({ input$somevalue })
3
shinyApp(ui, server)

}

clickOpts 21

clickOpts Create an object representing click options

Description

This generates an object representing click options, to be passed as the click argument of imageOutput ()
or plotOutput().

Usage
clickOpts(id, clip = TRUE)

Arguments
id Input value name. For example, if the value is "plot_click”, then the click
coordinates will be available as input$plot_click.
clip Should the click area be clipped to the plotting area? If FALSE, then the server
will receive click events even when the mouse is outside the plotting area, as
long as it is still inside the image.
column Create a column within a Ul definition
Description

Create a column for use within a fluidRow() or fixedRow()

Usage
column(width, ..., offset = @)
Arguments
width The grid width of the column (must be between 1 and 12)
Elements to include within the column
offset The number of columns to offset this column from the end of the previous col-
umn.
Value

A column that can be included within a fluidRow() or fixedRow().

See Also
fluidRow(), fixedRow().

22 conditionalPanel

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(

fluidRow(
column(4,
sliderInput(”obs"”, "Number of observations:",
min = 1, max = 1000, value = 500)
),
column(s,
plotOutput("distPlot")
)
)

)

server <- function(input, output) {
output$distPlot <- renderPlot({
hist(rnorm(input$obs))
1))
3

shinyApp(ui, server)

ui <- fluidPage(
fluidRow(
column(width
ngn
),
column(width = 3, offset = 2,
"3 offset 2"
)
)
)
shinyApp(ui, server = function(input, output) { })
3

4’

conditionalPanel Conditional Panel

Description
Creates a panel that is visible or not, depending on the value of a JavaScript expression. The JS
expression is evaluated once at startup and whenever Shiny detects a relevant change in input/output.
Usage

conditionalPanel(condition, ..., ns = NS(NULL))

conditionalPanel 23

Arguments
condition A JavaScript expression that will be evaluated repeatedly to determine whether
the panel should be displayed.
Elements to include in the panel.
ns The namespace () object of the current module, if any.
Details

In the JS expression, you can refer to input and output JavaScript objects that contain the current
values of input and output. For example, if you have an input with an id of foo, then you can use
input.foo to read its value. (Be sure not to modify the input/output objects, as this may cause
unpredictable behavior.)

Note

You are not recommended to use special JavaScript characters such as a period . in the input
id’s, but if you do use them anyway, for example, inputId = "foo.bar"”, you will have to use
input["”foo.bar"] instead of input.foo.bar to read the input value.

Examples

Only run this example in interactive R sessions
if (interactive()) {
ui <- fluidPage(

sidebarPanel(
selectInput(”"plotType”, "Plot Type”,
c(Scatter = "scatter"”, Histogram = "hist")
),
Only show this panel if the plot type is a histogram
conditionalPanel(
condition = "input.plotType == 'hist'",
selectInput(
"breaks"”, "Breaks",
c("Sturges"”, "Scott”, "Freedman-Diaconis”, "[Custom]” = "custom")
),
Only show this panel if Custom is selected
conditionalPanel(
condition = "input.breaks == 'custom'”,
sliderInput("breakCount”, "Break Count”, min = 1, max = 50, value = 10)
)
)
),
mainPanel(
plotOutput(”plot”)
)

)

server <- function(input, output) {
X <= rnorm(100)
y <= rnorm(100)

24 createRenderFunction
output$plot <- renderPlot({
if (input$plotType == "scatter”) {
plot(x, y)
} else {
breaks <- input$breaks
if (breaks == "custom") {
breaks <- input$breakCount
}
hist(x, breaks = breaks)
}
»
}
shinyApp(ui, server)
3
createRenderFunction Implement render functions
Description
Implement render functions
Usage
createRenderFunction(
func,
transform = function(value, session, name, ...) value,
outputFunc = NULL,
outputArgs = NULL
)
Arguments
func A function without parameters, that returns user data. If the returned value is a
promise, then the render function will proceed in async mode.
transform A function that takes four arguments: value, session, name, and ... (for
future-proofing). This function will be invoked each time a value is returned
from func, and is responsible for changing the value into a JSON-ready value
to be JSON-encoded and sent to the browser.
outputFunc The UI function that is used (or most commonly used) with this render function.

This can be used in R Markdown documents to create complete output widgets

out of just the render function.

create WebDependency 25

outputArgs A list of arguments to pass to the outputFunc. Render functions should include
outputArgs = 1ist() in their own parameter list, and pass through the value as
this argument, to allow app authors to customize outputs. (Currently, this is only
supported for dynamically generated Uls, such as those created by Shiny code
snippets embedded in R Markdown documents).

Value

An annotated render function, ready to be assigned to an output slot.

createWebDependency Create a web dependency

Description
Ensure that a file-based HTML dependency (from the htmltools package) can be served over Shiny’s

HTTP server. This function works by using addResourcePath() to map the HTML dependency’s
directory to a URL.

Usage

createWebDependency (dependency, scrubFile = TRUE)

Arguments
dependency A single HTML dependency object, created using htmltools: :htmlDependency ().
If the src value is named, then href and/or file names must be present.
scrubFile If TRUE (the default), remove src$file for the dependency. This prevents the
local file path from being sent to the client when dynamic web dependencies are
used. If FALSE, don’t remove src$file. Setting it to FALSE should be needed
only in very unusual cases.
Value

A single HTML dependency object that has an href-named element in its src.

26 datelnput
dateInput Create date input
Description
Creates a text input which, when clicked on, brings up a calendar that the user can click on to select
dates.
Usage
dateInput(
inputlId,
label,
value = NULL,
min = NULL,
max = NULL,
format = "yyyy-mm-dd”,
startview = "month”,
weekstart = 0,
language = "en"”,
width = NULL,
autoclose = TRUE,
datesdisabled = NULL,
daysofweekdisabled = NULL
)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
value The starting date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.
min The minimum allowed date. FEither a Date object, or a string in yyyy-mm-dd
format.
max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.
format The format of the date to display in the browser. Defaults to "yyyy-mm-dd”.
startview The date range shown when the input object is first clicked. Can be "month"
(the default), "year", or "decade".
weekstart Which day is the start of the week. Should be an integer from 0 (Sunday) to 6
(Saturday).
language The language used for month and day names. Default is "en". Other valid

non

ValueS inClude ”a.r”, "aZ”, ”bg", "bS", "Ca , CS”, ”Cy", "da”, ”de”, ”el”, nen_A ll’
"en'GB”, "eO", ”eS", ”et”, neun’ "fa", Hﬁ”, "fOH, "fr'CH", ”fl"", ”gl”, "he”, "hr”,

datelnput 27

"hu”, ”hy", "id”, "iS”, "it—CH”, nitn’ "ja", ”ka”, "kh", “kk", ”ko”, "kr”, nltn’ "]V”,
vvmeu, "mk", "mn", "mS", ”nb", "l’ll—BE”, "Ill", nnou, "pl", "pt'BR”, "pt", vvrou,

"I'S—latin”, ||rs||’ nruu’ "Sk”, "SIH, "Sq , Sl‘-latin , SI‘", "SV", IISWII’ "th", lltrﬂ’ "uk”,
"vi", "zh-CN", and "zh-TW".

width The width of the input, e.g. '400px ', or '100%'; see validateCssUnit().

autoclose Whether or not to close the datepicker immediately when a date is selected.

datesdisabled Which dates should be disabled. Either a Date object, or a string in yyyy-mm-dd
format.

daysofweekdisabled

Days of the week that should be disabled. Should be a integer vector with values
from 0 (Sunday) to 6 (Saturday).

Details

The date format string specifies how the date will be displayed in the browser. It allows the follow-
ing values:

* yy Year without century (12)

* yyyy Year with century (2012)

* mm Month number, with leading zero (01-12)
* m Month number, without leading zero (1-12)
* M Abbreviated month name

* MM Full month name

* dd Day of month with leading zero

 d Day of month without leading zero

* D Abbreviated weekday name

DD Full weekday name

Server value

A Date vector of length 1.

See Also

dateRangelInput(), updateDateInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateRangeInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
dateInput(”datel”, "Date:"”, value = "2012-02-29"),

28 dateRangelnput

Default value is the date in client's time zone
dateInput(”date2”, "Date:"),

value is always yyyy-mm-dd, even if the display format is different
dateInput("date3”, "Date:", value = "2012-02-29", format = "mm/dd/yy"),

Pass in a Date object
dateInput(”date4”, "Date:"”, value = Sys.Date()-10),

Use different language and different first day of week
dateInput(”date5”, "Date:",

language = "ru”,
weekstart = 1),

Start with decade view instead of default month view
dateInput(”date6”, "Date:",
startview = "decade"”),

Disable Mondays and Tuesdays.
datelnput("date7"”, "Date:", daysofweekdisabled = c(1,2)),

Disable specific dates.
dateInput(”date8”, "Date:", value = "2012-02-29",
datesdisabled = c("2012-03-01", "2012-03-02"))

)
shinyApp(ui, server = function(input, output) { })
3
dateRangeInput Create date range input
Description

Creates a pair of text inputs which, when clicked on, bring up calendars that the user can click on
to select dates.

Usage

dateRangelInput(
inputld,
label,
start = NULL,
end = NULL,
min = NULL,
max = NULL,
format = "yyyy-mm-dd”

dateRangelnput 29
startview = "month”,
weekstart = 0,
language = "en”,
separator = " to ",
width = NULL,
autoclose = TRUE
)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
start The initial start date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.
end The initial end date. Either a Date object, or a string in yyyy-mm-dd format. If
NULL (the default), will use the current date in the client’s time zone.
min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.
max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.
format The format of the date to display in the browser. Defaults to "yyyy-mm-dd".
startview The date range shown when the input object is first clicked. Can be "month"
(the default), "year", or "decade".
weekstart Which day is the start of the week. Should be an integer from 0 (Sunday) to 6
(Saturday).
language The language used for month and day names. Default is "en". Other valid
Values include Hal_ﬂ7 "aZ”, ||bg"’ llbsll’ "Ca"’ "CS”, ”Cy"’ lldall’ ”de”7 Nelﬂ7 "en_AUll’
"en_GBll’ "eoll, llesll, lletll’ Yleu"’ llfall, Hﬁ”, llfOH’ Vlfr_CH"’ ||frll’ ||g1”’ llhell’ "hrll’
llhu", ||hyll’ Hid”, lliSH’ llit_CHll’ ”it”’ llja"’ llkaﬂ’ llk}lﬂ, ||kk"’ HkOH’ llkrll’ ”lt”’ lllvll’
nmen’ "mk", nmnn’ llmSH, llnb”’ Hnl_BEH’ unlu’ nnon’ leu’ "pt'BR”, "pt", "I’O",
"rs—latin”’ ||rSH’ llruH’ "skH’ lls]H’ Vlsqﬂ’ "Sr—]atin”’ llsrll’ "SVII’ HSWH’ "thll’ ”tr”, llukn’
"vi", "zh-CN", and "zh-TW".
separator String to display between the start and end input boxes.
width The width of the input, e.g. '400px ', or '100%'; see validateCssUnit().
autoclose Whether or not to close the datepicker immediately when a date is selected.
Details

The date format string specifies how the date will be displayed in the browser. It allows the follow-

ing values:

* yy Year without century (12)

* yyyy Year with century (2012)

e mm Month number, with leading zero (01-12)

* m Month number, without leading zero (1-12)

30 dateRangelnput

¢ M Abbreviated month name
e MM Full month name
* dd Day of month with leading zero

 d Day of month without leading zero

D Abbreviated weekday name

DD Full weekday name

Server value

A Date vector of length 2.

See Also

dateInput(), updateDateRangeInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(),dateInput(),
fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
dateRangeInput("daterangel”, "Date range:",
start = "2001-01-01",
end "2010-12-31"),

Default start and end is the current date in the client's time zone
dateRangelnput("”daterange2”, "Date range:"),

start and end are always specified in yyyy-mm-dd, even if the display
format is different
dateRangeInput("daterange3”, "Date range:",

start = "2001-01-01",
end = "2010-12-31",
min = "2001-01-01",
max = "2012-12-21",
format = "mm/dd/yy",
separator = " - "),

Pass in Date objects
dateRangeInput("daterange4”, "Date range:",
start = Sys.Date()-10,
end = Sys.Date()+10),

Use different language and different first day of week
dateRangelnput("daterange5”, "Date range:",

language = "de",

weekstart = 1),

dblclickOpts 31

Start with decade view instead of default month view
dateRangelnput("daterange6”, "Date range:",

startview = "decade")
)
shinyApp(ui, server = function(input, output) { })
3
dblclickOpts Create an object representing double-click options
Description

This generates an object representing dobule-click options, to be passed as the dblclick argument
of imageOutput () or plotOutput().

Usage

dblclickOpts(id, clip = TRUE, delay = 400)

Arguments
id Input value name. For example, if the value is "plot_dblclick”, then the click
coordinates will be available as input$plot_dblclick.
clip Should the click area be clipped to the plotting area? If FALSE, then the server
will receive double-click events even when the mouse is outside the plotting
area, as long as it is still inside the image.
delay Maximum delay (in ms) between a pair clicks for them to be counted as a
double-click.
debounce Slow down a reactive expression with debounce/throttle
Description

Transforms a reactive expression by preventing its invalidation signals from being sent unnecessar-
ily often. This lets you ignore a very "chatty" reactive expression until it becomes idle, which is
useful when the intermediate values don’t matter as much as the final value, and the downstream
calculations that depend on the reactive expression take a long time. debounce and throttle use
different algorithms for slowing down invalidation signals; see Details.

32 debounce

Usage

debounce(r, millis, priority = 100, domain = getDefaultReactiveDomain())

throttle(r, millis, priority = 100, domain = getDefaultReactiveDomain())

Arguments
r A reactive expression (that invalidates too often).
millis The debounce/throttle time window. You may optionally pass a no-arg function
or reactive expression instead, e.g. to let the end-user control the time window.
priority Debounce/throttle is implemented under the hood using observers. Use this
parameter to set the priority of these observers. Generally, this should be higher
than the priorities of downstream observers and outputs (which default to zero).
domain See domains.
Details

This is not a true debounce/throttle in that it will not prevent r from being called many times (in fact
it may be called more times than usual), but rather, the reactive invalidation signal that is produced
by r is debounced/throttled instead. Therefore, these functions should be used when r is cheap but
the things it will trigger (downstream outputs and reactives) are expensive.

Debouncing means that every invalidation from r will be held for the specified time window. If r
invalidates again within that time window, then the timer starts over again. This means that as long
as invalidations continually arrive from r within the time window, the debounced reactive will not
invalidate at all. Only after the invalidations stop (or slow down sufficiently) will the downstream
invalidation be sent.

000-00-00---- => --=-------- 0-

(In this graphical depiction, each character represents a unit of time, and the time window is 3
characters.)

Throttling, on the other hand, delays invalidation if the throttled reactive recently (within the time
window) invalidated. New r invalidations do not reset the time window. This means that if in-
validations continually come from r within the time window, the throttled reactive will invalidate
regularly, at a rate equal to or slower than than the time window.

000-00-00---- => 0--0--0--0--~

Limitations

Because R is single threaded, we can’t come close to guaranteeing that the timing of debounce/throttle
(or any other timing-related functions in Shiny) will be consistent or accurate; at the time we want
to emit an invalidation signal, R may be performing a different task and we have no way to interrupt
it (nor would we necessarily want to if we could). Therefore, it’s best to think of the time windows
you pass to these functions as minimums.

You may also see undesirable behavior if the amount of time spent doing downstream processing
for each change approaches or exceeds the time window: in this case, debounce/throttle may not
have any effect, as the time each subsequent event is considered is already after the time window
has expired.

diskCache 33

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

library(shiny)
library(magrittr)

ui <- fluidPage(
plotOutput(”plot”, click = clickOpts("hover")),
helpText("Quickly click on the plot above, while watching the result table below:"),
tableOutput("result”)

)

server <- function(input, output, session) {
hover <- reactive({
if (is.null(input$hover))
list(x = NA, y = NA)
else
input$hover
D)
hover_d <- hover %>% debounce(1000)
hover_t <- hover %>% throttle(1000)

output$plot <- renderPlot({
plot(cars)
b))

output$result <- renderTable({
data.frame(
mode = c("raw”, "throttle”, "debounce"),
x = c(hover()$x, hover_t()$x, hover_d()$x),
y = c(hover()$y, hover_t()$y, hover_d()$y)
)
1))
}

shinyApp(ui, server)

}

diskCache Create a disk cache object

Description

A disk cache object is a key-value store that saves the values as files in a directory on disk. Objects
can be stored and retrieved using the get () and set () methods. Objects are automatically pruned
from the cache according to the parameters max_size, max_age, max_n, and evict.

34

Usage

diskCache(

dir = NULL,

max_size =

diskCache

10 * 1024*2,

max_age = Inf,

max_n = Inf,

evict = c("1ru", "fifo"),
destroy_on_finalize = FALSE,
missing = key_missing(),
exec_missing = FALSE,

logfile =

Arguments

dir

max_size

max_age

max_n

evict

NULL

Directory to store files for the cache. If NULL (the default) it will create and use
a temporary directory.

Maximum size of the cache, in bytes. If the cache exceeds this size, cached
objects will be removed according to the value of the evict. Use Inf for no
size limit.

Maximum age of files in cache before they are evicted, in seconds. Use Inf for

no age limit.

Maximum number of objects in the cache. If the number of objects exceeds this
value, then cached objects will be removed according to the value of evict. Use
Inf for no limit of number of items.

The eviction policy to use to decide which objects are removed when a cache
pruning occurs. Currently, "1ru” and "fifo" are supported.

destroy_on_finalize

missing

exec_missing

logfile

If TRUE, then when the DiskCache object is garbage collected, the cache direc-
tory and all objects inside of it will be deleted from disk. If FALSE (the default),
it will do nothing when finalized.

A value to return or a function to execute when get(key) is called but the key
is not present in the cache. The default is a key_missing() object. If it is a
function to execute, the function must take one argument (the key), and you
must also use exec_missing = TRUE. If it is a function, it is useful in most cases
for it to throw an error, although another option is to return a value. If a value is
returned, that value will in turn be returned by get (). See section Missing keys
for more information.

If FALSE (the default), then treat missing as a value to return when get () results
in a cache miss. If TRUE, treat missing as a function to execute when get()
results in a cache miss.

An optional filename or connection object to where logging information will be
written. To log to the console, use stdout ().

diskCache 35

Missing Keys

The missing and exec_missing parameters controls what happens when get() is called with a
key that is not in the cache (a cache miss). The default behavior is to return a key_missing()
object. This is a sentinel value that indicates that the key was not present in the cache. You can test
if the returned value represents a missing key by using the is.key_missing() function. You can
also have get () return a different sentinel value, like NULL. If you want to throw an error on a cache
miss, you can do so by providing a function for missing that takes one argument, the key, and also
use exec_missing=TRUE.

When the cache is created, you can supply a value for missing, which sets the default value to be
returned for missing values. It can also be overridden when get () is called, by supplying amissing
argument. For example, if you use cache$get ("mykey”,missing = NULL), it will return NULL if
the key is not in the cache.

If your cache is configured so that get () returns a sentinel value to represent a cache miss, then set
will also not allow you to store the sentinel value in the cache. It will throw an error if you attempt
to do so.

Instead of returning the same sentinel value each time there is cache miss, the cache can execute a
function each time get () encounters missing key. If the function returns a value, then get () will
in turn return that value. However, a more common use is for the function to throw an error. If an
error is thrown, then get () will not return a value.

To do this, pass a one-argument function to missing, and use exec_missing=TRUE. For example,
if you want to throw an error that prints the missing key, you could do this:

diskCache(
missing = function(key) {
stop("Attempted to get missing key: ", key)
+

exec_missing = TRUE

)

If you use this, the code that calls get () should be wrapped with tryCatch() to gracefully handle
missing keys.

Cache pruning

Cache pruning occurs when set () is called, or it can be invoked manually by calling prune().

The disk cache will throttle the pruning so that it does not happen on every call to set(), because
the filesystem operations for checking the status of files can be slow. Instead, it will prune once in
every 20 calls to set (), or if at least 5 seconds have elapsed since the last prune occurred, whichever
is first. These parameters are currently not customizable, but may be in the future.

When a pruning occurs, if there are any objects that are older than max_age, they will be removed.

The max_size and max_n parameters are applied to the cache as a whole, in contrast to max_age,
which is applied to each object individually.

If the number of objects in the cache exceeds max_n, then objects will be removed from the cache
according to the eviction policy, which is set with the evict parameter. Objects will be removed so
that the number of items is max_n.

36

diskCache

If the size of the objects in the cache exceeds max_size, then objects will be removed from the
cache. Objects will be removed from the cache so that the total size remains under max_size. Note
that the size is calculated using the size of the files, not the size of disk space used by the files —
these two values can differ because of files are stored in blocks on disk. For example, if the block
size is 4096 bytes, then a file that is one byte in size will take 4096 bytes on disk.

Another time that objects can be removed from the cache is when get() is called. If the target
object is older than max_age, it will be removed and the cache will report it as a missing value.

Eviction policies

If max_n or max_size are used, then objects will be removed from the cache according to an eviction
policy. The available eviction policies are:

"lru” Least Recently Used. The least recently used objects will be removed. This uses the filesys-
tem’s mtime property. When "lru" is used, each get () is called, it will update the file’s mtime.

"fifo" First-in-first-out. The oldest objects will be removed.

Both of these policies use files’ mtime. Note that some filesystems (notably FAT) have poor mtime
resolution. (atime is not used because support for atime is worse than mtime.)

Sharing among multiple processes

The directory for a DiskCache can be shared among multiple R processes. To do this, each R process
should have a DiskCache object that uses the same directory. Each DiskCache will do pruning
independently of the others, so if they have different pruning parameters, then one DiskCache may
remove cached objects before another DiskCache would do so.

Even though it is possible for multiple processes to share a DiskCache directory, this should not be
done on networked file systems, because of slow performance of networked file systems can cause
problems. If you need a high-performance shared cache, you can use one built on a database like
Redis, SQLite, mySQL, or similar.

When multiple processes share a cache directory, there are some potential race conditions. For ex-
ample, if your code calls exists(key) to check if an object is in the cache, and then call get (key),
the object may be removed from the cache in between those two calls, and get (key) will throw an
error. Instead of calling the two functions, it is better to simply call get (key), and use tryCatch()
to handle the error that is thrown if the object is not in the cache. This effectively tests for existence
and gets the object in one operation.

It is also possible for one processes to prune objects at the same time that another processes is trying
to prune objects. If this happens, you may see a warning from file.remove() failing to remove a
file that has already been deleted.

Methods

A disk cache object has the following methods:

get(key, missing, exec_missing) Returns the value associated with key. If the key is not
in the cache, then it returns the value specified by missing or, missing is a function and
exec_missing=TRUE, then executes missing. The function can throw an error or return the
value. If either of these parameters are specified here, then they will override the defaults

domains 37

that were set when the DiskCache object was created. See section Missing Keys for more
information.

set(key, value) Stores the key-value pair in the cache.

exists(key) Returns TRUE if the cache contains the key, otherwise FALSE.

size() Returns the number of items currently in the cache.

keys() Returns a character vector of all keys currently in the cache.

reset() Clears all objects from the cache.

destroy() Clears all objects in the cache, and removes the cache directory from disk.

prune() Prunes the cache, using the parameters specified by max_size, max_age, max_n, and
evict.

domains Reactive domains

Description

Reactive domains are a mechanism for establishing ownership over reactive primitives (like reactive
expressions and observers), even if the set of reactive primitives is dynamically created. This is
useful for lifetime management (i.e. destroying observers when the Shiny session that created them
ends) and error handling.

Usage

getDefaultReactiveDomain()
withReactiveDomain(domain, expr)

onReactiveDomainEnded(domain, callback, failIfNull = FALSE)

Arguments
domain A valid domain object (for example, a Shiny session), or NULL
expr An expression to evaluate under domain
callback A callback function to be invoked
faillfNull If TRUE then an error is given if the domain is NULL
Details

At any given time, there can be either a single "default" reactive domain object, or none (i.e. the
reactive domain object is NULL). You can access the current default reactive domain by calling
getDefaultReactiveDomain.

Unless you specify otherwise, newly created observers and reactive expressions will be assigned
to the current default domain (if any). You can override this assignment by providing an explicit
domain argument to reactive() or observe().

38 downloadButton

For advanced usage, it’s possible to override the default domain using withReactiveDomain. The
domain argument will be made the default domain while expr is evaluated.

Implementers of new reactive primitives can use onReactiveDomainEnded as a convenience func-
tion for registering callbacks. If the reactive domain is NULL and failIfNull is FALSE, then the
callback will never be invoked.

downloadButton Create a download button or link

Description

Use these functions to create a download button or link; when clicked, it will initiate a browser
download. The filename and contents are specified by the corresponding downloadHandler ()
defined in the server function.

Usage
downloadButton(outputId, label = "Download”, class = NULL, ...)
downloadLink(outputId, label = "Download”, class = NULL, ...)
Arguments
outputId The name of the output slot that the downloadHandler is assigned to.
label The label that should appear on the button.
class Additional CSS classes to apply to the tag, if any.
Other arguments to pass to the container tag function.
See Also
downloadHandler ()
Examples
Not run:

ui <- fluidPage(
downloadButton("downloadData"”, "Download")

)

server <- function(input, output) {
Our dataset
data <- mtcars

output$downloadData <- downloadHandler(
filename = function() {
paste("data-", Sys.Date(), ".csv
}!

content = function(file) {

n

, sep:nn)

downloadHandler 39

write.csv(data, file)
3
)
3

shinyApp(ui, server)

End(Not run)

downloadHandler File Downloads

Description

Allows content from the Shiny application to be made available to the user as file downloads (for
example, downloading the currently visible data as a CSV file). Both filename and contents can be
calculated dynamically at the time the user initiates the download. Assign the return value to a slot
on output in your server function, and in the UI use downloadButton() or downloadLink() to
make the download available.

Usage

downloadHandler (filename, content, contentType = NA, outputArgs = list())

Arguments
filename A string of the filename, including extension, that the user’s web browser should
default to when downloading the file; or a function that returns such a string.
(Reactive values and functions may be used from this function.)
content A function that takes a single argument file that is a file path (string) of a
nonexistent temp file, and writes the content to that file path. (Reactive values
and functions may be used from this function.)
contentType A string of the download’s content type, for example "text/csv"” or "image/png"”.
If NULL or NA, the content type will be guessed based on the filename extension,
or application/octet-streanm if the extension is unknown.
outputArgs A list of arguments to be passed through to the implicit call to downloadButton()
when downloadHandler is used in an interactive R Markdown document.
Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
downloadButton("downloadData”, "Download")

)

http://en.wikipedia.org/wiki/Internet_media_type

40 enableBookmarking

server <- function(input, output) {
Our dataset
data <- mtcars

output$downloadData <- downloadHandler(
filename = function() {
paste(”data-", Sys.Date(), ".csv", sep="")
}!
content = function(file) {
write.csv(data, file)

}
)
3
shinyApp(ui, server)
3
enableBookmarking Enable bookmarking for a Shiny application
Description

There are two types of bookmarking: saving an application’s state to disk on the server, and encod-
ing the application’s state in a URL. For state that has been saved to disk, the state can be restored
with the corresponding state ID. For URL-encoded state, the state of the application is encoded in
the URL, and no server-side storage is needed.

URL-encoded bookmarking is appropriate for applications where there not many input values that
need to be recorded. Some browsers have a length limit for URLs of about 2000 characters, and if
there are many inputs, the length of the URL can exceed that limit.

Saved-on-server bookmarking is appropriate when there are many inputs, or when the bookmarked
state requires storing files.

Usage
enableBookmarking(store = c("url”, "server", "disable"))
Arguments
store Either "url”, which encodes all of the relevant values in a URL, "server”,
which saves to disk on the server, or "disable”, which disables any previously-
enabled bookmarking.
Details

For restoring state to work properly, the UI must be a function that takes one argument, request.
In most Shiny applications, the Ul is not a function; it might have the form fluidPage(....).
Converting it to a function is as simple as wrapping it in a function, as in function(request) {
fluidPage(....) }.

enableBookmarking 41

By default, all input values will be bookmarked, except for the values of passwordInputs. fileInputs
will be saved if the state is saved on a server, but not if the state is encoded in a URL.

When bookmarking state, arbitrary values can be stored, by passing a function as the onBookmark
argument. That function will be passed a ShinySaveState object. The values field of the object
is a list which can be manipulated to save extra information. Additionally, if the state is being saved
on the server, and the dir field of that object can be used to save extra information to files in that
directory.

For saved-to-server state, this is how the state directory is chosen:

e If running in a hosting environment such as Shiny Server or Connect, the hosting environment
will choose the directory.

¢ If running an app in a directory with runApp(), the saved states will be saved in a subdirectory
of the app called shiny_bookmarks.

* If running a Shiny app object that is generated from code (not run from a directory), the saved
states will be saved in a subdirectory of the current working directory called shiny_bookmarks.

When used with shinyApp (), this function must be called before shinyApp (), or in the shinyApp()’s
onStart function. An alternative to calling the enableBookmarking() function is to use the
enableBookmarking argument for shinyApp(). See examples below.

See Also

onBookmark(), onBookmarked(), onRestore(), and onRestored() for registering callback func-
tions that are invoked when the state is bookmarked or restored.

Also see updateQueryString().

Examples

Only run these examples in interactive R sessions
if (interactive()) {

Basic example with state encoded in URL
ui <- function(request) {
fluidPage(
textInput("txt", "Text"),
checkboxInput(”chk"”, "Checkbox"),
bookmarkButton()
)
3
server <- function(input, output, session) { }
enableBookmarking("url”)
shinyApp(ui, server)

An alternative to calling enableBookmarking(): use shinyApp's
enableBookmarking argument
shinyApp(ui, server, enableBookmarking = "url")

Same basic example with state saved to disk

42

enableBookmarking

enableBookmarking("server")
shinyApp(ui, server)

Save/restore arbitrary values
ui <- function(req) {
fluidPage(
textInput("txt", "Text"),
checkboxInput(”chk”, "Checkbox"),
bookmarkButton(),
brQ,
textOutput(”lastSaved")
)
3
server <- function(input, output, session) {
vals <- reactiveValues(savedTime = NULL)
output$lastSaved <- renderText({
if (!is.null(vals$savedTime))
paste(”Last saved at"”, vals$savedTime)
else

nn

D

onBookmark (function(state) {
vals$savedTime <- Sys.time()
state is a mutable reference object, and we can add arbitrary values
to it.
state$values$time <- vals$savedTime

1))

onRestore(function(state) {
vals$savedTime <- state$values$time

D)

3

enableBookmarking(store = "url")
shinyApp(ui, server)

Usable with dynamic UI (set the slider, then change the text input,
click the bookmark button)
ui <- function(request) {
fluidPage(
sliderInput(”slider”, "Slider”, 1, 100, 50),
uiOutput("ui"),
bookmarkButton()
)
3
server <- function(input, output, session) {
output$ui <- renderUI({
textInput("txt"”, "Text”, input$slider)
D)
3
enableBookmarking("url”)
shinyApp(ui, server)

enableBookmarking 43

Exclude specific inputs (The only input that will be saved in this
example is chk)
ui <- function(request) {
fluidPage(
passwordInput("pw”, "Password”), # Passwords are never saved
sliderInput(”slider”, "Slider”, 1, 100, 50), # Manually excluded below
checkboxInput(”chk”, "Checkbox"),
bookmarkButton()
)
3
server <- function(input, output, session) {
setBookmarkExclude("slider")
3
enableBookmarking("url”)
shinyApp(ui, server)

Update the browser's location bar every time an input changes. This should
not be used with enableBookmarking("server"), because that would create a
new saved state on disk every time the user changes an input.
ui <- function(req) {
fluidPage(
textInput(”txt”, "Text"),
checkboxInput(”chk", "Checkbox")

)
}
server <- function(input, output, session) {
observe({
Trigger this observer every time an input changes
reactiveValuesTolList(input)
session$doBookmark()
b))

onBookmarked(function(url) {
updateQueryString(url)
»
3
enableBookmarking("url")
shinyApp(ui, server)

Save/restore uploaded files
ui <- function(request) {
fluidPage(
sidebarlLayout(
sidebarPanel(
fileInput(”filel”, "Choose CSV File"”, multiple = TRUE,
accept = c¢(
"text/csv”,
"text/comma-separated-values,text/plain”,

" "

.CSv

44 exportTestValues

),
tagsshr(),
checkboxInput("header”, "Header"”, TRUE),
bookmarkButton()
),
mainPanel(
tableOutput(”"contents”)
)
)
)
3
server <- function(input, output) {
output$contents <- renderTable({
inFile <- input$filel
if (is.null(inFile))
return(NULL)

if (nrow(inFile) == 1) {
read.csv(inFile$datapath, header = input$header)
} else {
data.frame(x = "multiple files")
3
D)
3

enableBookmarking("server")
shinyApp(ui, server)

}

exportTestValues Register expressions for export in test mode

Description

This function registers expressions that will be evaluated when a test export event occurs. These
events are triggered by accessing a snapshot URL.

Usage

exportTestValues(

quoted_ = FALSE,

env_ = parent.frame(),
session_ = getDefaultReactiveDomain()
)
Arguments

Named arguments that are quoted or unquoted expressions that will be captured
and evaluated when snapshot URL is visited.

exportTestValues 45

quoted_ Are the expression quoted? Default is FALSE.
env_ The environment in which the expression should be evaluated.
session_ A Shiny session object.

Details

This function only has an effect if the app is launched in test mode. This is done by calling runApp ()
with test.mode=TRUE, or by setting the global option shiny.testmode to TRUE.

Examples

Only run this example in interactive R sessions
if (interactive()) {

options(shiny.testmode = TRUE)

This application shows the test snapshot URL; clicking on it will
fetch the input, output, and exported values in JSON format.
shinyApp(
ui = basicPage(

h4("Snapshot URL: "),

uiOutput("url”),

h4("Current values:"),

verbatimTextOutput(”values"”),

actionButton("inc", "Increment x")

)Y

server = function(input, output, session) {
vals <- reactiveValues(x = 1)
y <- reactive({ vals$x + 1 })

observeEvent (input$inc, {
vals$x <<- vals$x + 1

»
exportTestValues(
X = vals$x,
y =y0
)

output$url <- renderUI({
url <- session$getTestSnapshotUrl(format="json")
a(href = url, url)

D

output$values <- renderText({
paste@("vals$x: ", vals$x, "\ny: ", y(O))
D

46 exprToFunction

exprToFunction Convert an expression to a function

Description
This is to be called from another function, because it will attempt to get an unquoted expression
from two calls back.

Usage

exprToFunction(expr, env = parent.frame(), quoted = FALSE)

Arguments
expr A quoted or unquoted expression, or a function.
env The desired environment for the function. Defaults to the calling environment
two steps back.
quoted Is the expression quoted?
Details

If expr is a quoted expression, then this just converts it to a function. If expr is a function, then this
simply returns expr (and prints a deprecation message). If expr was a non-quoted expression from
two calls back, then this will quote the original expression and convert it to a function.

Examples

Example of a new renderer, similar to renderText

This is something that toolkit authors will do

renderTriple <- function(expr, env=parent.frame(), quoted=FALSE) {
Convert expr to a function
func <- shiny::exprToFunction(expr, env, quoted)

function() {
value <- func()
paste(rep(value, 3), collapse=", ")
}
3

Example of using the renderer.
This is something that app authors will do.
values <- reactiveValues(A="text")

Not run:

Create an output object

output$tripleA <- renderTriple({
values$A

fileInput 47

b

End(Not run)

At the R console, you can experiment with the renderer using isolate()
tripleA <- renderTriple({

values$A

b

isolate(tripleA())
"text, text, text”

fileInput

File Upload Control

Description

Create a file upload control that can be used to upload one or more files.

Usage

fileInput(
inputlId,
label,

multiple = FALSE,
accept = NULL,

width = NULL,
buttonLabel = "Browse...",
placeholder = "No file selected”
)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
multiple Whether the user should be allowed to select and upload multiple files at once.
Does not work on older browsers, including Internet Explorer 9 and earlier.
accept A character vector of "unique file type specifiers" which gives the browser a hint
as to the type of file the server expects. Many browsers use this prevent the user
from selecting an invalid file.
A unique file type specifier can be:
* A case insensitive extension like . csv or .rds.
* A valid MIME type, like text/plain or application/pdf
* One of audio/*, video/*, or image/* meaning any audio, video, or image
type, respectively.
width The width of the input, e.g. '400px "', or '100%'; see validateCssUnit().
buttonLabel The label used on the button. Can be text or an HTML tag object.
placeholder The text to show before a file has been uploaded.

48 fileInput

Details

Whenever a file upload completes, the corresponding input variable is set to a dataframe. See the
Server value section.

Server value

A data. frame that contains one row for each selected file, and following columns:

name The filename provided by the web browser. This is not the path to read to get at the actual
data that was uploaded (see datapath column).

size The size of the uploaded data, in bytes.

type The MIME type reported by the browser (for example, text/plain), or empty string if the
browser didn’t know.

datapath The path to a temp file that contains the data that was uploaded. This file may be deleted
if the user performs another upload operation.

See Also

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(),dateInput(),

dateRangeInput (), numericInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),

submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(

sidebarLayout(
sidebarPanel(
fileInput(”file1"”, "Choose CSV File"”, accept = ".csv"),
checkboxInput(”header”, "Header", TRUE)
),
mainPanel(
tableOutput(”contents”)
)
)
)

server <- function(input, output) {
output$contents <- renderTable({
file <- input$filel
ext <- tools::file_ext(file$datapath)

req(file)
validate(need(ext == "csv", "Please upload a csv file"))

read.csv(file$datapath, header = input$header)

D
3

fillPage

49

shinyApp(ui, server)

}

fillPage

Create a page that fills the window

Description

fillPage creates a page whose height and width always fill the available area of the browser win-

dow.

Usage

fillPage(...

Arguments

padding

title

bootstrap

theme

Details

, padding = @, title = NULL, bootstrap = TRUE, theme = NULL)

Elements to include within the page.

Padding to use for the body. This can be a numeric vector (which will be inter-
preted as pixels) or a character vector with valid CSS lengths. The length can
be between one and four. If one, then that value will be used for all four sides.
If two, then the first value will be used for the top and bottom, while the second
value will be used for left and right. If three, then the first will be used for top,
the second will be left and right, and the third will be bottom. If four, then the
values will be interpreted as top, right, bottom, and left respectively.

The title to use for the browser window/tab (it will not be shown in the docu-
ment).

If TRUE, load the Bootstrap CSS library.
URL to alternative Bootstrap stylesheet.

The fluidPage() and fixedPage() functions are used for creating web pages that are laid out
from the top down, leaving whitespace at the bottom if the page content’s height is smaller than the
browser window, and scrolling if the content is larger than the window.

fillPage is designed to latch the document body’s size to the size of the window. This makes it
possible to fill it with content that also scales to the size of the window.

For example, fluidPage(plotOutput(”plot”,height = "100%")) will not work as expected;
the plot element’s effective height will be @, because the plot’s containing elements (<div> and
<body>) have automatic height; that is, they determine their own height based on the height of their
contained elements. However, fillPage(plotOutput("plot”,height = "100%")) will work be-
cause fillPage fixes the <body> height at 100% of the window height.

50 fillRow

Note that fillPage(plotOutput(”plot”)) will not cause the plot to fill the page. Like most Shiny
output widgets, plotOutput’s default height is a fixed number of pixels. You must explicitly set
height = "100%" if you want a plot (or htmlwidget, say) to fill its container.

One must be careful what layouts/panels/elements come between the fillPage and the plots/widgets.
Any container that has an automatic height will cause children with height = "100%" to misbehave.
Stick to functions that are designed for fill layouts, such as the ones in this package.

See Also

Other layout functions: fixedPage(), flowLayout(), fluidPage(), navbarPage(), sidebarLayout(),
splitlLayout(), verticallLayout()

Examples

fillPage(
tags$style(type = "text/css”,
".half-fill { width: 50%; height: 100%; }",
"#one { float: left; background-color: #ddddff; }",
"#two { float: right; background-color: #ccffcc; }"

),
div(id = "one", class = "half-fill",
"Left half”
),
div(id = "two", class = "half-fill",
"Right half”
),
padding = 10
)
fillPage(
fillRow(
div(style = "background-color: red; width: 100%; height: 100%;"),
div(style = "background-color: blue; width: 100%; height: 100%;")
)
)
fillRow Flex Box-based row/column layouts
Description

Creates row and column layouts with proportionally-sized cells, using the Flex Box layout model
of CSS3. These can be nested to create arbitrary proportional-grid layouts. Warning: Flex Box
is not well supported by Internet Explorer, so these functions should only be used where modern
browsers can be assumed.

fillRow 51

Usage

fillRow(..., flex = 1, width

"100%", height = "100%")

fillCol(..., flex = 1, width = "100%", height = "100%")

Arguments
UI objects to put in each row/column cell; each argument will occupy a single
cell. (To put multiple items in a single cell, you can use taglList() or div() to
combine them.) Named arguments will be used as attributes on the div element
that encapsulates the row/column.
flex Determines how space should be distributed to the cells. Can be a single value

like 1 or 2 to evenly distribute the available space; or use a vector of numbers to
specify the proportions. For example, flex = c(2,3) would cause the space to
be split 40%/60% between two cells. NA values will cause the corresponding
cell to be sized according to its contents (without growing or shrinking).

width, height The total amount of width and height to use for the entire row/column. For the
default height of "100%" to be effective, the parent must be fillPage, another
fillRow/fillCol, or some other HTML element whose height is not deter-
mined by the height of its contents.

Details

If you try to use fillRow and fillCol inside of other Shiny containers, such as sidebarLayout (),
navbarPage(), or even tags$div, you will probably find that they will not appear. This is due to
fillRow and fillCol defaulting to height="100%", which will only work inside of containers that
have determined their own size (rather than shrinking to the size of their contents, as is usually the
case in HTML).

To avoid this problem, you have two options:

* only use fillRow/fillCol inside of fillPage, fillRow, or fillCol
* provide an explicit height argument to fillRow/fillCol

Examples

Only run this example in interactive R sessions.
if (interactive()) {

ui <- fillPage(fillRow(
plotOutput(”plotLeft”, height = "100%"),
fillCol(
plotOutput(”"plotTopRight”, height = "100%"),
plotOutput("plotBottomRight”, height = "100%")
)
)

server <- function(input, output, session) {
output$plotLeft <- renderPlot(plot(cars))
output$plotTopRight <- renderPlot(plot(pressure))

52 fixedPage

output$plotBottomRight <- renderPlot(plot(AirPassengers))
3

shinyApp(ui, server)

}

fixedPage Create a page with a fixed layout

Description

Functions for creating fixed page layouts. A fixed page layout consists of rows which in turn include
columns. Rows exist for the purpose of making sure their elements appear on the same line (if the
browser has adequate width). Columns exist for the purpose of defining how much horizontal space
within a 12-unit wide grid it’s elements should occupy. Fixed pages limit their width to 940 pixels
on a typical display, and 724px or 1170px on smaller and larger displays respectively.

Usage

fixedPage(..., title = NULL, responsive = NULL, theme = NULL)

fixedRow(...)

Arguments
Elements to include within the container
title The browser window title (defaults to the host URL of the page)
responsive This option is deprecated; it is no longer optional with Bootstrap 3.
theme Alternative Bootstrap stylesheet (normally a css file within the www directory).
For example, to use the theme located at www/bootstrap.css you would use
theme = "bootstrap.css”.
Details

To create a fixed page use the fixedPage function and include instances of fixedRow and column ()
within it. Note that unlike fluidPage(), fixed pages cannot make use of higher-level layout func-
tions like sidebarLayout, rather, all layout must be done with fixedRow and column.

Value

A UI defintion that can be passed to the shinyUI function.

Note

See the Shiny Application Layout Guide for additional details on laying out fixed pages.

http://shiny.rstudio.com/articles/layout-guide.html

flowLayout 53

See Also

column()

Other layout functions: fillPage(), flowLayout(), fluidPage(), navbarPage(), sidebarLayout(),
splitlLayout(), verticallLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fixedPage(
title = "Hello, Shiny!",
fixedRow(
column(width
ngn
),
column(width = 3, offset = 2,
"3 offset 2"
)
)
)

4,

shinyApp(ui, server = function(input, output) { })
3

flowLayout Flow layout

Description

Lays out elements in a left-to-right, top-to-bottom arrangement. The elements on a given row will
be top-aligned with each other. This layout will not work well with elements that have a percentage-
based width (e.g. plotOutput() at its default setting of width = "100%").

Usage
flowLayout(..., cellArgs = list())

Arguments
Unnamed arguments will become child elements of the layout. Named argu-
ments will become HTML attributes on the outermost tag.
cellArgs Any additional attributes that should be used for each cell of the layout.
See Also

Other layout functions: fillPage(), fixedPage(), fluidPage(), navbarPage(), sidebarLayout(),
splitlLayout(), verticalLayout()

54 fluidPage

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- flowLayout(
numericInput(”rows"”, "How many rows?"”, 5),
selectInput(”letter”, "Which letter?”, LETTERS),
sliderInput(”value”, "What value?", @, 100, 50)

)
shinyApp(ui, server = function(input, output) { })
3
fluidPage Create a page with fluid layout
Description

Functions for creating fluid page layouts. A fluid page layout consists of rows which in turn include
columns. Rows exist for the purpose of making sure their elements appear on the same line (if
the browser has adequate width). Columns exist for the purpose of defining how much horizontal
space within a 12-unit wide grid it’s elements should occupy. Fluid pages scale their components
in realtime to fill all available browser width.

Usage

fluidPage(..., title = NULL, responsive = NULL, theme = NULL)

fluidRow(...)

Arguments

Elements to include within the page

title The browser window title (defaults to the host URL of the page). Can also be
set as a side effect of the titlePanel () function.

responsive This option is deprecated,; it is no longer optional with Bootstrap 3.

theme Alternative Bootstrap stylesheet (normally a css file within the www directory).
For example, to use the theme located at www/bootstrap.css you would use
theme = "bootstrap.css”.

Details

To create a fluid page use the fluidPage function and include instances of fluidRow and column()
within it. As an alternative to low-level row and column functions you can also use higher-level
layout functions like sidebarLayout().

Value

A UI defintion that can be passed to the shinyUI function.

fluidPage 55

Note

See the Shiny-Application-Layout-Guide for additional details on laying out fluid pages.

See Also

column()

Other layout functions: fillPage(), fixedPage(), flowLayout(), navbarPage(), sidebarLayout(),
splitlLayout(), verticallLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {

Example of UI with fluidPage
ui <- fluidPage(

Application title
titlePanel("Hello Shiny!"),

sidebarLayout(

Sidebar with a slider input
sidebarPanel(
sliderInput("”obs”,
"Number of observations:",
min = 0,
max = 1000,
value = 500)
),

Show a plot of the generated distribution
mainPanel(
plotOutput("distPlot")
)
)
)

Server logic
server <- function(input, output) {
output$distPlot <- renderPlot({
hist(rnorm(input$obs))
D)
3

Complete app with UI and server components
shinyApp(ui, server)

UL demonstrating column layouts
ui <- fluidPage(

http://shiny.rstudio.com/articles/layout-guide.html

56 freezeReactive Val

title = "Hello Shiny!",
fluidRow(
column(width
ngn
),
column(width = 3, offset = 2,
"3 offset 2"
)
)
)

4!

shinyApp(ui, server = function(input, output) { })
}

freezeReactiveVal Freeze a reactive value

Description

These functions freeze a reactiveVal(), or an element of a reactiveValues(). If the value is
accessed while frozen, a "silent" exception is raised and the operation is stopped. This is the same
thing that happens if req(FALSE) is called. The value is thawed (un-frozen; accessing it will no
longer raise an exception) when the current reactive domain is flushed. In a Shiny application, this
occurs after all of the observers are executed.

Usage

freezeReactiveVal(x)

freezeReactiveValue(x, name)

Arguments
X For freezeReactiveValue, areactiveValues() object (like input); for freezeReactiveval,
areactiveVal() object.
name The name of a value in the reactiveValues() object.
See Also
req()
Examples

Only run this examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
selectInput(”data”, "Data Set”, c("mtcars”, "pressure")),
checkboxGroupInput(”cols”, "Columns (select 2)", character(@)),

getCurrentOutputlnfo 57

plotOutput("plot”)
)

server <- function(input, output, session) {
observe({
data <- get(input$data)
Sets a flag on input$cols to essentially do req(FALSE) if input$cols
is accessed. Without this, an error will momentarily show whenever a
new data set is selected.
freezeReactiveValue(input, "cols")
updateCheckboxGroupInput(session, "cols”, choices = names(data))

D

output$plot <- renderPlot({
When a new data set is selected, input$cols will have been invalidated
above, and this will essentially do the same as req(FALSE), causing
this observer to stop and raise a silent exception.
cols <- input$cols
data <- get(input$data)

if (length(cols) == 2) {
plot(datal[cols[1] 11, datal[[cols[2] 11)
}
1))
}

shinyApp(ui, server)

}

getCurrentOutputInfo Get output information

Description

Returns information about the currently executing output, including its name (i.e., outputId); and
in some cases, relevant sizing and styling information.

Usage

getCurrentOutputInfo(session = getDefaultReactiveDomain())

Arguments

session The current Shiny session.

Value
NULL if called outside of an output context; otherwise, a list which includes:

* The name of the output (reported for any output).

58 getCurrentOutputlnfo

o If the output is a plotOutput () or imageOutput(), then:

— height: areactive expression which returns the height in pixels.
— width: a reactive expression which returns the width in pixels.

* If the output is a plotOutput (), imageOutput(), or contains a shiny-report-theme class,
then:

— bg: areactive expression which returns the background color.
— fg: areactive expression which returns the foreground color.

accent: a reactive expression which returns the hyperlink color.

— font: areactive expression which returns a list of font information, including:
% families: a character vector containing the CSS font-family property.
* size: a character string containing the CSS font-size property

Examples

if (interactive()) {
shinyApp(
fluidPage(
tags$style(HTML("body {background-color: black; color: white; }")),
tags$style(HTML("body a {color: purple}")),
tags$style(HTML("#info {background-color: teal; color: orange; 1}")),
plotOutput(”p"),
"Computed CSS styles for the output named info:",
tagAppendAttributes(
textOutput(”info”),
class = "shiny-report-theme”
)
),
function(input, output) {
output$p <- renderPlot({
info <- getCurrentOutputInfo()
par(bg = info$bg(), fg = info$fg(), col.axis = info$fg(), col.main = info$fg())
plot(1:10, col = info$accent(), pch = 19)
title("A simple R plot that uses its CSS styling")
1))
output$info <- renderText({
info <- getCurrentOutputInfo()
jsonlite: :toJSON(
list(
bg = info$bg(),
fg = info$fg(),
accent = info$accent(),
font = info$font()
),
auto_unbox = TRUE
)
1))
3
)
3

getQueryString 59

getQueryString Get the query string / hash component from the URL

Description

Two user friendly wrappers for getting the query string and the hash component from the app’s
URL.

Usage

getQueryString(session = getDefaultReactiveDomain())

getUrlHash(session = getDefaultReactiveDomain())

Arguments

session A Shiny session object.

Details

These can be particularly useful if you want to display different content depending on the val-

ues in the query string / hash (e.g. instead of basing the conditional on an input or a calcu-
lated reactive, you can base it on the query string). However, note that, if you’re changing the
query string / hash programatically from within the server code, you must use updateQueryS-
tring(_yourNewQueryString_, mode = "push"). The default mode for updateQueryStringis "replace”,
which doesn’t raise any events, so any observers or reactives that depend on it will not get triggered.
However, if you’re changing the query string / hash directly by typing directly in the browser and
hitting enter, you don’t have to worry about this.

Value

For getQueryString, anamed list. For example, the query string ?parami=valuel¶m2=value?2
becomes list(paraml = valuel,param2 = value2). For getUrlHash, a character vector with the
hash (including the leading # symbol).

See Also

updateQueryString()

60 getQueryString

Examples

Only run this example in interactive R sessions
if (interactive()) {

App 1: getQueryString
Printing the value of the query string
(Use the back and forward buttons to see how the browser
keeps a record of each state)
shinyApp(
ui = fluidPage(
textInput(”txt”, "Enter new query string”),
helpText("Format: ?paraml=valil¶m2=val2"),
actionButton("go"”, "Update"),
hrQ),
verbatimTextOutput("query")
),
server = function(input, output, session) {
observeEvent (input$go, {
updateQueryString(input$txt, mode = "push")
b))
output$query <- renderText({
query <- getQueryString()
queryText <- paste(names(query), query,
sep = "=", collapse=", ")
paste("Your query string is:\n", queryText)
b))
3
)

App 2: getUrlHash
Printing the value of the URL hash
(Use the back and forward buttons to see how the browser
keeps a record of each state)
shinyApp(
ui = fluidPage(
textInput("txt"”, "Enter new hash"),
helpText("Format: #hash"),
actionButton("go"”, "Update"),
hrQ),
verbatimTextOutput("hash”)
),
server = function(input, output, session) {
observeEvent (input$go, {
updateQueryString(input$txt, mode = "push")
»
output$hash <- renderText({
hash <- getUrlHash()
paste("Your hash is:\n", hash)
1))
3
)
3

getShinyOption 61

getShinyOption Get or set Shiny options

Description

getShinyOption() retrieves the value of a Shiny option. shinyOptions() sets the value of Shiny
options; it can also be used to return a list of all currently-set Shiny options.

Usage

getShinyOption(name, default = NULL)

shinyOptions(...)

Arguments
name Name of an option to get.
default Value to be returned if the option is not currently set.
Options to set, with the form name = value.
Scope

There is a global option set which is available by default. When a Shiny application is run with
runApp(), that option set is duplicated and the new option set is available for getting or setting
values. If options are set from global.R, app.R, ui.R, or server.R, or if they are set from inside
the server function, then the options will be scoped to the application. When the application exits,
the new option set is discarded and the global option set is restored.

Options

There are a number of global options that affect Shiny’s behavior. These can be set globally with
options() or locally (for a single app) with shinyOptions().

shiny.autoreload (defaults to FALSE) If TRUE when a Shiny app is launched, the app directory will
be continually monitored for changes to files that have the extensions: r, htm, html, js, css,
png, jpg, jpeg, gif. If any changes are detected, all connected Shiny sessions are reloaded.
This allows for fast feedback loops when tweaking Shiny UL
Since monitoring for changes is expensive (we simply poll for last modified times), this feature
is intended only for development.
You can customize the file patterns Shiny will monitor by setting the shiny.autoreload.pattern
option. For example, to monitor only ui.R: options(shiny.autoreload.pattern =glob2rx("ui.R"))
The default polling interval is 500 milliseconds. You can change this by setting e.g. options(shiny.autoreload.inte
=2000) (every two seconds).

shiny.deprecation.messages (defaults to TRUE) This controls whether messages for deprecated func-
tions in Shiny will be printed. See shinyDeprecated() for more information.

62

getShinyOption

shiny.error (defaults to NULL) This can be a function which is called when an error occurs. For
example, options(shiny.error=recover) will result a the debugger prompt when an error
occurs.

shiny.fullstacktrace (defaults to FALSE) Controls whether "pretty" (FALSE) or full stack traces
(TRUE) are dumped to the console when errors occur during Shiny app execution. Pretty stack
traces attempt to only show user-supplied code, but this pruning can’t always be done 100%
correctly.

shiny.host (defaults to "127.0.0.1") The IP address that Shiny should listen on. See runApp()
for more information.

shiny.jquery.version (defaults to 3) The major version of jQuery to use. Currently only values of
3 or 1 are supported. If 1, then jQuery 1.12.4 is used. If 3, then jQuery 3.5.1 is used.

shiny.json.digits (defaults to 16) The number of digits to use when converting numbers to JSON
format to send to the client web browser.

shiny.launch.browser (defaults to interactive()) A boolean which controls the default behav-
ior when an app is run. See runApp() for more information.

shiny.maxRequestSize (defaults to SMB) This is a number which specifies the maximum web
request size, which serves as a size limit for file uploads.

shiny.minified (defaults to TRUE) By default Whether or not to include Shiny’s JavaScript as a
minified (shiny.min. js) or un-minified (shiny. js) file. The un-minified version is larger,
but can be helpful for development and debugging.

shiny.port (defaults to a random open port) A port number that Shiny will listen on. See runApp ()
for more information.

shiny.reactlog (defaults to FALSE) If TRUE, enable logging of reactive events, which can be viewed
later with the reactlogShow() function. This incurs a substantial performance penalty and
should not be used in production.

shiny.sanitize.errors (defaults to FALSE) If TRUE, then normal errors (i.e. errors not wrapped in
safeError) won’t show up in the app; a simple generic error message is printed instead (the
error and strack trace printed to the console remain unchanged). If you want to sanitize errors
in general, but you DO want a particular error e to get displayed to the user, then set this option
to TRUE and use stop(safeError(e)) for errors you want the user to see.

shiny.stacktraceoffset (defaults to TRUE) If TRUE, then Shiny’s printed stack traces will display
srcrefs one line above their usual location. This is an arguably more intuitive arrangement for
casual R users, as the name of a function appears next to the srcref where it is defined, rather
than where it is currently being called from.

shiny.suppressMissingContextError (defaults to FALSE) Normally, invoking a reactive outside
of a reactive context (or isolate()) results in an error. If this is TRUE, don’t error in these
cases. This should only be used for debugging or demonstrations of reactivity at the console.

shiny.testmode (defaults to FALSE) If TRUE, then various features for testing Shiny applications
are enabled.

shiny.trace (defaults to FALSE) Print messages sent between the R server and the web browser
client to the R console. This is useful for debugging. Possible values are "send” (only print
messages sent to the client), "recv” (only print messages received by the server), TRUE (print
all messages), or FALSE (default; don’t print any of these messages).

shiny.usecairo (defaults to TRUE) This is used to disable graphical rendering by the Cairo package,
if it is installed. See plotPNG() for more information.

helpText 63

Examples

Not run:
shinyOptions(myOption = 10)
getShinyOption("myOption")

End(Not run)

helpText Create a help text element

Description

Create help text which can be added to an input form to provide additional explanation or context.

Usage
helpText(...)

Arguments

One or more help text strings (or other inline HTML elements)

Value

A help text element that can be added to a Ul definition.

Examples

helpText("Note: while the data view will show only”,
"the specified number of observations, the”,
"summary will be based on the full dataset."”)

hoverOpts Create an object representing hover options

Description

This generates an object representing hovering options, to be passed as the hover argument of
imageOQutput () or plotOutput().

Usage

hoverOpts(
id,
delay = 300,
delayType = c("debounce”, "throttle"),
clip = TRUE,
nullOutside = TRUE

64 htmIOutput
Arguments
id Input value name. For example, if the value is "plot_hover"”, then the hover
coordinates will be available as input$plot_hover.
delay How long to delay (in milliseconds) when debouncing or throttling, before send-
ing the mouse location to the server.
delayType The type of algorithm for limiting the number of hover events. Use "throttle"
to limit the number of hover events to one every delay milliseconds. Use
"debounce” to suspend events while the cursor is moving, and wait until the
cursor has been at rest for delay milliseconds before sending an event.
clip Should the hover area be clipped to the plotting area? If FALSE, then the server
will receive hover events even when the mouse is outside the plotting area, as
long as it is still inside the image.
nullOutside If TRUE (the default), the value will be set to NULL when the mouse exits the
plotting area. If FALSE, the value will stop changing when the cursor exits the
plotting area.
htmlOutput Create an HTML output element
Description
Render a reactive output variable as HTML within an application page. The text will be included
within an HTML div tag, and is presumed to contain HTML content which should not be escaped.
Usage
htmlOutput(
outputld,
inline = FALSE,
container = if (inline) span else div,
)
uiOutput (outputId, inline = FALSE, container = if (inline) span else div, ...)
Arguments
outputId output variable to read the value from
inline use an inline (span()) or block container (div()) for the output
container a function to generate an HTML element to contain the text

Other arguments to pass to the container tag function. This is useful for provid-
ing additional classes for the tag.

icon 65

Details

uiOutput is intended to be used with renderUI on the server side. It is currently just an alias for
htmlOutput.

Value

An HTML output element that can be included in a panel

Examples

htmlOutput ("summary")

Using a custom container and class

tags$ul(
htmlOutput("”summary"”, container = tags$li, class = "custom-li-output”)
)
icon Create an icon
Description

Create an icon for use within a page. Icons can appear on their own, inside of a button, or as an icon
for a tabPanel () within a navbarPage ().

Usage
icon(name, class = NULL, 1lib = "font-awesome")
Arguments
name Name of icon. Icons are drawn from the Font Awesome Free (currently icons
from the v5.13.0 set are supported with the v4 naming convention) and Glyph-
icons libraries. Note that the "fa-" and "glyphicon-" prefixes should not be used
in icon names (i.e. the "fa-calendar" icon should be referred to as "calendar")
class Additional classes to customize the style of the icon (see the usage examples for
details on supported styles).
lib Icon library to use ("font-awesome" or "glyphicon")
Value

An icon element

See Also

For lists of available icons, see http://fontawesome.io/icons/ and http://getbootstrap.
com/components/#glyphicons.

https://fontawesome.com/
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons
http://fontawesome.io/examples/
http://fontawesome.io/icons/
http://getbootstrap.com/components/#glyphicons
http://getbootstrap.com/components/#glyphicons

66 insertTab

Examples

add an icon to a submit button
submitButton(”"Update View”, icon = icon("refresh"))

navbarPage("App Title",
tabPanel("Plot"”, icon = icon("bar-chart-o0")),
tabPanel ("Summary”, icon = icon("list-alt")),
tabPanel("Table"”, icon = icon("table"))

)

inputPanel Input panel

Description

A flowLayout() with a grey border and light grey background, suitable for wrapping inputs.

Usage
inputPanel(...)

Arguments
Input controls or other HTML elements.
insertTab Dynamically insert/remove a tabPanel
Description

Dynamically insert or remove a tabPanel () (or a navbarMenu()) from an existing tabsetPanel(),
navlistPanel () or navbarPage().

Usage

insertTab(
inputld,
tab,
target,
position = c("before”, "after"),
select = FALSE,
session = getDefaultReactiveDomain()

prependTab(
inputlId,

insertTab

tab,

67

select = FALSE,
menuName = NULL,

session

)

appendTab(
inputlId,

tab,

getDefaultReactiveDomain()

select = FALSE,

menuName
session

)

NULL,
getDefaultReactiveDomain()

removeTab(inputId, target, session = getDefaultReactiveDomain())

Arguments

inputId

tab
target

position
select
session

menuName

Details

The id of the tabsetPanel (or navlistPanel or navbarPage) into which tab
will be inserted/removed.

The item to be added (must be created with tabPanel, or with navbarMenu).

If inserting: the value of an existing tabPanel, next to which tab will be added.
If removing: the value of the tabPanel that you want to remove. See Details if
you want to insert next to/remove an entire navbarMenu instead.

Should tab be added before or after the target tab?
Should tab be selected upon being inserted?
The shiny session within which to call this function.

This argument should only be used when you want to prepend (or append) tab to
the beginning (or end) of an existing navbarMenu() (which must itself be part of
an existing navbarPage()). In this case, this argument should be the menuName
that you gave your navbarMenu when you first created it (by default, this is equal
to the value of the title argument). Note that you still need to set the inputId
argument to whatever the id of the parent navbarPage is. If menuName is left as
NULL, tab will be prepended (or appended) to whatever inputId is.

When you want to insert a new tab before or after an existing tab, you should use insertTab. When
you want to prepend a tab (i.e. add a tab to the beginning of the tabsetPanel), use prependTab.
When you want to append a tab (i.e. add a tab to the end of the tabsetPanel), use appendTab.

For navbarPage, you can insert/remove conventional tabPanels (whether at the top level or nested
inside a navbarMenu), as well as an entire navbarMenu (). For the latter case, target should be the
menuName that you gave your navbarMenu when you first created it (by default, this is equal to the
value of the title argument).

See Also
showTab ()

68 insertTab

Examples

Only run this example in interactive R sessions
if (interactive()) {

example app for inserting/removing a tab
ui <- fluidPage(

sidebarLayout(
sidebarPanel(
actionButton(”add"”, "Add 'Dynamic' tab"),
actionButton("remove”, "Remove 'Foo' tab")
),
mainPanel(

tabsetPanel(id = "tabs",
tabPanel("Hello"”, "This is the hello tab"),
tabPanel("Foo”, "This is the foo tab"),
tabPanel("Bar"”, "This is the bar tab")
)
)
)
)
server <- function(input, output, session) {
observeEvent (input$add, {
insertTab(inputld = "tabs",
tabPanel("Dynamic”, "This a dynamically-added tab"),
target = "Bar”
)
H
observeEvent (input$remove, {
removeTab(inputld = "tabs", target = "Foo")
H
3

shinyApp(ui, server)

example app for prepending/appending a navbarMenu

ui <- navbarPage("Navbar page”, id = "tabs”,
tabPanel ("Home",
actionButton("prepend”, "Prepend a navbarMenu"),
actionButton("append”, "Append a navbarMenu")
)
)

server <- function(input, output, session) {
observeEvent (input$prepend, {
id <- paste@("Dropdown”, input$prepend, "p")
prependTab(inputId = "tabs”,
navbarMenu(id,
tabPanel("Drop1”, paste("Dropl page from”, id)),
tabPanel ("Drop2"”, paste(”"Drop2 page from”, id)),

"Header",
tabPanel ("Drop3"”, paste("Drop3 page from", id))

insertUI 69

)
)
1))
observeEvent (input$append, {
id <- paste@("Dropdown”, input$append, "a")
appendTab(inputld = "tabs”,
navbarMenu(id,
tabPanel ("Drop1"”, paste("Dropl page from”, id)),
tabPanel ("Drop2"”, paste("Drop2 page from”, id)),
"Header",
tabPanel("Drop3"”, paste("Drop3 page from", id))
)
)
D)
}

shinyApp(ui, server)

}

insertUI Insert and remove Ul objects

Description

These functions allow you to dynamically add and remove arbirary Ul into your app, whenever
you want, as many times as you want. Unlike renderUI(), the UI generated with insertUI()
is persistent: once it’s created, it stays there until removed by removeUI(). Each new call to
insertUI() creates more UI objects, in addition to the ones already there (all independent from
one another). To update a part of the UI (ex: an input object), you must use the appropriate render
function or a customized reactive function.

Usage

insertUI(
selector,
where = c("beforeBegin”, "afterBegin"”, "beforeEnd", "afterEnd"),
ui,
multiple = FALSE,
immediate = FALSE,
session = getDefaultReactiveDomain()

removeUI (
selector,
multiple = FALSE,
immediate = FALSE,
session = getDefaultReactiveDomain()

70 insertUI

Arguments

selector A string that is accepted by jQuery’s selector (i.e. the string s to be placed in a
$(s) jQuery call).
For insertUI() this determines the element(s) relative to which you want to
insert your Ul object. For removeUI() this determine the element(s) to be re-
moved. If you want to remove a Shiny input or output, note that many of these
are wrapped in <div>s, so you may need to use a somewhat complex selector —
see the Examples below. (Alternatively, you could also wrap the inputs/outputs
that you want to be able to remove easily in a <div> with an id.)

where Where your Ul object should go relative to the selector:

beforeBegin Before the selector element itself

afterBegin Just inside the selector element, before its first child
beforeEnd Just inside the selector element, after its last child (default)
afterEnd After the selector element itself

Adapted from https://developer.mozilla.org/en-US/docs/Web/API/Element/
insertAdjacentHTML.

ui The UI object you want to insert. This can be anything that you usually put
inside your apps’s ui function. If you’re inserting multiple elements in one
call, make sure to wrap them in either a tagList() or a tags$div() (the latter
option has the advantage that you can give it an id to make it easier to reference
or remove it later on). If you want to insert raw html, use ui = HTML().

multiple In case your selector matches more than one element, multiple determines
whether Shiny should insert the UI object relative to all matched elements or
just relative to the first matched element (default).

immediate Whether the UI object should be immediately inserted or removed, or whether
Shiny should wait until all outputs have been updated and all observers have
been run (default).

session The shiny session. Advanced use only.

Details

It’s particularly useful to pair removeUI with insertUI(), but there is no restriction on what you
can use on. Any element that can be selected through a jQuery selector can be removed through
this function.

Examples

Only run this example in interactive R sessions
if (interactive()) {
Define UI
ui <- fluidPage(
actionButton(”add"”, "Add UI")
)

Server logic
server <- function(input, output, session) {

https://developer.mozilla.org/en-US/docs/Web/API/Element/insertAdjacentHTML
https://developer.mozilla.org/en-US/docs/Web/API/Element/insertAdjacentHTML

installExprFunction 71

observeEvent (input$add, {

insertUI(
selector = "#add",
where = "afterEnd”,

ui = textInput(paste@("txt"”, input$add),
"Insert some text")
)
1))
3

Complete app with UI and server components
shinyApp(ui, server)

3
if (interactive()) {
Define UI
ui <- fluidPage(
actionButton(”"rmv"”, "Remove UI"),
textInput(”txt”, "This is no longer useful”)
)

Server logic
server <- function(input, output, session) {
observeEvent (input$rmv, {
removeUI (
selector = "div:has(> #txt)"
)
»
3

Complete app with UI and server components
shinyApp(ui, server)

3

installExprFunction Install an expression as a function

Description

Installs an expression in the given environment as a function, and registers debug hooks so that
breakpoints may be set in the function.

Usage

installExprFunction(
expr,
name,
eval.env = parent.frame(2),
quoted = FALSE,
assign.env = parent.frame(1),

72 invalidateLater

label = deparse(sys.call(-1)[[11]),
wrappedWithLabel = TRUE,
. .stacktraceon = FALSE

)
Arguments
expr A quoted or unquoted expression
name The name the function should be given
eval.env The desired environment for the function. Defaults to the calling environment
two steps back.
quoted Is the expression quoted?
assign.env The environment in which the function should be assigned.
label A label for the object to be shown in the debugger. Defaults to the name of the

calling function.
wrappedWithLabel, ..stacktraceon
Advanced use only. For stack manipulation purposes; see stacktrace().

Details

This function can replace exprToFunction as follows: we may use func <-exprToFunction(expr)
if we do not want the debug hooks, or installExprFunction(expr, "func") if we do. Both ap-
proaches create a function named func in the current environment.

See Also

Wraps exprToFunction(); see that method’s documentation for more documentation and exam-
ples.

invalidatelLater Scheduled Invalidation

Description

Schedules the current reactive context to be invalidated in the given number of milliseconds.

Usage

invalidateLater(millis, session = getDefaultReactiveDomain())

Arguments
millis Approximate milliseconds to wait before invalidating the current reactive con-
text.
session A session object. This is needed to cancel any scheduled invalidations after a

user has ended the session. If NULL, then this invalidation will not be tied to any
session, and so it will still occur.

is.reactivevalues 73

Details

If this is placed within an observer or reactive expression, that object will be invalidated (and re-
execute) after the interval has passed. The re-execution will reset the invalidation flag, so in a typical
use case, the object will keep re-executing and waiting for the specified interval. It’s possible to stop
this cycle by adding conditional logic that prevents the invalidatelLater from being run.

See Also

reactiveTimer () is a slightly less safe alternative.

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”n", "Number of observations”, 2, 1000, 500),
plotOutput(”plot”)

)

server <- function(input, output, session) {

observe({
Re-execute this reactive expression after 1000 milliseconds

invalidatelLater (1000, session)

Do something each time this is invalidated.

The isolate() makes this observer _not_ get invalidated and re-executed
when input$n changes.

print(paste("The value of input$n is”, isolate(input$n)))

D

Generate a new histogram at timed intervals, but not when

input$n changes.

output$plot <- renderPlot({
Re-execute this reactive expression after 2000 milliseconds
invalidatelater(2000)
hist(rnorm(isolate(input$n)))

k)]
}
shinyApp(ui, server)
}
is.reactivevalues Checks whether an object is a reactivevalues object
Description

Checks whether its argument is a reactivevalues object.

74 isolate

Usage

is.reactivevalues(x)

Arguments

X The object to test.

See Also

reactiveValues().

isolate Create a non-reactive scope for an expression

Description

Executes the given expression in a scope where reactive values or expression can be read, but they
cannot cause the reactive scope of the caller to be re-evaluated when they change.

Usage

isolate(expr)

Arguments

expr An expression that can access reactive values or expressions.

Details

Ordinarily, the simple act of reading a reactive value causes a relationship to be established between
the caller and the reactive value, where a change to the reactive value will cause the caller to re-
execute. (The same applies for the act of getting a reactive expression’s value.) The isolate
function lets you read a reactive value or expression without establishing this relationship.

The expression given to isolate() is evaluated in the calling environment. This means that if you
assign a variable inside the isolate(), its value will be visible outside of the isolate(). If you
want to avoid this, you can use base: : local() inside the isolate().

This function can also be useful for calling reactive expression at the console, which can be useful
for debugging. To do so, simply wrap the calls to the reactive expression with isolate().

Examples

Not run:
observe({
input$saveButton # Do take a dependency on input$saveButton

isolate a simple expression
data <- get(isolate(input$dataset)) # No dependency on input$dataset

isRunning

writeToDatabase(data)
»

observe({
input$saveButton # Do take a dependency on input$saveButton

isolate a whole block

data <- isolate({
a <- input$valueA # No dependency on input$valueA or input$valueB
b <- input$valueB
c(a=a, b=b)

D)

writeToDatabase(data)

b

observe({
X <- 1
x outside of isolate() is affected
isolate(x <- 2)
print(x) # 2

y <=1
Use local() to avoid affecting calling environment
isolate(local(y <- 2))
print(y) # 1
»

End(Not run)

Can also use isolate to call reactive expressions from the R console
values <- reactiveValues(A=1)

fun <- reactive({ as.character(values$A) })

isolate(fun())

"

isolate also works if the reactive expression accesses values from the
input object, like input$x

75

isRunning Check whether a Shiny application is running

Description

This function tests whether a Shiny application is currently running.

Usage

isRunning()

76 loadSupport

Value

TRUE if a Shiny application is currently running. Otherwise, FALSE.

knitr_methods Knitr 83 methods

Description

These S3 methods are necessary to help Shiny applications and UI chunks embed themselves in
knitr/rmarkdown documents.

Usage

knit_print.shiny.appobj(x, ...)

knit_print.shiny.render.function(x, ..., inline = FALSE)

knit_print.reactive(x, ..., inline = FALSE)
Arguments

X Object to knit_print

Additional knit_print arguments
inline Whether the object is printed inline.
loadSupport Load an app’s supporting R files

Description

Loads all of the supporting R files of a Shiny application. Specifically, this function loads any
top-level supporting .R files in the R/ directory adjacent to the app.R/server.R/ui.R files.

Usage

loadSupport(
appDir = NULL,
renv = new.env(parent = globalenv()),
globalrenv = globalenv()

)

makeReactiveBinding 77

Arguments
appDir The application directory. If appDir is NULL or not supplied, the nearest enclos-
ing directory that is a Shiny app, starting with the current directory, is used.
renv The environmeny in which the files in the R/ directory should be evaluated.
globalrenv The environment in which global.R should be evaluated. If NULL, global.R
will not be evaluated at all.
Details

Since Shiny 1.5.0, this function is called by default when running an application. If it causes
problems, there are two ways to opt out. You can either place a file named _disable_autoload.R in
your R/ directory, or set options(shiny.autoload.r=FALSE). If you set this option, it will affect
any application that runs later in the same R session, potentially breaking it, so after running your
application, you should unset option with options(shiny.autoload.r=NULL)

The files are sourced in alphabetical order (as determined by list.files). global.R is evaluated before
the supporting R files in the R/ directory.

makeReactiveBinding Make a reactive variable

Description

Turns a normal variable into a reactive variable, that is, one that has reactive semantics when as-
signed or read in the usual ways. The variable may already exist; if so, its value will be used as the
initial value of the reactive variable (or NULL if the variable did not exist).

Usage

makeReactiveBinding(symbol, env = parent.frame())

Arguments
symbol A character string indicating the name of the variable that should be made reac-
tive
env The environment that will contain the reactive variable
Value

None.

78 markdown

Examples

Not run:

a <-10
makeReactiveBinding("a")
b <- reactive(a * -1)
observe(print(b()))

a <- 20

End(Not run)

markdown Insert inline Markdown

Description

This function accepts Markdown-syntax text and returns HTML that may be included in Shiny Uls.

Usage
markdown(mds, extensions = TRUE, .noWS = NULL, ...)
Arguments

mds A character vector of Markdown source to convert to HTML. If the vector
has more than one element, a single-element character vector of concatenated
HTML is returned.

extensions Enable Github syntax extensions; defaults to TRUE.

.NoWS Character vector used to omit some of the whitespace that would normally be
written around generated HTML. Valid options include before, after, and
outside (equivalent to before and end).

Additional arguments to pass to commonmark: :markdown_html(). These argu-
ments are dynamic.
Details

Leading whitespace is trimmed from Markdown text with glue::trim(). Whitespace trimming
ensures Markdown is processed correctly even when the call to markdown() is indented within
surrounding R code.

By default, Github extensions are enabled, but this can be disabled by passing extensions = FALSE.

Markdown rendering is performed by commonmark: :markdown_html(). Additional arguments to
markdown () are passed as arguments to markdown_html ()

Value

a character vector marked as HTML.

https://en.wikipedia.org/wiki/Markdown

markRenderFunction 79

Examples

ui <- fluidPage(
markdown ("
Markdown Example

This is a markdown paragraph, and will be contained within a ‘<p>‘ tag
in the UI.

The following is an unordered list, which will be represented in the UI as
a ‘‘ with ‘<1i>‘ children:

* a bullet
* another

[Links](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/a) work;
so does *emphasisx*.

To see more of what's possible, check out commonmark.org/help.

n)

markRenderFunction Mark a function as a render function

Description

Should be called by implementers of renderXXX functions in order to mark their return values as
Shiny render functions, and to provide a hint to Shiny regarding what UI function is most commonly
used with this type of render function. This can be used in R Markdown documents to create
complete output widgets out of just the render function.

Usage

markRenderFunction(uiFunc, renderFunc, outputArgs = list())

Arguments
uiFunc A function that renders Shiny UI. Must take a single argument: an output ID.
renderFunc A function that is suitable for assigning to a Shiny output slot.
outputArgs A list of arguments to pass to the uiFunc. Render functions should include
outputArgs = list() in their own parameter list, and pass through the value to
markRenderFunction, to allow app authors to customize outputs. (Currently,
this is only supported for dynamically generated Uls, such as those created by
Shiny code snippets embedded in R Markdown documents).
Value

The renderFunc function, with annotations.

80 memoryCache

maskReactiveContext Evaluate an expression without a reactive context

Description

Temporarily blocks the current reactive context and evaluates the given expression. Any attempt to
directly access reactive values or expressions in expr will give the same results as doing it at the
top-level (by default, an error).

Usage

maskReactiveContext (expr)

Arguments

expr An expression to evaluate.

Value

The value of expr.

See Also

isolate()

memoryCache Create a memory cache object

Description

A memory cache object is a key-value store that saves the values in an environment. Objects can be
stored and retrieved using the get () and set() methods. Objects are automatically pruned from
the cache according to the parameters max_size, max_age, max_n, and evict.

Usage

memoryCache(
max_size = 10 * 1024"2,
max_age = Inf,
max_n = Inf,
evict = c("1ru", "fifo"),
missing = key_missing(),
exec_missing = FALSE,
logfile = NULL

memoryCache 81

Arguments

max_size Maximum size of the cache, in bytes. If the cache exceeds this size, cached
objects will be removed according to the value of the evict. Use Inf for no
size limit.

max_age Maximum age of files in cache before they are evicted, in seconds. Use Inf for
no age limit.

max_n Maximum number of objects in the cache. If the number of objects exceeds this
value, then cached objects will be removed according to the value of evict. Use
Inf for no limit of number of items.

evict The eviction policy to use to decide which objects are removed when a cache
pruning occurs. Currently, "1ru” and "fifo" are supported.

missing A value to return or a function to execute when get (key) is called but the key

is not present in the cache. The default is a key_missing() object. If itis a
function to execute, the function must take one argument (the key), and you
must also use exec_missing = TRUE. If it is a function, it is useful in most cases
for it to throw an error, although another option is to return a value. If a value is
returned, that value will in turn be returned by get (). See section Missing keys
for more information.

exec_missing If FALSE (the default), then treat missing as a value to return when get () results
in a cache miss. If TRUE, treat missing as a function to execute when get()
results in a cache miss.

logfile An optional filename or connection object to where logging information will be
written. To log to the console, use stdout ().

Details

In a MemoryCache, R objects are stored directly in the cache; they are not not serialized before
being stored in the cache. This contrasts with other cache types, like diskCache (), where objects
are serialized, and the serialized object is cached. This can result in some differences of behavior.
For example, as long as an object is stored in a MemoryCache, it will not be garbage collected.

Missing keys

The missing and exec_missing parameters controls what happens when get() is called with a
key that is not in the cache (a cache miss). The default behavior is to return a key_missing()
object. This is a sentinel value that indicates that the key was not present in the cache. You can test
if the returned value represents a missing key by using the is.key_missing() function. You can
also have get () return a different sentinel value, like NULL. If you want to throw an error on a cache
miss, you can do so by providing a function for missing that takes one argument, the key, and also
use exec_missing=TRUE.

When the cache is created, you can supply a value for missing, which sets the default value to be
returned for missing values. It can also be overridden when get () is called, by supplying amissing
argument. For example, if you use cache$get("mykey"”,missing = NULL), it will return NULL if
the key is not in the cache.

If your cache is configured so that get () returns a sentinel value to represent a cache miss, then set

will also not allow you to store the sentinel value in the cache. It will throw an error if you attempt
to do so.

82

memoryCache

Instead of returning the same sentinel value each time there is cache miss, the cache can execute a
function each time get () encounters missing key. If the function returns a value, then get () will
in turn return that value. However, a more common use is for the function to throw an error. If an
error is thrown, then get () will not return a value.

To do this, pass a one-argument function to missing, and use exec_missing=TRUE. For example,
if you want to throw an error that prints the missing key, you could do this:

diskCache(
missing = function(key) {
stop("Attempted to get missing key: ", key)
+
exec_missing = TRUE

)

If you use this, the code that calls get () should be wrapped with tryCatch() to gracefully handle
missing keys.

Cache pruning

Cache pruning occurs when set () is called, or it can be invoked manually by calling prune().
When a pruning occurs, if there are any objects that are older than max_age, they will be removed.

The max_size and max_n parameters are applied to the cache as a whole, in contrast to max_age,
which is applied to each object individually.

If the number of objects in the cache exceeds max_n, then objects will be removed from the cache
according to the eviction policy, which is set with the evict parameter. Objects will be removed so
that the number of items is max_n.

If the size of the objects in the cache exceeds max_size, then objects will be removed from the
cache. Objects will be removed from the cache so that the total size remains under max_size. Note
that the size is calculated using the size of the files, not the size of disk space used by the files —
these two values can differ because of files are stored in blocks on disk. For example, if the block
size is 4096 bytes, then a file that is one byte in size will take 4096 bytes on disk.

Another time that objects can be removed from the cache is when get () is called. If the target
object is older than max_age, it will be removed and the cache will report it as a missing value.

Eviction policies

If max_n or max_size are used, then objects will be removed from the cache according to an eviction
policy. The available eviction policies are:

"lru” Least Recently Used. The least recently used objects will be removed. This uses the filesys-
tem’s atime property. Some filesystems do not support atime, or have a very low atime res-
olution. The DiskCache will check for atime support, and if the filesystem does not support
atime, a warning will be issued and the "fifo" policy will be used instead.

"fifo" First-in-first-out. The oldest objects will be removed.

MockShinySession 83

Methods

A disk cache object has the following methods:

get(key, missing, exec_missing) Returns the value associated with key. If the key is not
in the cache, then it returns the value specified by missing or, missing is a function and
exec_missing=TRUE, then executes missing. The function can throw an error or return the
value. If either of these parameters are specified here, then they will override the defaults
that were set when the DiskCache object was created. See section Missing Keys for more
information.

set(key, value) Stores the key-value pair in the cache.

exists(key) Returns TRUE if the cache contains the key, otherwise FALSE.

size() Returns the number of items currently in the cache.

keys() Returns a character vector of all keys currently in the cache.

reset() Clears all objects from the cache.

destroy() Clears all objects in the cache, and removes the cache directory from disk.

prune() Prunes the cache, using the parameters specified by max_size, max_age, max_n, and
evict.

MockShinySession Mock Shiny Session

Description

An R6 class suitable for testing purposes. Simulates, to the extent possible, the behavior of the
ShinySession class. The session parameter provided to Shiny server functions and modules is an
instance of a ShinySession in normal operation.

Most kinds of module and server testing do not require this class be instantiated manually. See
instead testServer().

In order to support advanced usage, instances of MockShinySession are unlocked so that public
methods and fields of instances may be modified. For example, in order to test authentication
workflows, the user or groups fields may be overridden. Modified instances of MockShinySession
may then be passed explicitly as the session argument of testServer().

Public fields

env The environment associated with the session.

returned The value returned by the module under test.

singletons Hardcoded as empty. Needed for rendering HTML (i.e. renderUI).
clientData Mock client data that always returns a size for plots.

output The shinyoutputs associated with the session.

input The reactive inputs associated with the session.

userData An environment initialized as empty.

84 MockShinySession

progressStack A stack of progress objects.

token On areal ShinySession, used to identify this instance in URLs.
cache The session cache MemoryCache.

appcache The app cache MemoryCache.

restoreContext Part of bookmarking support in a real ShinySession but always NULL for a
MockShinySession.

groups Character vector of groups associated with an authenticated user. Always NULL for a
MockShinySesion.

user The username of an authenticated user. Always NULL for a MockShinySession.

Active bindings

files For internal use only.

downloads For internal use only.

closed Deprecated in ShinySession and signals an error.
session Deprecated in ShinySession and signals an error.

request An empty environment where the request should be. The request isn’t meaningfully
mocked currently.

Methods
Public methods:

* MockShinySession$new()

* MockShinySession$onFlush()

* MockShinySession$onFlushed()

* MockShinySession$onEnded()

¢ MockShinySession$isEnded()

* MockShinySession$isClosed()

¢ MockShinySession$close()

* MockShinySession$cycleStartAction()
¢ MockShinySession$fileUrl()

* MockShinySession$setInputs()

e MockShinySession$.scheduleTask()
* MockShinySession$elapse()

* MockShinySession$.now()

* MockShinySession$defineOutput()
¢ MockShinySession$getOutput()

* MockShinySession$ns()

¢ MockShinySession$flushReact()

* MockShinySession$makeScope ()

¢ MockShinySession$setEnv ()

* MockShinySession$setReturned()

MockShinySession 85

* MockShinySession$getReturned()

* MockShinySession$genId()

* MockShinySession$rootScope()

* MockShinySession$unhandledError()

* MockShinySession$freezeValue()

¢ MockShinySession$onSessionEnded()

* MockShinySession$registerDownload()

* MockShinySession$getCurrentOutputInfo()
* MockShinySession$clone()

Method new(): Create a new MockShinySession.

Usage:
MockShinySession$new()

Method onFlush(): Define a callback to be invoked before a reactive flush

Usage:
MockShinySession$onFlush(fun, once = TRUE)

Arguments:
fun The function to invoke
once If TRUE, will only run once. Otherwise, will run every time reactives are flushed.

Method onFlushed(): Define a callback to be invoked after a reactive flush

Usage:
MockShinySession$onFlushed(fun, once = TRUE)

Arguments:
fun The function to invoke
once If TRUE, will only run once. Otherwise, will run every time reactives are flushed.

Method onEnded(): Define a callback to be invoked when the session ends

Usage:
MockShinySession$onEnded(sessionEndedCallback)

Arguments:
sessionEndedCallback The callback to invoke when the session has ended.

Method isEnded(): Returns FALSE if the session has not yet been closed
Usage:
MockShinySession$isEnded()

Method isClosed(): Returns FALSE if the session has not yet been closed
Usage:
MockShinySession$isClosed()

Method close(): Closes the session

MockShinySession

Usage:
MockShinySession$close()

Method cycleStartAction(): Unsophisticated mock implementation that merely invokes
Usage:
MockShinySession$cycleStartAction(callback)
Arguments:
callback The callback to be invoked.

Method fileUrl(): Base64-encode the given file. Needed for image rendering.
Usage:
MockShinySession$fileUrl(name, file, contentType = "application/octet-stream”)
Arguments:
name Not used
file The file to be encoded
contentType The content type of the base64-encoded string

Method setInputs(): Sets reactive values associated with the session$inputs object and
flushes the reactives.

Usage:

MockShinySession$setInputs(...)

Arguments:

. The inputs to set. These arguments are processed with rlang::1ist2() and so are dy-
namic. Input names may not be duplicated.
Examples:

\dontrun{
session$setInputs(x=1, y=2)

3

Method .scheduleTask(): An internal method which shouldn’t be used by others. Schedules
callback for execution after some number of millis milliseconds.

Usage:
MockShinySession$.scheduleTask(millis, callback)

Arguments:
millis The number of milliseconds on which to schedule a callback

callback The function to schedule.

Method elapse(): Simulate the passing of time by the given number of milliseconds.

Usage:
MockShinySession$elapse(millis)

Arguments:

millis The number of milliseconds to advance time.

MockShinySession 87

Method .now(): An internal method which shouldn’t be used by others.

Usage:
MockShinySession$.now()

Returns: Elapsed time in milliseconds.
Method defineOutput(): An internal method which shouldn’t be used by others. Defines an
output in a way that sets private$currentOutputName appropriately.

Usage:
MockShinySession$defineOutput(name, func, label)

Arguments:

name The name of the output.
func The render definition.
label Not used.

Method getOutput(): An internal method which shouldn’t be used by others. Forces evaluation
of any reactive dependencies of the output function.

Usage:
MockShinySession$getOutput(name)

Arguments:
name The name of the output.

Returns: The return value of the function responsible for rendering the output.

Method ns(): Returns the given id prefixed by this namespace’s id.

Usage:
MockShinySession$ns(id)

Arguments:
id The id to prefix with a namespace id.

Returns: The id with a namespace prefix.

Method flushReact(): Trigger a reactive flush right now.
Usage:
MockShinySession$flushReact ()
Method makeScope(): Create and return a namespace-specific session proxy.
Usage:
MockShinySession$makeScope (namespace)
Arguments:

namespace Character vector indicating a namespace.
Returns: A new session proxy.
Method setEnv(): Set the environment associated with a testServer() call, but only if it has not

previously been set. This ensures that only the environment of the outermost module under test is
the one retained. In other words, the first assignment wins.

88

MockShinySession

Usage:
MockShinySession$setEnv(env)

Arguments:

env The environment to retain.
Returns: The provided env.
Method setReturned(): Set the value returned by the module call and proactively flush. Note

that this method may be called multiple times if modules are nested. The last assignment, corre-
sponding to an invocation of setReturned() in the outermost module, wins.

Usage:
MockShinySession$setReturned(value)

Arguments:
value The value returned from the module

Returns: The provided value.

Method getReturned(): Get the value returned by the module call.

Usage:
MockShinySession$getReturned()

Returns: The value returned by the module call

Method genId(): Generate a distinct character identifier for use as a proxy namespace.

Usage:
MockShinySession$genId()

Returns: A character identifier unique to the current session.
Method rootScope(): Provides a way to access the root MockShinySession from any descen-
dant proxy.

Usage:
MockShinySession$rootScope ()

Returns: The root MockShinySession.

Method unhandledError(): Called by observers when a reactive expression errors.

Usage:
MockShinySession$unhandledError(e)

Arguments:
e An error object.
Method freezeValue(): Freeze a value until the flush cycle completes.

Usage:
MockShinySession$freezeValue(x, name)

Arguments:
X A ReactiveValues object.

MockShinySession 89

name The name of a reactive value within x.

Method onSessionEnded(): Registers the given callback to be invoked when the session is
closed (i.e. the connection to the client has been severed). The return value is a function which
unregisters the callback. If multiple callbacks are registered, the order in which they are invoked
is not guaranteed.

Usage:

MockShinySession$onSessionEnded(sessionEndedCallback)

Arguments:

sessionEndedCallback Function to call when the session ends.

Method registerDownload(): Associated a downloadable file with the session.

Usage:

MockShinySession$registerDownload(name, filename, contentType, content)
Arguments:

name The un-namespaced output name to associate with the downloadable file.
filename A string or function designating the name of the file.

contentType A string of the content type of the file. Not used by MockShinySession.

content A function that takes a single argument file that is a file path (string) of a nonexistent
temp file, and writes the content to that file path. (Reactive values and functions may be
used from this function.)

Method getCurrentOutputInfo(): Get information about the output that is currently being
executed.

Usage:
MockShinySession$getCurrentOutputInfo()

Returns: A list with with the name of the output. If no output is currently being executed, this
will return NULL. output, or NULL if no output is currently executing.
Method clone(): The objects of this class are cloneable with this method.

Usage:
MockShinySession$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

o
Method “MockShinySession$setInputs®
oo

Not run:
session$setInputs(x=1, y=2)

End(Not run)

90 modalDialog

modalButton Create a button for a modal dialog

Description

When clicked, a modalButton will dismiss the modal dialog.

Usage

modalButton(label, icon = NULL)

Arguments
label The contents of the button or link—usually a text label, but you could also use
any other HTML, like an image.
icon An optional icon() to appear on the button.
See Also

modalDialog() for examples.

modalDialog Create a modal dialog Ul

Description

This creates the Ul for a modal dialog, using Bootstrap’s modal class. Modals are typically used
for showing important messages, or for presenting Ul that requires input from the user, such as a
username and password input.

Usage
modalDialog(
title = NULL,
footer = modalButton("Dismiss"),
size = C(”m”, "s”, Hl”),
easyClose = FALSE,
fade = TRUE

modalDialog

Arguments

title
footer
size

easyClose

fade

Examples

91

Ul elements for the body of the modal dialog box.

An optional title for the dialog.

UI for footer. Use NULL for no footer.

One of "s" for small, "m"” (the default) for medium, or "1" for large.

If TRUE, the modal dialog can be dismissed by clicking outside the dialog box,
or be pressing the Escape key. If FALSE (the default), the modal dialog can’t be
dismissed in those ways; instead it must be dismissed by clicking on the dismiss
button, or from a call to removeModal () on the server.

If FALSE, the modal dialog will have no fade-in animation (it will simply appear
rather than fade in to view).

if (interactive()) {
Display an important message that can be dismissed only by clicking the

dismiss button.

shinyApp(

ui = basicPage(

actionButton("show", "Show modal dialog")

)?

server = function(input, output) {
observeEvent (input$show, {
showModal (modalDialog(
title = "Important message”,
"This is an important message!”

)
b
3
)

Display a message that can be dismissed by clicking outside the modal dialog,
or by pressing Esc.

shinyApp(

ui = basicPage(

actionButton("show"”, "Show modal dialog")

)!

server = function(input, output) {
observeEvent (input$show, {
showModal (modalDialog(
title = "Somewhat important message”,
"This is a somewhat important message.",
easyClose = TRUE,
footer = NULL

)
b
3
)

92

modalDialog

Display a modal that requires valid input before continuing.
shinyApp(
ui = basicPage(
actionButton("show”, "Show modal dialog"),
verbatimTextOutput(”dataInfo”)

),

server = function(input, output) {
reactiveValues object for storing current data set.
vals <- reactiveValues(data = NULL)

Return the UI for a modal dialog with data selection input. If 'failed' is
TRUE, then display a message that the previous value was invalid.
dataModal <- function(failed = FALSE) {

modalDialog(
textInput("dataset”, "Choose data set”,
placeholder = 'Try "mtcars” or "abc"'
),

span(' (Try the name of a valid data object like "mtcars”, ',
"then a name of a non-existent object like "abc")'),
if (failed)
div(tags$b(”"Invalid name of data object”, style = "color: red;")),

footer = taglList(
modalButton(”Cancel”),
actionButton("ok"”, "OK")
)
)
}

Show modal when button is clicked.
observeEvent (input$show, {

showModal (dataModal())
»

When OK button is pressed, attempt to load the data set. If successful,
remove the modal. If not show another modal, but this time with a failure
message.
observeEvent (input$ok, {
Check that data object exists and is data frame.
if (!is.null(input$dataset) && nzchar(input$dataset) &&
exists(input$dataset) && is.data.frame(get(input$dataset))) {
vals$data <- get(input$dataset)
removeModal ()
} else {
showModal (dataModal (failed = TRUE))
}
»

Display information about selected data
output$dataInfo <- renderPrint({
if (is.null(vals$data))

moduleServer 93

"No data selected”

else
summary (vals$data)
D
}
)
3
moduleServer Shiny modules
Description

Shiny’s module feature lets you break complicated UI and server logic into smaller, self-contained
pieces. Compared to large monolithic Shiny apps, modules are easier to reuse and easier to reason
about. See the article at http://shiny.rstudio.com/articles/modules.html to learn more.

Usage

moduleServer(id, module, session = getDefaultReactiveDomain())

Arguments
id An ID string that corresponds with the ID used to call the module’s UI function.
module A Shiny module server function.
session Session from which to make a child scope (the default should almost always be
used).
Details

Starting in Shiny 1.5.0, we recommend using moduleServer instead of callModule(), because the

syntax is a little easier to understand, and modules created with moduleServer can be tested with
testServer().

Value

The return value, if any, from executing the module server function

See Also

http://shiny.rstudio.com/articles/modules.html

http://shiny.rstudio.com/articles/modules.html
http://shiny.rstudio.com/articles/modules.html

94 moduleServer

Examples

Define the UI for a module

counterUI <- function(id, label = "Counter”) {
ns <- NS(id)
taglist(

actionButton(ns("button”), label = label),
verbatimTextOutput(ns("out"))
)
3

Define the server logic for a module
counterServer <- function(id) {
moduleServer(
id,
function(input, output, session) {
count <- reactiveVal(@)
observeEvent (input$button, {
count(count() + 1)
1))
output$out <- renderText({
count()

D

count

Use the module in an app

ui <- fluidPage(
counterUI("counter1”, "Counter #1"),
counterUI("counter2”, "Counter #2")

)

server <- function(input, output, session) {
counterServer("counter1")
counterServer("counter2")

3

if (interactive()) {
shinyApp(ui, server)

}

If you want to pass extra parameters to the module's server logic, you can
add them to your function. In this case ‘prefix‘ is text that will be
printed before the count.
counterServer2 <- function(id, prefix = NULL) {
moduleServer(
id,
function(input, output, session) {
count <- reactiveVal(Q)
observeEvent (input$button, {
count(count() + 1)

navbarPage 95

1))
output$out <- renderText({

paste@(prefix, count())

b))
count
}
)
3
ui <- fluidPage(
counterUI("counter”, "Counter”),
)
server <- function(input, output, session) {
counterServer2("counter”, "The current count is: ")
3

if (interactive()) {
shinyApp(ui, server)

}

navbarPage Create a page with a top level navigation bar

Description

Create a page that contains a top level navigation bar that can be used to toggle a set of tabPanel ()
elements.

Usage

navbarPage (
title,

id = NULL,

selected = NULL,

position = c("static-top”, "fixed-top"”, "fixed-bottom"),
header = NULL,

footer = NULL,

inverse = FALSE,

collapsible = FALSE,

collapsable,

fluid = TRUE,
responsive = NULL,
theme = NULL,
windowTitle = title

navbarMenu(title, ..., menuName = title, icon = NULL)

Arguments

title

id

selected

position

header
footer
inverse

collapsible

collapsable
fluid
responsive
theme
windowTitle

menuName

icon

Details

navbarPage

The title to display in the navbar

tabPanel() elements to include in the page. The navbarMenu function also
accepts strings, which will be used as menu section headers. If the string is a set
of dashes like "----" a horizontal separator will be displayed in the menu.

If provided, you can use input$id in your server logic to determine which of the
current tabs is active. The value will correspond to the value argument that is
passed to tabPanel().

The value (or, if none was supplied, the title) of the tab that should be selected
by default. If NULL, the first tab will be selected.

Determines whether the navbar should be displayed at the top of the page with
normal scrolling behavior ("static-top"”), pinned at the top ("fixed-top"),
or pinned at the bottom ("fixed-bottom”). Note that using "fixed-top" or
"fixed-bottom” will cause the navbar to overlay your body content, unless
you add padding, e.g.: tags$style(type="text/css"”, "body {padding-top:
70px;}")

Tag or list of tags to display as a common header above all tabPanels.

Tag or list of tags to display as a common footer below all tabPanels

TRUE to use a dark background and light text for the navigation bar

TRUE to automatically collapse the navigation elements into a menu when the
width of the browser is less than 940 pixels (useful for viewing on smaller touch-
screen device)

Deprecated; use collapsible instead.
TRUE to use a fluid layout. FALSE to use a fixed layout.
This option is deprecated,; it is no longer optional with Bootstrap 3.

Alternative Bootstrap stylesheet (normally a css file within the www directory).
For example, to use the theme located at www/bootstrap.css you would use
theme = "bootstrap.css”.

The title that should be displayed by the browser window. Useful if title is not
a string.

A name that identifies this navbarMenu. This is needed if you want to in-
sert/remove or show/hide an entire navbarMenu.

Optional icon to appear on a navbarMenu tab.

The navbarMenu function can be used to create an embedded menu within the navbar that in turns
includes additional tabPanels (see example below).

Value

A UI defintion that can be passed to the shinyUI function.

navlistPanel 97

See Also

tabPanel (), tabsetPanel (), updateNavbarPage(), insertTab(), showTab()

Other layout functions: fillPage(), fixedPage(), flowLayout(), fluidPage(), sidebarLayout(),
splitlLayout(), verticallLayout()

Examples

navbarPage("App Title",
tabPanel("Plot"),
tabPanel ("Summary”),
tabPanel("Table")

)

navbarPage("App Title",
tabPanel("Plot"),
navbarMenu("More"”,
tabPanel ("Summary"),

” n

"Section header”,
tabPanel("Table")

navlistPanel Create a navigation list panel

Description

Create a navigation list panel that provides a list of links on the left which navigate to a set of
tabPanels displayed to the right.

Usage
navlistPanel(
id = NULL,
selected = NULL,
well = TRUE,
fluid = TRUE,
widths = c(4, 8)
)
Arguments
tabPanel () elements to include in the navlist
id If provided, you can use input$id in your server logic to determine which of the

current navlist items is active. The value will correspond to the value argument
that is passed to tabPanel().

98 NS

selected The value (or, if none was supplied, the title) of the navigation item that
should be selected by default. If NULL, the first navigation will be selected.
well TRUE to place a well (gray rounded rectangle) around the navigation list.
fluid TRUE to use fluid layout; FALSE to use fixed layout.
widths Column withs of the navigation list and tabset content areas respectively.
Details
You can include headers within the navlistPanel by including plain text elements in the list.
Versions of Shiny before 0.11 supported separators with "——", but as of 0.11, separators were
no longer supported. This is because version 0.11 switched to Bootstrap 3, which doesn’t support
separators.
See Also

tabPanel (), updateNavlistPanel (), insertTab(), showTab()

Examples

fluidPage(
titlePanel("Application Title"),

navlistPanel(
"Header"”,
tabPanel ("First"),
tabPanel("Second"),
tabPanel("Third")
)
)

NS Namespaced IDs for inputs/outputs

Description

The NS function creates namespaced IDs out of bare IDs, by joining them using ns.sep as the
delimiter. It is intended for use in Shiny modules. See http://shiny.rstudio.com/articles/
modules.html.

Usage

NS(namespace, id = NULL)

ns.sep

http://shiny.rstudio.com/articles/modules.html
http://shiny.rstudio.com/articles/modules.html

numericlnput

Arguments

namespace

id

Format

99

The character vector to use for the namespace. This can have any length, though
a single element is most common. Length 0 will cause the id to be returned
without a namespace, and length 2 will be interpreted as multiple namespaces,
in increasing order of specificity (i.e. starting with the top-level namespace).

The id string to be namespaced (optional).

An object of class character of length 1.

Details

Shiny applications use IDs to identify inputs and outputs. These IDs must be unique within an
application, as accidentally using the same input/output ID more than once will result in unexpected
behavior. The traditional solution for preventing name collisions is namespaces; a namespace is to
an ID as a directory is to a file. Use the NS function to turn a bare ID into a namespaced one, by
combining them with ns. sep in between.

Value

If id is missing, returns a function that expects an id string as its only argument and returns that id
with the namespace prepended.

See Also

http://shiny.rstudio.com/articles/modules.html

numericInput

Create a numeric input control

Description

Create an input control for entry of numeric values

Usage

numericInput(
inputld,
label,
value,
min = NA,
max = NA,
step = NA,
width = NULL

http://shiny.rstudio.com/articles/modules.html

100 numericlnput

Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

min Minimum allowed value

max Maximum allowed value

step Interval to use when stepping between min and max

width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().
Value

A numeric input control that can be added to a UI definition.

Server value

A numeric vector of length 1.

See Also

updateNumericInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), passwordInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
numericInput(”obs”, "Observations:”, 10, min = 1, max = 100),
verbatimTextOutput("”value”)

)

server <- function(input, output) {
output$value <- renderText({ input$obs 3})

}

shinyApp(ui, server)

}

observe

101

observe

Create a reactive observer

Description

Creates an observer from the given expression.

Usage

observe(
X’

env = parent.frame(),
quoted = FALSE,

label = NULL,

suspended = FALSE,

priority = 0,

domain = getDefaultReactiveDomain(),

autoDestroy =

TRUE,

..stacktraceon = TRUE

Arguments

X

env

quoted

label

suspended

priority

domain

autoDestroy

. .stacktraceon

An expression (quoted or unquoted). Any return value will be ignored.

The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression.

Is the expression quoted? By default, this is FALSE. This is useful when you
want to use an expression that is stored in a variable; to do so, it must be quoted
with quote().

A label for the observer, useful for debugging.

If TRUE, start the observer in a suspended state. If FALSE (the default), start in a
non-suspended state.

An integer or numeric that controls the priority with which this observer should
be executed. A higher value means higher priority: an observer with a higher
priority value will execute before all observers with lower priority values. Posi-
tive, negative, and zero values are allowed.

See domains.

If TRUE (the default), the observer will be automatically destroyed when its do-
main (if any) ends.

Advanced use only. For stack manipulation purposes; see stacktrace().

102 observe

Details

An observer is like a reactive expression in that it can read reactive values and call reactive ex-
pressions, and will automatically re-execute when those dependencies change. But unlike reactive
expressions, it doesn’t yield a result and can’t be used as an input to other reactive expressions.
Thus, observers are only useful for their side effects (for example, performing I/O).

Another contrast between reactive expressions and observers is their execution strategy. Reactive
expressions use lazy evaluation; that is, when their dependencies change, they don’t re-execute right
away but rather wait until they are called by someone else. Indeed, if they are not called then they
will never re-execute. In contrast, observers use eager evaluation; as soon as their dependencies
change, they schedule themselves to re-execute.

Starting with Shiny 0.10.0, observers are automatically destroyed by default when the domain that
owns them ends (e.g. when a Shiny session ends).

Value
An observer reference class object. This object has the following methods:

suspend() Causes this observer to stop scheduling flushes (re-executions) in response to invalida-
tions. If the observer was invalidated prior to this call but it has not re-executed yet then that
re-execution will still occur, because the flush is already scheduled.

resume() Causes this observer to start re-executing in response to invalidations. If the observer
was invalidated while suspended, then it will schedule itself for re-execution.

destroy() Stops the observer from executing ever again, even if it is currently scheduled for re-
execution.

setPriority(priority =) Change this observer’s priority. Note that if the observer is currently
invalidated, then the change in priority will not take effect until the next invalidation—unless
the observer is also currently suspended, in which case the priority change will be effective
upon resume.

setAutoDestroy(autoDestroy) Sets whether this observer should be automatically destroyed
when its domain (if any) ends. If autoDestroy is TRUE and the domain already ended, then
destroy() is called immediately."

onInvalidate(callback) Register a callback function to run when this observer is invalidated.
No arguments will be provided to the callback function when it is invoked.

Examples

values <- reactiveValues(A=1)

obsB <- observe({
print(values$A + 1)
»

Can use quoted expressions
obsC <- observe(quote({ print(values$A + 2) }), quoted = TRUE)

To store expressions for later conversion to observe, use quote()
expr_q <- quote({ print(values$A + 3) })
obsD <- observe(expr_q, quoted = TRUE)

observeEvent 103

In a normal Shiny app, the web client will trigger flush events. If you
are at the console, you can force a flush with flushReact()
shiny:::flushReact()

observeEvent Event handler

Description

Respond to "event-like" reactive inputs, values, and expressions.

Usage

observeEvent(
eventExpr,
handlerExpr,
event.env = parent.frame(),
event.quoted = FALSE,
handler.env = parent.frame(),
handler.quoted = FALSE,

label = NULL,
suspended = FALSE,
priority = 0,

domain = getDefaultReactiveDomain(),
autoDestroy = TRUE,

ignoreNULL = TRUE,

ignorelnit = FALSE,

once = FALSE

eventReactive(
eventExpr,
valueExpr,
event.env = parent.frame(),
event.quoted = FALSE,
value.env = parent.frame(),
value.quoted = FALSE,
label = NULL,
domain = getDefaultReactiveDomain(),
ignoreNULL = TRUE,
ignorelnit = FALSE

Arguments

eventExpr A (quoted or unquoted) expression that represents the event; this can be a simple
reactive value like input$click, a call to a reactive expression like dataset (),
or even a complex expression inside curly braces

104

handlerExpr

event.env

event.quoted

handler.env

handler.quoted

label

suspended

priority

domain

autoDestroy

ignoreNULL

ignorelnit

once

valueExpr

value.env

value.quoted

Details

observeEvent

The expression to call whenever eventExpr is invalidated. This should be a
side-effect-producing action (the return value will be ignored). It will be exe-
cuted within an isolate() scope.

The parent environment for eventExpr. By default, this is the calling environ-
ment.

Is the eventExpr expression quoted? By default, this is FALSE. This is useful
when you want to use an expression that is stored in a variable; to do so, it must
be quoted with quote().

The parent environment for handlerExpr. By default, this is the calling envi-
ronment.

Is the handlerExpr expression quoted? By default, this is FALSE. This is useful
when you want to use an expression that is stored in a variable; to do so, it must
be quoted with quote().

A label for the observer or reactive, useful for debugging.

If TRUE, start the observer in a suspended state. If FALSE (the default), start in a
non-suspended state.

An integer or numeric that controls the priority with which this observer should
be executed. An observer with a given priority level will always execute sooner
than all observers with a lower priority level. Positive, negative, and zero values
are allowed.

See domains.

If TRUE (the default), the observer will be automatically destroyed when its do-
main (if any) ends.

Whether the action should be triggered (or value calculated, in the case of
eventReactive) when the input is NULL. See Details.

If TRUE, then, when this observeEvent is first created/initialized, ignore the
handlerExpr (the second argument), whether it is otherwise supposed to run or
not. The default is FALSE. See Details.

Whether this observeEvent should be immediately destroyed after the first time
that the code in handlerExpr is run. This pattern is useful when you want to
subscribe to a event that should only happen once.

The expression that produces the return value of the eventReactive. It will be
executed within an isolate() scope.

The parent environment for valueExpr. By default, this is the calling environ-
ment.

Is the valueExpr expression quoted? By default, this is FALSE. This is useful
when you want to use an expression that is stored in a variable; to do so, it must
be quoted with quote().

Shiny’s reactive programming framework is primarily designed for calculated values (reactive ex-
pressions) and side-effect-causing actions (observers) that respond to any of their inputs changing.
That’s often what is desired in Shiny apps, but not always: sometimes you want to wait for a specific

observeEvent 105

action to be taken from the user, like clicking an actionButton(), before calculating an expression
or taking an action. A reactive value or expression that is used to trigger other calculations in this
way is called an event.

These situations demand a more imperative, "event handling" style of programming that is possible—
but not particularly intuitive—using the reactive programming primitives observe() and isolate().
observeEvent and eventReactive provide straightforward APIs for event handling that wrap
observe and isolate.

Use observeEvent whenever you want to perform an action in response to an event. (Note that
"recalculate a value" does not generally count as performing an action—see eventReactive for
that.) The first argument is the event you want to respond to, and the second argument is a function
that should be called whenever the event occurs.

Use eventReactive to create a calculated value that only updates in response to an event. This is
just like a normal reactive expression except it ignores all the usual invalidations that come from its
reactive dependencies; it only invalidates in response to the given event.

Value

observeEvent returns an observer reference class object (see observe()). eventReactive returns
a reactive expression object (see reactive()).

ignoreNULL and ignorelnit

Both observeEvent and eventReactive take an ignoreNULL parameter that affects behavior when
the eventExpr evaluates to NULL (or in the special case of an actionButton(), @). In these cases,
if ignoreNULL is TRUE, then an observeEvent will not execute and an eventReactive will raise a
silent validation error. This is useful behavior if you don’t want to do the action or calculation when
your app first starts, but wait for the user to initiate the action first (like a "Submit" button); whereas
ignoreNULL=FALSE is desirable if you want to initially perform the action/calculation and just let
the user re-initiate it (like a "Recalculate" button).

Likewise, both observeEvent and eventReactive also take in an ignoreInit argument. By de-
fault, both of these will run right when they are created (except if, at that moment, eventExpr eval-
uates to NULL and ignoreNULL is TRUE). But when responding to a click of an action button, it may
often be useful to set ignoreInit to TRUE. For example, if you’re setting up an observeEvent for a
dynamically created button, then ignoreInit = TRUE will guarantee that the action (in handlerExpr)
will only be triggered when the button is actually clicked, instead of also being triggered when it is
created/initialized. Similarly, if you’re setting up an eventReactive that responds to a dynamically
created button used to refresh some data (then returned by that eventReactive), then you should
use eventReactive([...], ignorelnit = TRUE) if you want to let the user decide if/when they want to
refresh the data (since, depending on the app, this may be a computationally expensive operation).

Even though ignoreNULL and ignoreInit can be used for similar purposes they are independent
from one another. Here’s the result of combining these:

ignoreNULL = TRUE and ignorelnit = FALSE This is the default. This combination means that
handlerExpr/ valueExpr will run every time that eventExpr is not NULL. If, at the time of
the creation of the observeEvent/eventReactive, eventExpr happens to not be NULL, then
the code runs.

ignoreNULL = FALSE and ignoreInit = FALSE This combination means that handlerExpr/valueExpr
will run every time no matter what.

106 observeEvent

ignoreNULL = FALSE and ignoreInit = TRUE This combination means that handlerExpr/valueExpr
will not run when the observeEvent/eventReactive is created (because ignorelInit = TRUE),
but it will run every other time.

ignoreNULL = TRUE and ignorelnit = TRUE This combination means that handlerExpr/valueExpr
will not run when the observeEvent/eventReactive is created (because ignoreInit = TRUE).
After that, handlerExpr/valueExpr will run every time that eventExpr is not NULL.

See Also

actionButton()

Examples

Only run this example in interactive R sessions
if (interactive()) {

App 1: Sample usage

shinyApp(
ui = fluidPage(
column(4,
numericInput(”x", "Value"”, 5),
brQ,
actionButton("button”, "Show")
),
column(8, tableOutput(”table"))
),

server = function(input, output) {
Take an action every time button is pressed;
here, we just print a message to the console
observeEvent (input$button, {
cat("Showing"”, input$x, "rows\n")
b))
Take a reactive dependency on input$button, but
not on any of the stuff inside the function
df <- eventReactive(input$button, {
head(cars, input$x)
1))
output$table <- renderTable({
afQ)
1))
3
)

App 2: Using ‘once®
shinyApp(
ui = basicPage(actionButton("go"”, "Go")),
server = function(input, output, session) {
observeEvent (input$go, {
print(paste(”"This will only be printed once; all”,
"subsequent button clicks won't do anything”))
}, once = TRUE)
}

onBookmark 107

)

App 3: Using ‘ignorelnit‘ and ‘once®
shinyApp(
ui = basicPage(actionButton(”"go"”, "Go")),
server = function(input, output, session) {
observeEvent (input$go, {
insertUI("#go", "afterkEnd”,
actionButton("dynamic”, "click to remove"”))

set up an observer that depends on the dynamic
input, so that it doesn't run when the input is
created, and only runs once after that (since
the side effect is remove the input from the DOM)
observeEvent (input$dynamic, {
removeUI ("#dynamic")
}, ignorelnit = TRUE, once = TRUE)
)]

onBookmark Add callbacks for Shiny session bookmarking events

Description
These functions are for registering callbacks on Shiny session events. They should be called within
an application’s server function.
* onBookmark registers a function that will be called just before Shiny bookmarks state.
* onBookmarked registers a function that will be called just after Shiny bookmarks state.

* onRestore registers a function that will be called when a session is restored, after the server
function executes, but before all other reactives, observers and render functions are run.

* onRestored registers a function that will be called after a session is restored. This is similar
to onRestore, but it will be called after all reactives, observers, and render functions run, and
after results are sent to the client browser. onRestored callbacks can be useful for sending
update messages to the client browser.

Usage

onBookmark(fun, session = getDefaultReactiveDomain())
onBookmarked(fun, session = getDefaultReactiveDomain())
onRestore(fun, session = getDefaultReactiveDomain())

onRestored(fun, session = getDefaultReactiveDomain())

108 onBookmark

Arguments
fun A callback function which takes one argument.
session A shiny session object.

Details

All of these functions return a function which can be called with no arguments to cancel the regis-
tration.

The callback function that is passed to these functions should take one argument, typically named
"state" (for onBookmark, onRestore, and onRestored) or "url" (for onBookmarked).

For onBookmark, the state object has three relevant fields. The values field is an environment which
can be used to save arbitrary values (see examples). If the state is being saved to disk (as opposed
to being encoded in a URL), the dir field contains the name of a directory which can be used to
store extra files. Finally, the state object has an input field, which is simply the application’s input
object. It can be read, but not modified.

For onRestore and onRestored, the state object is a list. This list contains input, which is a
named list of input values to restore, values, which is an environment containing arbitrary values
that were saved in onBookmark, and dir, the name of the directory that the state is being restored
from, and which could have been used to save extra files.

For onBookmarked, the callback function receives a string with the bookmark URL. This callback
function should be used to display Ul in the client browser with the bookmark URL. If no callback
function is registered, then Shiny will by default display a modal dialog with the bookmark URL.

Modules

These callbacks may also be used in Shiny modules. When used this way, the inputs and values will
automatically be namespaced for the module, and the callback functions registered for the module
will only be able to see the module’s inputs and values.

See Also

enableBookmarking for general information on bookmarking.

Examples

Only run these examples in interactive sessions
if (interactive()) {

Basic use of onBookmark and onRestore: This app saves the time in its
arbitrary values, and restores that time when the app is restored.
ui <- function(req) {
fluidPage(
textInput(”"txt”, "Input text"),
bookmarkButton()
)
}
server <- function(input, output) {
onBookmark (function(state) {

onBookmark 109

savedTime <- as.character(Sys.time())

cat("Last saved at”, savedTime, "\n")

state is a mutable reference object, and we can add arbitrary values to
#it.

state$values$time <- savedTime

b

onRestore(function(state) {
cat("Restoring from state bookmarked at”, state$values$time, "\n")
b))
3
enableBookmarking("url”)
shinyApp(ui, server)

ui <- function(req) {
fluidPage(
textInput(”txt"”, "Input text"),
bookmarkButton()
)
3
server <- function(input, output, session) {
lastUpdateTime <- NULL

observeEvent (input$txt, {
updateTextInput(session, "txt"”,
label = paste@("Input text (Changed ", as.character(Sys.time()), ")")
)
b))

onBookmark(function(state) {
Save content to a file
messageFile <- file.path(state$dir, "message.txt")
cat(as.character(Sys.time()), file = messageFile)

D

onRestored(function(state) {
Read the file
messageFile <- file.path(state$dir, "message.txt")
timeText <- readChar(messageFile, 1000)

updateTextInput must be called in onRestored, as opposed to onRestore,
because onRestored happens after the client browser is ready.
updateTextInput(session, "txt",
label = paste@("Input text (Changed ", timeText, ")")
)
b))
3
"server"” bookmarking is needed for writing to disk.
enableBookmarking("”server")
shinyApp(ui, server)

110 onBookmark

This app has a module, and both the module and the main app code have
onBookmark and onRestore functions which write and read state$values$hash. The
module's version of state$values$hash does not conflict with the app's version
of state$values$hash.
#
A basic module that captializes text.
capitalizerUI <- function(id) {
ns <- NS(id)
wellPanel(
h4("Text captializer module"”),
textInput(ns(”text”), "Enter text:"),
verbatimTextOutput(ns("out"))
)
3
capitalizerServer <- function(input, output, session) {
output$out <- renderText({
toupper (input$text)
»
onBookmark(function(state) {
state$values$hash <- digest::digest(input$text, "md5")
»
onRestore(function(state) {
if (identical(digest::digest(input$text, "md5"), state$values$hash)) {

message(”"Module's input text matches hash ", state$values$hash)
} else {
message(”"Module's input text does not match hash ", state$values$hash)
}
D)
3

Main app code
ui <- function(request) {
fluidPage(
sidebarLayout(
sidebarPanel(
capitalizerUI("tc"),
textInput(”"text”, "Enter text (not in module):"),
bookmarkButton()
),
mainPanel ()
)
)
3
server <- function(input, output, session) {
callModule(capitalizerServer, "tc")
onBookmark (function(state) {
state$values$hash <- digest::digest(input$text, "md5")
b))
onRestore(function(state) {
if (identical(digest::digest(input$text, "md5"), state$values$hash)) {
message("App's input text matches hash ", state$values$hash)
} else {
message("App's input text does not match hash ", state$values$hash)

onFlush 111

}
b))
3
enableBookmarking(store = "url")
shinyApp(ui, server)

}

onFlush Add callbacks for Shiny session events

Description

These functions are for registering callbacks on Shiny session events. onFlush registers a function
that will be called before Shiny flushes the reactive system. onFlushed registers a function that will
be called after Shiny flushes the reactive system. onSessionEnded registers a function to be called
after the client has disconnected.

Usage
onFlush(fun, once = TRUE, session = getDefaultReactiveDomain())
onFlushed(fun, once = TRUE, session = getDefaultReactiveDomain())

onSessionEnded(fun, session = getDefaultReactiveDomain())

Arguments
fun A callback function.
once Should the function be run once, and then cleared, or should it re-run each time
the event occurs. (Only for onFlush and onFlushed.)
session A shiny session object.
Details

These functions should be called within the application’s server function.

All of these functions return a function which can be called with no arguments to cancel the regis-
tration.

See Also

onStop() for registering callbacks that will be invoked when the application exits, or when a session
ends.

112 onStop

onStop Run code after an application or session ends

Description

This function registers callback functions that are invoked when the application exits (when runApp ()
exits), or after each user session ends (when a client disconnects).

Usage

onStop(fun, session = getDefaultReactiveDomain())

Arguments
fun A function that will be called after the app has finished running.
session A scope for when the callback will run. If onStop is called from within the
server function, this will default to the current session, and the callback will
be invoked when the current session ends. If onStop is called outside a server
function, then the callback will be invoked with the application exits. If NULL,
it is the same as calling onStop outside of the server function, and the callback
will be invoked when the application exits.
Value

A function which, if invoked, will cancel the callback.

See Also

onSessionEnded() for the same functionality, but at the session level only.

Examples

Only run this example in interactive R sessions
if (interactive()) {
Open this application in multiple browsers, then close the browsers.
shinyApp(
ui = basicPage("onStop demo"”),

server = function(input, output, session) {
onStop(function() cat("Session stopped\n”))
3,

onStart = function() {
cat("Doing application setup\n")

onStop(function() {
cat("Doing application cleanup\n")
1))
}

outputOptions 113

)
3
In the example above, onStop() is called inside of onStart(). This is
the pattern that should be used when creating a shinyApp() object from
a function, or at the console. If instead you are writing an app.R which
will be invoked with runApp(), you can do it that way, or put the onStop()
before the shinyApp() call, as shown below.

Not run:
==== app.R ====
cat("Doing application setup\n")
onStop(function() {
cat("Doing application cleanup\n”)

b

shinyApp(
ui = basicPage("onStop demo"),

server = function(input, output, session) {
onStop(function() cat(”Session stopped\n”))
}

~—

==== end app.R ====

Similarly, if you have a global.R, you can call onStop() from there.
==== global.R ====
cat("Doing application setup\n")
onStop(function() {
cat("Doing application cleanup\n")

»
==== end global.R ====

End(Not run)

outputOptions Set options for an output object.

Description
These are the available options for an output object:

» suspendWhenHidden. When TRUE (the default), the output object will be suspended (not
execute) when it is hidden on the web page. When FALSE, the output object will not suspend
when hidden, and if it was already hidden and suspended, then it will resume immediately.

e priority. The priority level of the output object. Queued outputs with higher priority values
will execute before those with lower values.

Usage

outputOptions(x, name, ...)

114 parseQueryString

Arguments
X A shinyoutput object (typically output).
name The name of an output observer in the shinyoutput object.
Options to set for the output observer.
Examples
Not run:

Get the list of options for all observers within output
outputOptions(output)

Disable suspend for output$myplot
outputOptions(output, "myplot”, suspendWhenHidden = FALSE)

Change priority for output$myplot
outputOptions(output, "myplot”, priority = 10)

Get the list of options for output$myplot
outputOptions(output, "myplot”)

End(Not run)

parseQueryString Parse a GET query string from a URL

Description

Returns a named list of key-value pairs.

Usage

parseQueryString(str, nested = FALSE)

Arguments
str The query string. It can have a leading "?" or not.
nested Whether to parse the query string of as a nested list when it contains pairs of

square brackets []. For example, the query ‘ali1][j1]=x&b[i11[j1]1=y&b[i2][j1]=2’
will be parsed as list(a=1ist(i1 =1list(j1="x")),b=1ist(i1 =1list(j1
='y"),i2=1ist(j1="z"))) when nested = TRUE, and list(*ali1]1[j1]1"
'x',*b[i1]1[j1] ="y"', *b[i2][j1]* = 'z') when nested = FALSE.

passwordInput 115

Examples

parseQueryString("?foo=1&bar=b%20a%20r")

Not run:
Example of usage within a Shiny app
function(input, output, session) {

output$queryText <- renderText({
query <- parseQueryString(session$clientData$url_search)

Ways of accessing the values

if (as.numeric(query$foo) == 1) {
Do something

}

if (query[["bar"]] == "targetstring”) {
Do something else

}

Return a string with key-value pairs
paste(names(query), query, sep = "=", collapse=", ")
1))
3

End(Not run)

passwordInput Create a password input control

Description

Create an password control for entry of passwords.

Usage

passwordInput(inputld, label, value = "", width = NULL, placeholder = NULL)
Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

width The width of the input, e.g. '400px ', or '100%'; see validateCssUnit().

placeholder A character string giving the user a hint as to what can be entered into the con-

trol. Internet Explorer 8 and 9 do not support this option.

116 plotOutput

Value

A text input control that can be added to a UI definition.

Server value

nn

A character string of the password input. The default value is "" unless value is provided.

See Also

updateTextInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), radioButtons(), selectInput(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
passwordInput("password”, "Password:"),
actionButton(”go"”, "Go"),
verbatimTextOutput("”value”)

)

server <- function(input, output) {
output$value <- renderText({

req(input$go)
isolate(input$password)
D
3
shinyApp(ui, server)
3
plotOutput Create an plot or image output element
Description

Render a renderPlot() or renderImage () within an application page.

Usage

imageOQutput(
outputlId,
width = "100%",
height = "400px",
click = NULL,
dblclick = NULL,

plotOutput 117

hover = NULL,

brush = NULL,

inline = FALSE
)

plotOutput(
outputld,
width = "100%",
height = "400px",

click = NULL,
dblclick = NULL,
hover = NULL,
brush = NULL,
inline = FALSE

)

Arguments
outputId output variable to read the plot/image from.

width, height Image width/height. Must be a valid CSS unit (like "100%", "400px", "auto”)
or a number, which will be coerced to a string and have "px" appended. These
two arguments are ignored when inline = TRUE, in which case the width/height
of a plot must be specified in renderPlot (). Note that, for height, using "auto”
or "100%" generally will not work as expected, because of how height is com-
puted with HTML/CSS.

click This can be NULL (the default), a string, or an object created by the clickOpts()
function. If you use a value like "plot_click” (or equivalently, clickOpts(id="plot_click")),
the plot will send coordinates to the server whenever it is clicked, and the value
will be accessible via input$plot_click. The value will be a named list with
x and y elements indicating the mouse position.

dblclick This is just like the click argument, but for double-click events.

hover Similar to the click argument, this can be NULL (the default), a string, or an ob-
ject created by the hoverOpts() function. If you use a value like "plot_hover”
(or equivalently, hoverOpts(id="plot_hover")), the plot will send coordi-
nates to the server pauses on the plot, and the value will be accessible via
input$plot_hover. The value will be a named list with x and y elements in-
dicating the mouse position. To control the hover time or hover delay type, you
must use hoverOpts().

brush Similar to the click argument, this can be NULL (the default), a string, or an ob-
ject created by the brushOpts () function. If you use a value like "plot_brush”
(or equivalently, brushOpts(id="plot_brush")), the plot will allow the user
to "brush" in the plotting area, and will send information about the brushed area
to the server, and the value will be accessible via input$plot_brush. Brush-
ing means that the user will be able to draw a rectangle in the plotting area
and drag it around. The value will be a named list with xmin, xmax, ymin, and
ymax elements indicating the brush area. To control the brush behavior, use
brushOpts (). Multiple imageOutput/plotOutput calls may share the same id

118 plotOutput

value; brushing one image or plot will cause any other brushes with the same id
to disappear.

inline use an inline (span()) or block container (div()) for the output

Value

A plot or image output element that can be included in a panel.

Interactive plots

Plots and images in Shiny support mouse-based interaction, via clicking, double-clicking, hovering,
and brushing. When these interaction events occur, the mouse coordinates will be sent to the server
as input$ variables, as specified by click, dblclick, hover, or brush.

For plotOutput, the coordinates will be sent scaled to the data space, if possible. (At the moment,
plots generated by base graphics and ggplot2 support this scaling, although plots generated by
lattice and others do not.) If scaling is not possible, the raw pixel coordinates will be sent. For
imageOutput, the coordinates will be sent in raw pixel coordinates.

With ggplot2 graphics, the code in renderPlot should return a ggplot object; if instead the code
prints the ggplot2 object with something like print (p), then the coordinates for interactive graphics
will not be properly scaled to the data space.

Note

The arguments clickId and hoverId only work for R base graphics (see the graphics package).
They do not work for grid-based graphics, such as ggplot2, lattice, and so on.

See Also

For the corresponding server-side functions, see renderPlot() and renderImage().

Examples

Only run these examples in interactive R sessions
if (interactive()) {

A basic shiny app with a plotOutput
shinyApp(
ui = fluidPage(
sidebarLayout(
sidebarPanel(
actionButton("newplot”, "New plot")
),
mainPanel(
plotOutput(”plot”)
)
)
),
server = function(input, output) {
output$plot <- renderPlot({
input$newplot

plotOutput 119

Add a little noise to the cars data
cars2 <- cars + rnorm(nrow(cars))
plot(cars2)
»
}
)

A demonstration of clicking, hovering, and brushing
shinyApp(
ui = basicPage(
fluidRow(
column(width = 4,
plotOutput(”plot”, height=300,
click = "plot_click”, # Equiv, to click=clickOpts(id="plot_click")
hover = hoverOpts(id = "plot_hover"”, delayType = "throttle"),
brush = brushOpts(id = "plot_brush")
),
h4("Clicked points"),
tableOutput (”"plot_clickedpoints”),
h4("Brushed points"),
tableOutput ("plot_brushedpoints”)
),
column(width = 4,
verbatimTextOutput("plot_clickinfo"),
verbatimTextOutput("plot_hoverinfo")
),
column(width = 4,
wellPanel(actionButton("newplot”, "New plot”)),
verbatimTextOutput ("plot_brushinfo™)
)
)
),
server = function(input, output, session) {
data <- reactive({
input$newplot
Add a little noise to the cars data so the points move
cars + rnorm(nrow(cars))

»

output$plot <- renderPlot({
d <- data()
plot(d$speed, d$dist)

»

output$plot_clickinfo <- renderPrint({
cat("Click:\n")
str(input$plot_click)

»

output$plot_hoverinfo <- renderPrint({
cat("Hover (throttled):\n")
str(input$plot_hover)

»

output$plot_brushinfo <- renderPrint({
cat("Brush (debounced):\n")

120
str(input$plot_brush)
»
output$plot_clickedpoints <- renderTable({
For base graphics, we need to specify columns, though for ggplot2,
it's usually not necessary.
res <- nearPoints(data(), input$plot_click, "speed”, "dist")
if (nrow(res) == 0)
return()
res
b))
output$plot_brushedpoints <- renderTable({
res <- brushedPoints(data(), input$plot_brush, "speed”, "dist")
if (nrow(res) == 0)
return()
res
»
}
)

Demo of clicking, hovering, brushing with imageOutput
Note that coordinates are in pixels
shinyApp(
ui = basicPage(
fluidRow(
column(width = 4,
imageOutput(”image"”, height=300,

click = "image_click”,
hover = hoverOpts(
id = "image_hover",
delay = 500,
delayType = "throttle”
),
brush = brushOpts(id = "image_brush")
)

)!

column(width = 4,
verbatimTextOutput("image_clickinfo"),
verbatimTextOutput (”image_hoverinfo")

)!

column(width = 4,
wellPanel(actionButton(”"newimage”, "New image")),
verbatimTextOutput(”image_brushinfo")

)

)
)Y

server = function(input, output, session) {
output$image <- renderImage({
input$newimage

Get width and height of image output
width <- session$clientData$output_image_width
height <- session$clientData$output_image_height

plotOutput

plotPNG 121

Write to a temporary PNG file
outfile <- tempfile(fileext = ".png")

png(outfile, width=width, height=height)
plot(rnorm(200), rnorm(200))
dev.off()

Return a list containing information about the image
list(
src = outfile,
contentType = "image/png",
width = width,
height = height,
alt = "This is alternate text”
)
»
output$image_clickinfo <- renderPrint({
cat("Click:\n")
str(input$image_click)
»
output$image_hoverinfo <- renderPrint({
cat("Hover (throttled):\n")
str(input$image_hover)
»
output$image_brushinfo <- renderPrint({
cat("Brush (debounced):\n")
str(input$image_brush)
»

plotPNG Run a plotting function and save the output as a PNG

Description

This function returns the name of the PNG file that it generates. In essence, it calls png(), then
func(), then dev.off (). So func must be a function that will generate a plot when used this way.

Usage
plotPNG(
func,
filename = tempfile(fileext = ".png"),
width = 400,
height = 400,

res = 72,

122 Progress

Arguments
func A function that generates a plot.
filename The name of the output file. Defaults to a temp file with extension . png.
width Width in pixels.
height Height in pixels.
res Resolution in pixels per inch. This value is passed to grDevices: :png(). Note
that this affects the resolution of PNG rendering in R; it won’t change the actual
ppi of the browser.
Arguments to be passed through to grDevices: :png(). These can be used to
set the width, height, background color, etc.
Details

For output, it will try to use the following devices, in this order: quartz (via grDevices: :png()),
then Cairo::CairoPNG(), and finally grDevices: :png(). This is in order of quality of output.
Notably, plain png output on Linux and Windows may not antialias some point shapes, resulting in
poor quality output.

In some cases, Cairo() provides output that looks worse than png(). To disable Cairo output for
an app, use options(shiny.usecairo=FALSE).

Progress Reporting progress (object-oriented API)

Description

Reporting progress (object-oriented API)
Reporting progress (object-oriented API)

Details

Reports progress to the user during long-running operations.

This package exposes two distinct programming APIs for working with progress. withProgress()
and setProgress() together provide a simple function-based interface, while the Progress refer-
ence class provides an object-oriented APIL.

Instantiating a Progress object causes a progress panel to be created, and it will be displayed the
first time the set method is called. Calling close will cause the progress panel to be removed.

As of version 0.14, the progress indicators use Shiny’s new notification API. If you want to use the
old styling (for example, you may have used customized CSS), you can use style="old" each time
you call Progress$new(). If you don’t want to set the style each time Progress$new is called, you
can instead call shinyOptions(progress.style="o0ld") just once, inside the server function.

Progress 123

Methods
Public methods:

* Progress$new()

* Progress$set()

e Progress$inc()

* Progress$getMin()

* Progress$getMax()

* Progress$getValue()
* Progress$close()

* Progress$clone()

Method new(): Creates a new progress panel (but does not display it).
Usage:
Progress$new(
session = getDefaultReactiveDomain(),
min = @,
max = 1,
style = getShinyOption("progress.style”, default = "notification")
)
Arguments:
session The Shiny session object, as provided by shinyServer to the server function.
min The value that represents the starting point of the progress bar. Must be less than max.
max The value that represents the end of the progress bar. Must be greater than min.

style Progress display style. If "notification” (the default), the progress indicator will
show using Shiny’s notification APL If "0ld", use the same HTML and CSS used in Shiny
0.13.2 and below (this is for backward-compatibility).

Method set(): Updates the progress panel. When called the first time, the progress panel is
displayed.

Usage:

Progress$set(value = NULL, message = NULL, detail = NULL)

Arguments:
value Single-element numeric vector; the value at which to set the progress bar, relative to min
and max. NULL hides the progress bar, if it is currently visible.

message A single-element character vector; the message to be displayed to the user, or NULL to
hide the current message (if any).

detail A single-element character vector; the detail message to be displayed to the user, or
NULL to hide the current detail message (if any). The detail message will be shown with a
de-emphasized appearance relative to message.

Method inc(): Like set, this updates the progress panel. The difference is that inc increases
the progress bar by amount, instead of setting it to a specific value.

Usage:
Progress$inc(amount = @.1, message = NULL, detail = NULL)

124 Progress

Arguments:
amount For the inc() method, a numeric value to increment the progress bar.

message A single-element character vector; the message to be displayed to the user, or NULL to
hide the current message (if any).

detail A single-element character vector; the detail message to be displayed to the user, or
NULL to hide the current detail message (if any). The detail message will be shown with a
de-emphasized appearance relative to message.

Method getMin(): Returns the minimum value.
Usage:
Progress$getMin()

Method getMax(): Returns the maximum value.
Usage:
Progress$getMax()

Method getValue(): Returns the current value.
Usage:
Progress$getValue()

Method close(): Removes the progress panel. Future calls to set and close will be ignored.
Usage:
Progress$close()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Progress$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

withProgress()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
plotOutput(”plot")
)

server <- function(input, output, session) {
output$plot <- renderPlot({
progress <- Progress$new(session, min=1, max=15)
on.exit(progress$close())

radioButtons 125
progress$set(message = 'Calculation in progress',
detail = 'This may take a while...")
for (i in 1:15) {
progress$set(value = i)
Sys.sleep(0.5)
}
plot(cars)
1))
}
shinyApp(ui, server)
}
radioButtons Create radio buttons
Description
Create a set of radio buttons used to select an item from a list.
Usage
radioButtons(
inputld,
label,
choices = NULL,
selected = NULL,
inline = FALSE,
width = NULL,
choiceNames = NULL,
choiceValues = NULL
)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
choices List of values to select from (if elements of the list are named then that name
rather than the value is displayed to the user). If this argument is provided, then
choiceNames and choiceValues must not be provided, and vice-versa. The
values should be strings; other types (such as logicals and numbers) will be
coerced to strings.
selected The initially selected value (if not specified then defaults to the first value)
inline If TRUE, render the choices inline (i.e. horizontally)

width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().

126 radioButtons

choiceNames, choiceValues

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of Ul object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

Details

If you need to represent a "None selected" state, it’s possible to default the radio buttons to have
no options selected by using selected = character(@). However, this is not recommended, as it
gives the user no way to return to that state once they’ve made a selection. Instead, consider having
the first of your choices be c(”"None selected” = "").

Value

A set of radio buttons that can be added to a UI definition.

Server value

A character string containing the value of the selected button.

See Also

updateRadioButtons()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(),dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), selectInput(),sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
radioButtons("dist"”, "Distribution type:",

c("Normal” = "norm”,
"Uniform” = "unif"”,
"Log-normal” = "lnorm”,
"Exponential” = "exp")),
plotOutput("distPlot")

)

server <- function(input, output) {
output$distPlot <- renderPlot({
dist <- switch(input$dist,
norm = rnorm,
unif = runif,
lnorm = rlnorm,

reactive 127

exp = rexp,
rnorm)

hist(dist(500))
»
3

shinyApp(ui, server)

ui <- fluidPage(
radioButtons("rb"”, "Choose one:",
choiceNames = list(
icon("calendar"),
HTML("<p style='color:red;'>Red Text</p>"),
"Normal text”
D,
choiceValues = list(
"icon”, "html", "text”
)),
textOutput("txt")
)

server <- function(input, output) {
output$txt <- renderText({
paste("”You chose”, input$rb)
D)
3

shinyApp(ui, server)

3

reactive Create a reactive expression

Description

Wraps a normal expression to create a reactive expression. Conceptually, a reactive expression is a
expression whose result will change over time.

Usage

reactive(
X,
env = parent.frame(),
quoted = FALSE,
label = NULL,
domain = getDefaultReactiveDomain(),
..stacktraceon = TRUE

128 reactive

is.reactive(x)

Arguments

X For reactive, an expression (quoted or unquoted). For is. reactive, an object
to test.

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression.

quoted Is the expression quoted? By default, this is FALSE. This is useful when you
want to use an expression that is stored in a variable; to do so, it must be quoted
with quote().

label A label for the reactive expression, useful for debugging.

domain See domains.

..stacktraceon Advanced use only. For stack manipulation purposes; see stacktrace().

Details

Reactive expressions are expressions that can read reactive values and call other reactive expres-
sions. Whenever a reactive value changes, any reactive expressions that depended on it are marked
as "invalidated" and will automatically re-execute if necessary. If a reactive expression is marked
as invalidated, any other reactive expressions that recently called it are also marked as invalidated.
In this way, invalidations ripple through the expressions that depend on each other.

See the Shiny tutorial for more information about reactive expressions.

Value

a function, wrapped in a S3 class "reactive"

Examples

values <- reactiveValues(A=1)

reactiveB <- reactive({
values$A + 1

b

Can use quoted expressions
reactiveC <- reactive(quote({ values$A + 2 }), quoted = TRUE)

To store expressions for later conversion to reactive, use quote()
expr_qg <- quote({ values$A + 3 3})
reactiveD <- reactive(expr_q, quoted = TRUE)

View the values from the R console with isolate()
isolate(reactiveB())
isolate(reactiveC())
isolate(reactiveD())

https://shiny.rstudio.com/tutorial/

reactiveFileReader 129

reactiveFileReader Reactive file reader

Description

Given a file path and read function, returns a reactive data source for the contents of the file.

Usage

reactiveFileReader(intervalMillis, session, filePath, readFunc, ...)

Arguments

intervalMillis Approximate number of milliseconds to wait between checks of the file’s last
modified time. This can be a numeric value, or a function that returns a numeric
value.

session The user session to associate this file reader with, or NULL if none. If non-null,
the reader will automatically stop when the session ends.

filePath The file path to poll against and to pass to readFunc. This can either be a single-
element character vector, or a function that returns one.

readFunc The function to use to read the file; must expect the first argument to be the file
path to read. The return value of this function is used as the value of the reactive
file reader.

Any additional arguments to pass to readFunc whenever it is invoked.

Details

reactiveFileReader works by periodically checking the file’s last modified time; if it has changed,
then the file is re-read and any reactive dependents are invalidated.

The intervalMillis, filePath, and readFunc functions will each be executed in a reactive con-
text; therefore, they may read reactive values and reactive expressions.

Value

A reactive expression that returns the contents of the file, and automatically invalidates when the
file changes on disk (as determined by last modified time).

See Also

reactivePoll()

130 reactivePoll

Examples

Not run:
Per-session reactive file reader
function(input, output, session) {
fileData <- reactiveFileReader(1000, session, 'data.csv', read.csv)

output$data <- renderTable({
fileData()
b))
3

Cross-session reactive file reader. In this example, all sessions share
the same reader, so read.csv only gets executed once no matter how many
user sessions are connected.
fileData <- reactiveFileReader (1000, NULL, 'data.csv', read.csv)
function(input, output, session) {

output$data <- renderTable({

fileData()

D)

}

End(Not run)

reactivePoll Reactive polling

Description

Used to create a reactive data source, which works by periodically polling a non-reactive data
source.

Usage

reactivePoll(intervalMillis, session, checkFunc, valueFunc)

Arguments

intervalMillis Approximate number of milliseconds to wait between calls to checkFunc. This
can be either a numeric value, or a function that returns a numeric value.

session The user session to associate this file reader with, or NULL if none. If non-null,
the reader will automatically stop when the session ends.

checkFunc A relatively cheap function whose values over time will be tested for equality;
inequality indicates that the underlying value has changed and needs to be inval-
idated and re-read using valueFunc. See Details.

valueFunc A function that calculates the underlying value. See Details.

reactivePoll 131

Details

reactivePoll works by pairing a relatively cheap "check" function with a more expensive value
retrieval function. The check function will be executed periodically and should always return a
consistent value until the data changes. When the check function returns a different value, then the
value retrieval function will be used to re-populate the data.

Note that the check function doesn’t return TRUE or FALSE to indicate whether the underlying data
has changed. Rather, the check function indicates change by returning a different value from the
previous time it was called.

For example, reactivePoll is used to implement reactiveFileReader by pairing a check func-
tion that simply returns the last modified timestamp of a file, and a value retrieval function that
actually reads the contents of the file.

As another example, one might read a relational database table reactively by using a check func-
tion that does SELECT MAX(timestamp) FROM table and a value retrieval function that does
SELECT * FROM table.

The intervalMillis, checkFunc, and valueFunc functions will be executed in a reactive context;
therefore, they may read reactive values and reactive expressions.

Value

A reactive expression that returns the result of valueFunc, and invalidates when checkFunc changes.

See Also

reactiveFileReader()

Examples

function(input, output, session) {

data <- reactivePoll(1000, session,
This function returns the time that log_file was last modified
checkFunc = function() {
if (file.exists(log_file))
file.info(log_file)$mtime[1]
else
1,
This function returns the content of log_file
valueFunc = function() {
read.csv(log_file)
}
)

output$dataTable <- renderTable({
data()
b))

132 reactiveTimer

reactiveTimer Timer

Description

Creates a reactive timer with the given interval. A reactive timer is like a reactive value, except
reactive values are triggered when they are set, while reactive timers are triggered simply by the
passage of time.

Usage

reactiveTimer(intervalMs = 1000, session = getDefaultReactiveDomain())

Arguments
intervalMs How often to fire, in milliseconds
session A session object. This is needed to cancel any scheduled invalidations after a
user has ended the session. If NULL, then this invalidation will not be tied to any
session, and so it will still occur.
Details

Reactive expressions and observers that want to be invalidated by the timer need to call the timer
function that reactiveTimer returns, even if the current time value is not actually needed.

See invalidatelLater () as a safer and simpler alternative.

Value

A no-parameter function that can be called from a reactive context, in order to cause that context to
be invalidated the next time the timer interval elapses. Calling the returned function also happens
to yield the current time (as in base: : Sys.time()).

See Also

invalidatelLater()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”n”, "Number of observations”, 2, 1000, 500),
plotOutput(”plot")

)

server <- function(input, output) {

reactive Val 133

Anything that calls autoInvalidate will automatically invalidate
every 2 seconds.
autoInvalidate <- reactiveTimer(2000)

observe({
Invalidate and re-execute this reactive expression every time the
timer fires.
autoInvalidate()

Do something each time this is invalidated.
The isolate() makes this observer _not_ get invalidated and re-executed
when input$n changes.
print(paste("The value of input$n is”, isolate(input$n)))
1))

Generate a new histogram each time the timer fires, but not when
input$n changes.
output$plot <- renderPlot({
autoInvalidate()
hist(rnorm(isolate(input$n)))
D)

shinyApp(ui, server)

}

reactiveVal Create a (single) reactive value

Description

The reactiveVal function is used to construct a "reactive value" object. This is an object used for
reading and writing a value, like a variable, but with special capabilities for reactive programming.
When you read the value out of a reactiveVal object, the calling reactive expression takes a depen-
dency, and when you change the value, it notifies any reactives that previously depended on that
value.

Usage

reactiveVal(value = NULL, label = NULL)

Arguments
value An optional initial value.
label An optional label, for debugging purposes (see reactlog()). If missing, a label

will be automatically created.

134 reactive Val

Details

reactiveVal is very similar to reactiveValues(), except that the former is for a single reactive
value (like a variable), whereas the latter lets you conveniently use multiple reactive values by name
(like a named list of variables). For a one-off reactive value, it’s more natural to use reactiveVal.
See the Examples section for an illustration.

Value
A function. Call the function with no arguments to (reactively) read the value; call the function with

a single argument to set the value.

Examples

Not run:

Create the object by calling reactiveVal
r <- reactiveVal()

Set the value by calling with an argument
r(10)

Read the value by calling without arguments

rO

End(Not run)

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
actionButton("minus”, "-1"),
actionButton(”"plus”, "+1"),
brQ,
textOutput(”value”)

)

The comments below show the equivalent logic using reactiveValues()
server <- function(input, output, session) {

value <- reactiveVal(Q) # rv <- reactiveValues(value = 0)

observeEvent (input$minus, {

newValue <- value() - 1 # newValue <- rv$value - 1
value(newValue) # rv$value <- newValue

D)

observeEvent (input$plus, {
newValue <- value() + 1 # newValue <- rv$value + 1
value(newValue) # rv$value <- newValue

D

reactive Values 135

output$value <- renderText({
value() # rv$value

D
}

shinyApp(ui, server)

reactiveValues Create an object for storing reactive values

Description

This function returns an object for storing reactive values. It is similar to a list, but with special ca-
pabilities for reactive programming. When you read a value from it, the calling reactive expression
takes a reactive dependency on that value, and when you write to it, it notifies any reactive functions
that depend on that value. Note that values taken from the reactiveValues object are reactive, but
the reactiveValues object itself is not.

Usage

reactiveValues(...)

Arguments

Objects that will be added to the reactivevalues object. All of these objects must
be named.

See Also

isolate() and is.reactivevalues().

Examples

Create the object with no values
values <- reactiveValues()

Assign values to 'a' and 'b’

values$a <- 3

values[['b']] <- 4

Not run:

From within a reactive context, you can access values with:
values$a

values[['a']]

End(Not run)

136 reactive ValuesToList

If not in a reactive context (e.g., at the console), you can use isolate()
to retrieve the value:

isolate(values$a)

isolate(values[['a']l])

Set values upon creation
values <- reactiveValues(a =1, b = 2)
isolate(values$a)

reactiveValuesTolList Convert a reactivevalues object to a list

Description

This function does something similar to what you might want or expect base: :as.list() to do.
The difference is that the calling context will take dependencies on every object in the reactivevalues
object. To avoid taking dependencies on all the objects, you can wrap the call with isolate().

Usage

reactiveValuesTolList(x, all.names = FALSE)

Arguments
X A reactivevalues object.
all.names If TRUE, include objects with a leading dot. If FALSE (the default) don’t include
those objects.
Examples

values <- reactiveValues(a = 1)
Not run:
reactiveValuesToList(values)

End(Not run)

To get the objects without taking dependencies on them, use isolate().

isolate() can also be used when calling from outside a reactive context (e.g.
at the console)

isolate(reactiveValuesToList(values))

reactlog 137

reactlog Reactive Log Visualizer

Description
Provides an interactive browser-based tool for visualizing reactive dependencies and execution in
your application.

Usage

reactlog()

reactlogShow(time = TRUE)

showReactLog(time = TRUE)
reactlogReset ()
Arguments
time A boolean that specifies whether or not to display the time that each reactive

takes to calculate a result.

Details

To use the reactive log visualizer, start with a fresh R session and run the command options(shiny.reactlog=TRUE);
then launch your application in the usual way (e.g. using runApp()). At any time you can hit

Ctrl+F3 (or for Mac users, Command+F3) in your web browser to launch the reactive log visual-

ization.

The reactive log visualization only includes reactive activity up until the time the report was loaded.
If you want to see more recent activity, refresh the browser.

Note that Shiny does not distinguish between reactive dependencies that "belong" to one Shiny user
session versus another, so the visualization will include all reactive activity that has taken place in
the process, not just for a particular application or session.

As an alternative to pressing Ctrl/Command+F3—for example, if you are using reactives outside
of the context of a Shiny application—you can run the reactlogShow function, which will gener-
ate the reactive log visualization as a static HTML file and launch it in your default browser. In
this case, refreshing your browser will not load new activity into the report; you will need to call
reactlogShow() explicitly.

For security and performance reasons, do not enable shiny.reactlog in production environments.
When the option is enabled, it’s possible for any user of your app to see at least some of the source
code of your reactive expressions and observers.

138 registerInputHandler

Functions

* reactlog: Return a list of reactive information. Can be used in conjunction with react-
log::reactlog_show to later display the reactlog graph.

* reactlogShow: Display a full reactlog graph for all sessions.
* showReactlog: This function is deprecated. You should use reactlogShow()

* reactlogReset: Resets the entire reactlog stack. Useful for debugging and removing all prior
reactive history.

registerInputHandler Register an Input Handler

Description

Adds an input handler for data of this type. When called, Shiny will use the function provided to
refine the data passed back from the client (after being deserialized by jsonlite) before making it
available in the input variable of the server.R file.

Usage

registerInputHandler(type, fun, force = FALSE)

Arguments
type The type for which the handler should be added — should be a single-element
character vector.
fun The handler function. This is the function that will be used to parse the data de-
livered from the client before it is available in the input variable. The function
will be called with the following three parameters:
1. The value of this input as provided by the client, deserialized using jsonlite.
2. The shinysession in which the input exists.
3. The name of the input.
force If TRUE, will overwrite any existing handler without warning. If FALSE, will
throw an error if this class already has a handler defined.
Details

This function will register the handler for the duration of the R process (unless Shiny is explicitly
reloaded). For that reason, the type used should be very specific to this package to minimize the
risk of colliding with another Shiny package which might use this data type name. We recommend
the format of "packageName.widgetName".

Currently Shiny registers the following handlers: shiny.matrix, shiny.number, and shiny.date.

The type of a custom Shiny Input widget will be deduced using the getType () JavaScript function
on the registered Shiny inputBinding.

removelnputHandler 139

See Also

removelnputHandler()

Examples

Not run:
Register an input handler which rounds a input number to the nearest integer
registerInputHandler("mypackage.validint”, function(x, shinysession, name) {
if (is.null(x)) return(NA)
round(x)

»

On the Javascript side, the associated input binding must have a corresponding getType method:
getType: function(el) {
return "mypackage.validint”;

3

End(Not run)

removeInputHandler Deregister an Input Handler

Description
Removes an Input Handler. Rather than using the previously specified handler for data of this type,
the default jsonlite serialization will be used.

Usage

removelnputHandler(type)

Arguments

type The type for which handlers should be removed.

Value

The handler previously associated with this type, if one existed. Otherwise, NULL.

See Also

registerInputHandler()

140 renderCachedPlot

renderCachedPlot Plot output with cached images

Description

Renders a reactive plot, with plot images cached to disk.

Usage

renderCachedPlot(
expr,
cacheKeyExpr,
sizePolicy = sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2),
res = 72,
cache = "app",

outputArgs = list()

Arguments

expr An expression that generates a plot.

cacheKeyExpr An expression that returns a cache key. This key should be a unique identifier
for a plot: the assumption is that if the cache key is the same, then the plot will
be the same.

sizePolicy A function that takes two arguments, width and height, and returns a list with
width and height. The purpose is to round the actual pixel dimensions from
the browser to some other dimensions, so that this will not generate and cache
images of every possible pixel dimension. See sizeGrowthRatio() for more
information on the default sizing policy.

res The resolution of the PNG, in pixels per inch.

cache The scope of the cache, or a cache object. This can be "app” (the default),
"session”, or a cache object like a diskCache(). See the Cache Scoping sec-
tion for more information.

Arguments to be passed through to grDevices: :png(). These can be used to
set the width, height, background color, etc.

outputArgs A list of arguments to be passed through to the implicit call to plotOutput()
when renderPlot is used in an interactive R Markdown document.

Details

expr is an expression that generates a plot, similar to that in renderPlot. Unlike with renderPlot,
this expression does not take reactive dependencies. It is re-executed only when the cache key
changes.

renderCachedPlot 141

cacheKeyExpr is an expression which, when evaluated, returns an object which will be serialized
and hashed using the digest: :digest() function to generate a string that will be used as a cache
key. This key is used to identify the contents of the plot: if the cache key is the same as a previous
time, it assumes that the plot is the same and can be retrieved from the cache.

This cacheKeyExpr is reactive, and so it will be re-evaluated when any upstream reactives are
invalidated. This will also trigger re-execution of the plotting expression, expr.

The key should consist of "normal" R objects, like vectors and lists. Lists should in turn contain
other normal R objects. If the key contains environments, external pointers, or reference objects
— or even if it has such objects attached as attributes — then it is possible that it will change
unpredictably even when you do not expect it to. Additionally, because the entire key is serialized
and hashed, if it contains a very large object — a large data set, for example — there may be a
noticeable performance penalty.

If you face these issues with the cache key, you can work around them by extracting out the impor-
tant parts of the objects, and/or by converting them to normal R objects before returning them. Your
expression could even serialize and hash that information in an efficient way and return a string,
which will in turn be hashed (very quickly) by the digest: :digest() function.

Internally, the result from cacheKeyExpr is combined with the name of the output (if you assign
it to output$plotl, it will be combined with "plot1"”) to form the actual key that is used. As a
result, even if there are multiple plots that have the same cacheKeyExpr, they will not have cache
key collisions.

Cache scoping

There are a number of different ways you may want to scope the cache. For example, you may want
each user session to have their own plot cache, or you may want each run of the application to have
a cache (shared among possibly multiple simultaneous user sessions), or you may want to have a
cache that persists even after the application is shut down and started again.

To control the scope of the cache, use the cache parameter. There are two ways of having Shiny
automatically create and clean up the disk cache.

1 To scope the cache to one run of a Shiny application (shared among possibly multiple user ses-
sions), use cache="app”. This is the default. The cache will be shared across multiple ses-
sions, so there is potentially a large performance benefit if there are many users of the applica-
tion. When the application stops running, the cache will be deleted. If plots cannot be safely
shared across users, this should not be used.

2 To scope the cache to one session, use cache="session"”. When a new user session starts — in
other words, when a web browser visits the Shiny application — a new cache will be created
on disk for that session. When the session ends, the cache will be deleted. The cache will not
be shared across multiple sessions.

If either "app” or "session” is used, the cache will be 10 MB in size, and will be stored stored in
memory, using a memoryCache () object. Note that the cache space will be shared among all cached
plots within a single application or session.

In some cases, you may want more control over the caching behavior. For example, you may want
to use a larger or smaller cache, share a cache among multiple R processes, or you may want the
cache to persist across multiple runs of an application, or even across multiple R processes.

142 renderCachedPlot

To use different settings for an application-scoped cache, you can call shinyOptions() at the top
of your app.R, server.R, or global.R. For example, this will create a cache with 20 MB of space
instead of the default 10 MB:

shinyOptions(cache = memoryCache(size = 20e6))

To use different settings for a session-scoped cache, you can call shinyOptions() at the top of
your server function. To use the session-scoped cache, you must also call renderCachedPlot with
cache="session". This will create a 20 MB cache for the session:

function(input, output, session) {
shinyOptions(cache = memoryCache(size = 20e6))

output$plot <- renderCachedPlot(

<

cache = "session”

If you want to create a cache that is shared across multiple concurrent R processes, you can use a
diskCache(). You can create an application-level shared cache by putting this at the top of your
app-R, server.R, or global.R:

shinyOptions(cache = diskCache(file.path(dirname(tempdir()), "myapp-cache"))

This will create a subdirectory in your system temp directory named myapp-cache (replace myapp-cache

with a unique name of your choosing). On most platforms, this directory will be removed when your
system reboots. This cache will persist across multiple starts and stops of the R process, as long as
you do not reboot.

To have the cache persist even across multiple reboots, you can create the cache in a location outside
of the temp directory. For example, it could be a subdirectory of the application:

shinyOptions(cache = diskCache("./myapp-cache"))

In this case, resetting the cache will have to be done manually, by deleting the directory.

You can also scope a cache to just one plot, or selected plots. To do that, create a memoryCache ()
or diskCache(), and pass it as the cache argument of renderCachedPlot.

Interactive plots
renderCachedPlot can be used to create interactive plots. See plotOutput () for more information
and examples.

See Also

See renderPlot () for the regular, non-cached version of this function. For more about configuring
caches, see memoryCache () and diskCache().

renderCachedPlot 143

Examples

Only run examples in interactive R sessions
if (interactive()) {

A basic example that uses the default app-scoped memory cache.
The cache will be shared among all simultaneous users of the application.
shinyApp(
fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput(”n”, "Number of points”, 4, 32, value = 8, step = 4)
),
mainPanel(plotOutput(”plot”))
)
),
function(input, output, session) {
output$plot <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
segn <- seqg_len(input$n)
plot(mtcars$wtlseqn], mtcars$mpglseqn],
xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
3
cacheKeyExpr = { list(input$n) }
)
}
)

An example uses a data object shared across sessions. mydata() is part of
the cache key, so when its value changes, plots that were previously

stored in the cache will no longer be used (unless mydata() changes back
to its previous value).

mydata <- reactiveVal(data.frame(x = rnorm(400), y = rnorm(400)))

ui <- fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput(”"n”, "Number of points”, 50, 400, 100, step = 50),
actionButton(”"newdata”, "New data")
),
mainPanel(
plotOutput(”plot”)
)
)
)

server <- function(input, output, session) {
observeEvent (input$newdata, {
mydata(data.frame(x = rnorm(400), y = rnorm(400)))
D

144 renderCachedPlot

output$plot <- renderCachedPlot(
{
Sys.sleep(2)
d <- mydata()
seqn <- seq_len(input$n)
plot(d$x[seqn], d$y[segn], xlim = range(d$x), ylim = range(ds$y))
h
cacheKeyExpr = { list(input$n, mydata()) 3,
)
}

shinyApp(ui, server)

A basic application with two plots, where each plot in each session has
a separate cache.
shinyApp(
fluidPage(
sidebarLayout(
sidebarPanel(
sliderInput(”n”, "Number of points”, 4, 32, value = 8, step = 4)
),
mainPanel(
plotOutput(”plot1”),
plotOutput(”plot2”)
)
)
),
function(input, output, session) {
output$plotl <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
segn <- seqg_len(input$n)
plot(mtcars$wtlseqn], mtcars$mpglseqn],
xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
h
cacheKeyExpr = { list(input$n) 3},
cache = memoryCache()
)
output$plot2 <- renderCachedPlot({
Sys.sleep(2) # Add an artificial delay
segn <- seqg_len(input$n)
plot(mtcars$wtlseqn], mtcars$mpglseqn],
xlim = range(mtcars$wt), ylim = range(mtcars$mpg))
h
cacheKeyExpr = { list(input$n) 3},
cache = memoryCache()

Not run:

renderDataTable 145

At the top of app.R, this set the application-scoped cache to be a memory
cache that is 20 MB in size, and where cached objects expire after one

hour.

shinyOptions(cache = memoryCache(max_size = 20e6, max_age = 3600))

At the top of app.R, this set the application-scoped cache to be a disk

cache that can be shared among multiple concurrent R processes, and is

deleted when the system reboots.

shinyOptions(cache = diskCache(file.path(dirname(tempdir()), "myapp-cache"))

At the top of app.R, this set the application-scoped cache to be a disk
cache that can be shared among multiple concurrent R processes, and

persists on disk across reboots.

shinyOptions(cache = diskCache("./myapp-cache"))

At the top of the server function, this set the session-scoped cache to be
a memory cache that is 5 MB in size.
server <- function(input, output, session) {

shinyOptions(cache = memoryCache(max_size = 5e6))

output$plot <- renderCachedPlot(

L

cache = "session”

End(Not run)

renderDataTable Table output with the JavaScript library DataTables

Description

Makes a reactive version of the given function that returns a data frame (or matrix), which will be
rendered with the DataTables library. Paging, searching, filtering, and sorting can be done on the R
side using Shiny as the server infrastructure.

Usage

renderDataTable(
expr,
options = NULL,
searchDelay = 500,
callback = "function(oTable) {}",
escape = TRUE,
env = parent.frame(),
quoted = FALSE,
outputArgs = list()

146

Arguments

expr

options

searchDelay
callback

escape

env

quoted

outputArgs

Details

renderDataTable

An expression that returns a data frame or a matrix.

A list of initialization options to be passed to DataTables, or a function to return
such a list.

The delay for searching, in milliseconds (to avoid too frequent search requests).

A JavaScript function to be applied to the DataTable object. This is useful for
DataTables plug-ins, which often require the DataTable instance to be available
(http://datatables.net/extensions/).

Whether to escape HTML entities in the table: TRUE means to escape the whole
table, and FALSE means not to escape it. Alternatively, you can specify numeric
column indices or column names to indicate which columns to escape, e.g. 1:5
(the first 5 columns), c(1,3,4), or c(-1,-3) (all columns except the first and
third), or c('Species', 'Sepal.Length').

The environment in which to evaluate expr.

Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

A list of arguments to be passed through to the implicit call to dataTableOutput ()
when renderDataTable is used in an interactive R Markdown document.

For the options argument, the character elements that have the class "AsIs” (usually returned from
base: :I()) will be evaluated in JavaScript. This is useful when the type of the option value is not
supported in JSON, e.g., a JavaScript function, which can be obtained by evaluating a character
string. Note this only applies to the root-level elements of the options list, and the I () notation does
not work for lower-level elements in the list.

Note

This function only provides the server-side version of DataTables (using R to process the data object
on the server side). There is a separate package DT (https://github.com/rstudio/DT) that
allows you to create both server-side and client-side DataTables, and supports additional DataTables
features. Consider using DT: :renderDataTable() and DT: :dataTableOutput() (see http://
rstudio.github.io/DT/shiny.html for more information).

References

http://datatables.net

Examples

Only run this example in interactive R sessions
if (interactive()) {
pass a callback function to DataTables using I()

shinyApp(

ui = fluidPage(

fluidRow(

http://datatables.net/extensions/
https://github.com/rstudio/DT
http://rstudio.github.io/DT/shiny.html
http://rstudio.github.io/DT/shiny.html
http://datatables.net

renderImage 147

column(12,
dataTableOutput('table')
)
)
),
server = function(input, output) {
output$table <- renderDataTable(iris,
options = list(
pagelLength = 5,
initComplete = I("function(settings, json) {alert('Done."');}")

renderImage Image file output

Description

Renders a reactive image that is suitable for assigning to an output slot.

Usage

renderImage(
expr,
env = parent.frame(),
quoted = FALSE,

deleteFile,
outputArgs = list()
)
Arguments
expr An expression that returns a list.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.
deleteFile Should the file in func()$src be deleted after it is sent to the client browser?
Generally speaking, if the image is a temp file generated within func, then this
should be TRUE; if the image is not a temp file, this should be FALSE. (For back-
ward compatibility reasons, if this argument is missing, a warning will be emit-
ted, and if the file is in the temp directory it will be deleted. In the future, this
warning will become an error.)
outputArgs A list of arguments to be passed through to the implicit call to imageOutput ()

when renderImage is used in an interactive R Markdown document.

148 renderImage

Details

The expression expr must return a list containing the attributes for the img object on the client web
page. For the image to display, properly, the list must have at least one entry, src, which is the
path to the image file. It may also useful to have a contentType entry specifying the MIME type
of the image. If one is not provided, renderImage will try to autodetect the type, based on the file
extension.

Other elements such as width, height, class, and alt, can also be added to the list, and they will
be used as attributes in the img object.

The corresponding HTML output tag should be div or img and have the CSS class name shiny-image-output.

See Also

For more details on how the images are generated, and how to control the output, see plotPNG().

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

ui <- fluidPage(
sliderInput(”n”, "Number of observations”, 2, 1000, 500),
plotOutput(”plot1”),
plotOutput(”plot2"),
plotOutput(”plot3”)
)

server <- function(input, output, session) {

A plot of fixed size

output$plotl <- renderImage({
A temp file to save the output. It will be deleted after renderImage
sends it, because deleteFile=TRUE.
outfile <- tempfile(fileext='.png')

Generate a png

png(outfile, width=400, height=400)
hist(rnorm(input$n))

dev.off()

Return a list
list(src = outfile,
alt = "This is alternate text")
}, deleteFile = TRUE)

A dynamically-sized plot
output$plot2 <- renderImage({
Read plot2's width and height. These are reactive values, so this
expression will re-run whenever these values change.
width <- session$clientData$output_plot2_width
height <- session$clientData$output_plot2_height

renderPlot

3

A temp file to save the output.
outfile <- tempfile(fileext='.png')

png(outfile, width=width, height=height)

hist(rnorm(input$n))
dev.off()

Return a list containing the filename

list(src = outfile,
width = width,
height = height,

alt = "This is alternate text"”)

}, deleteFile = TRUE)

Send a pre-rendered image, and don't delete the image after sending it
NOTE: For this example to work, it would require files in a subdirectory

named images/

output$plot3 <- renderImage ({
When input$n is 1, filename is ./images/imagel. jpeg
filename <- normalizePath(file.path('./images',

paste('image', input$n,

Return a list containing the filename

list(src = filename)
}, deleteFile = FALSE)

shinyApp(ui, server)

3

'.jpeg', sep="")))

149

renderPlot

Plot Output

Description

Renders a reactive plot that is suitable for assigning to an output slot.

Usage

renderPlot(

expr,
width = "auto”,
height = "auto”,

res = 72,

env = parent.frame(),
quoted = FALSE,
execOnResize = FALSE,
outputArgs = list()

150 renderPlot

Arguments

expr An expression that generates a plot.
width, height Height and width can be specified in three ways:
e "auto”, the default, uses the size specified by plotOutput() (i.e. the
of fsetWidth/‘offsetHeight* of the HTML element bound to this plot.)
* An integer, defining the width/height in pixels.

* A function that returns the width/height in pixels (or "auto”). The function
is executed in a reactive context so that you can refer to reactive values and
expression to make the width/height reactive.

When rendering an inline plot, you must provide numeric values (in pixels) to
both width and height.

res Resolution of resulting plot, in pixels per inch. This value is passed to grDevices: : png().
Note that this affects the resolution of PNG rendering in R; it won’t change the
actual ppi of the browser.

Arguments to be passed through to grDevices: :png(). These can be used to
set the width, height, background color, etc.

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

execOnResize If FALSE (the default), then when a plot is resized, Shiny will replay the plot
drawing commands with grDevices: :replayPlot() instead of re-executing
expr. This can result in faster plot redrawing, but there may be rare cases where
it is undesirable. If you encounter problems when resizing a plot, you can have
Shiny re-execute the code on resize by setting this to TRUE.

outputArgs A list of arguments to be passed through to the implicit call to plotOutput()
when renderPlot is used in an interactive R Markdown document.
Details

The corresponding HTML output tag should be div or img and have the CSS class name shiny-plot-output.

Interactive plots

With ggplot2 graphics, the code in renderPlot should return a ggplot object; if instead the code
prints the ggplot2 object with something like print (p), then the coordinates for interactive graphics
will not be properly scaled to the data space.

See plotOutput () for more information about interactive plots.

See Also

For the corresponding client-side output function, and example usage, see plotOutput (). For more
details on how the plots are generated, and how to control the output, see plLotPNG(). renderCachedPlot ()
offers a way to cache generated plots to expedite the rendering of identical plots.

renderPrint 151

renderPrint Printable Output

Description

Makes a reactive version of the given function that captures any printed output, and also captures
its printable result (unless base: :invisible()), into a string. The resulting function is suitable for
assigning to an output slot.

Usage

renderPrint(
expr,
env = parent.frame(),
quoted = FALSE,
width = getOption("width"),
outputArgs = list()

)
Arguments
expr An expression that may print output and/or return a printable R object.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.
width The value for [options][base::options]('width").
outputArgs A list of arguments to be passed through to the implicit call to verbatimTextOutput ()
when renderPrint is used in an interactive R Markdown document.
Details

The corresponding HTML output tag can be anything (though pre is recommended if you need a
monospace font and whitespace preserved) and should have the CSS class name shiny-text-output.

The result of executing func will be printed inside a utils: :capture.output() call.

Note that unlike most other Shiny output functions, if the given function returns NULL then NULL will
actually be visible in the output. To display nothing, make your function return base: : invisible().

See Also

renderText () for displaying the value returned from a function, instead of the printed output.

152 renderPrint

Examples

isolate({

renderPrint captures any print output, converts it to a string, and
returns it

visFun <- renderPrint({ "foo" })

visFun()

'[1] "foo"'

invisFun <- renderPrint({ invisible("foo") 3})
invisFun()
L}

multiprintFun <- renderPrint({
print("foo");
"bar"

»

multiprintFun()

'[1] "foo"\n[1] "bar"'

nullFun <- renderPrint({ NULL })
nullFun()
"NULL'

invisNullFun <- renderPrint({ invisible(NULL) })
invisNullFun()
L}

vecFun <- renderPrint({ 1:5 })
vecFun()
'[1] 12345

Contrast with renderText, which takes the value returned from the function
and uses cat() to convert it to a string

visFun <- renderText({ "foo" })

visFun()

'foo'

invisFun <- renderText({ invisible("foo") })
invisFun()
'foo'

multiprintFun <- renderText({
print("foo");
"bar"

»

multiprintFun()

'bar'

nullFun <- renderText({ NULL })
nullFun()

renderTable 153

"

invisNullFun <- renderText({ invisible(NULL) })
invisNullFun()
4

vecFun <- renderText({ 1:5 })
vecFun()

#'12345"'

b

renderTable Table Output

Description

Creates a reactive table that is suitable for assigning to an output slot.

Usage

renderTable(
expr,
striped = FALSE,
hover = FALSE,
bordered = FALSE,

spacing = C(”S", IIXSH’ Hmll’ ”l")’
width = "auto”,
align = NULL,

rownames = FALSE,
colnames = TRUE,
digits = NULL,

na = "NA",

env = parent.frame(),
quoted = FALSE,
outputArgs = list()

Arguments

expr An expression that returns an R object that can be used with xtable: : xtable().
striped, hover, bordered
Logicals: if TRUE, apply the corresponding Bootstrap table format to the output
table.

spacing The spacing between the rows of the table (xs stands for "extra small", s for
"small", m for "medium" and 1 for "large").

154 renderText

width Table width. Must be a valid CSS unit (like "100%", "400px", "auto") or a
number, which will be coerced to a string and have "px" appended.

align A string that specifies the column alignment. If equalto '1', 'c' or 'r', then all
columns will be, respectively, left-, center- or right-aligned. Otherwise, align
must have the same number of characters as the resulting table (if rownames
= TRUE, this will be equal to ncol()+1), with the i-th character specifying the
alignment for the i-th column (besides '1l', 'c' and 'r', '?' is also permitted
- '?' is a placeholder for that particular column, indicating that it should keep
its default alignment). If NULL, then all numeric/integer columns (including the
row names, if they are numbers) will be right-aligned and everything else will
be left-aligned (align = '?"' produces the same result).

rownames, colnames
Logicals: include rownames? include colnames (column headers)?

digits An integer specifying the number of decimal places for the numeric columns
(this will not apply to columns with an integer class). If digits is set to a
negative value, then the numeric columns will be displayed in scientific format
with a precision of abs(digits) digits.
na The string to use in the table cells whose values are missing (i.e. they either
evaluate to NA or NaN).
Arguments to be passed through to xtable: : xtable() and xtable: :print.xtable().
env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

outputArgs A list of arguments to be passed through to the implicit call to tableOutput()
when renderTable is used in an interactive R Markdown document.

Details

The corresponding HTML output tag should be div and have the CSS class name shiny-html-output.

renderText Text Output

Description

Makes a reactive version of the given function that also uses base: :cat() to turn its result into a
single-element character vector.

Usage

renderText(
expr,
env = parent.frame(),
quoted = FALSE,
outputArgs = list(),
sep =" "

renderText 155

Arguments
expr An expression that returns an R object that can be used as an argument to cat.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.
outputArgs A list of arguments to be passed through to the implicit call to textOutput()
when renderText is used in an interactive R Markdown document.
sep A separator passed to cat to be appended after each element.
Details

The corresponding HTML output tag can be anything (though pre is recommended if you need a
monospace font and whitespace preserved) and should have the CSS class name shiny-text-output.

The result of executing func will passed to cat, inside a utils::capture.output() call.

See Also

renderPrint() for capturing the print output of a function, rather than the returned text value.

Examples

isolate({

renderPrint captures any print output, converts it to a string, and
returns it

visFun <- renderPrint({ "foo" })

visFun()

'[1] "foo"'

invisFun <- renderPrint({ invisible("foo") 3})
invisFun()
Py

multiprintFun <- renderPrint({
print("foo");
IlbarVI

»

multiprintFun()

'[1] "foo"\n[1] "bar"'

nullFun <- renderPrint({ NULL })
nullFun()
"NULL'

invisNullFun <- renderPrint({ invisible(NULL) })
invisNullFun()
L}

vecFun <- renderPrint({ 1:5 })

156 renderUI

vecFun()
'[11 12345

Contrast with renderText, which takes the value returned from the function
and uses cat() to convert it to a string

visFun <- renderText({ "foo" 3})

visFun()

'foo'

invisFun <- renderText({ invisible("foo") })
invisFun()
'foo'

multiprintFun <- renderText({
print("foo");
"bar"”

»

multiprintFun()

'bar'

nullFun <- renderText({ NULL })
nullFun()
Py

invisNullFun <- renderText({ invisible(NULL) })
invisNullFun()
L

vecFun <- renderText({ 1:5 })

vecFun()
#'12345'

b

renderUI UI Output

Description

Renders reactive HTML using the Shiny UI library.

Usage
renderUI(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())

Arguments

expr An expression that returns a Shiny tag object, HTML (), or a list of such objects.

env The environment in which to evaluate expr.

repeatable 157

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

outputArgs A list of arguments to be passed through to the implicit call to uiOutput () when
renderUI is used in an interactive R Markdown document.

Details

The corresponding HTML output tag should be div and have the CSS class name shiny-html-output
(or use uiOutput()).

See Also

uiOutput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
uiOutput(”moreControls”)

)

server <- function(input, output) {
output$moreControls <- renderUI({
taglist(
sliderInput(”n”, "N", 1, 1000, 500),
textInput(”label”, "Label")
)
b))
3
shinyApp(ui, server)

3

repeatable Make a random number generator repeatable

Description

Given a function that generates random data, returns a wrapped version of that function that always
uses the same seed when called. The seed to use can be passed in explicitly if desired; otherwise, a
random number is used.

Usage

repeatable(rngfunc, seed = stats::runif(1, @, .Machine$integer.max))

158 req

Arguments
rngfunc The function that is affected by the R session’s seed.
seed The seed to set every time the resulting function is called.
Value

A repeatable version of the function that was passed in.

Note

When called, the returned function attempts to preserve the R session’s current seed by snapshotting
and restoring base: : .Random. seed().

Examples

rnormA <- repeatable(rnorm)

rnormB <- repeatable(rnorm)

rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111

rnormA(3) # [1] 1.8285879 -0.7468041 -0.4639111

rnormA(5) # [1] 1.8285879 -0.7468041 -0.4639111 -1.6510126 -1.4686924
rnormB(5) # [1] -0.7946034 0.2568374 -0.6567597 1.2451387 -0.8375699

req Check for required values

Description

Ensure that values are available ("truthy"—see Details) before proceeding with a calculation or ac-
tion. If any of the given values is not truthy, the operation is stopped by raising a "silent" exception
(not logged by Shiny, nor displayed in the Shiny app’s UI).

Usage
req(..., cancelOutput = FALSE)
isTruthy(x)

Arguments

Values to check for truthiness.

cancelOutput If TRUE and an output is being evaluated, stop processing as usual but instead of
clearing the output, leave it in whatever state it happens to be in.

X An expression whose truthiness value we want to determine

req 159

Details

The req function was designed to be used in one of two ways. The first is to call it like a statement
(ignoring its return value) before attempting operations using the required values:

rv <- reactiveValues(state = FALSE)
r <- reactive({

req(input$a, input$b, rv$state)

Code that uses input$a, input$b, and/or rv$state...
1))

In this example, if r() is called and any of input$a, input$b, and rv$state are NULL, FALSE, "",
etc., then the req call will trigger an error that propagates all the way up to whatever render block
or observer is executing.

The second is to use it to wrap an expression that must be truthy:

output$plot <- renderPlot({

if (req(input$plotType) == "histogram”) {
hist(dataset())
} else if (input$plotType == "scatter”) {
gplot(dataset(), aes(x = x, y = vy))
3
b))

In this example, req(input$plotType) first checks that input$plotType is truthy, and if so, re-
turns it. This is a convenient way to check for a value "inline" with its first use.

Truthy and falsy values

The terms "truthy" and "falsy" generally indicate whether a value, when coerced to abase: : logical(),
is TRUE or FALSE. We use the term a little loosely here; our usage tries to match the intuitive notions

of "Is this value missing or available?", or "Has the user provided an answer?", or in the case of
action buttons, "Has the button been clicked?".

For example, a textInput that has not been filled out by the user has a value of "", so that is
considered a falsy value.

To be precise, req considers a value truthy unless it is one of:

* FALSE
* NULL

P

* An empty atomic vector

* An atomic vector that contains only missing values

* A logical vector that contains all FALSE or missing values
* An object of class "try-error”

* A value that represents an unclicked actionButton()

160 req

Note in particular that the value @ is considered truthy, even though as.logical(@) is FALSE.

If the built-in rules for truthiness do not match your requirements, you can always work around
them. Since FALSE is falsy, you can simply provide the results of your own checks to req:

req(input$a !'=0)
Using req(FALSE)

You can use req(FALSE) (i.e. no condition) if you’ve already performed all the checks you needed
to by that point and just want to stop the reactive chain now. There is no advantange to this, except
perhaps ease of readibility if you have a complicated condition to check for (or perhaps if you’d like
to divide your condition into nested if statements).

Using cancelOutput = TRUE

When req(. .., cancelOutput = TRUE) is used, the "silent" exception is also raised, but it is treated
slightly differently if one or more outputs are currently being evaluated. In those cases, the reactive
chain does not proceed or update, but the output(s) are left is whatever state they happen to be in
(whatever was their last valid state).

Note that this is always going to be the case if this is used inside an output context (e.g. output$txt
<-...). It may or may not be the case if it is used inside a non-output context (e.g. reactive(),
observe() or observeEvent()) — depending on whether or not there is an output$... thatis
triggered as a result of those calls. See the examples below for concrete scenarios.

Value

The first value that was passed in.

Examples

Only run examples in interactive R sessions
if (interactive()) {
ui <~ fluidPage(
textInput('data', 'Enter a dataset from the "datasets” package', 'cars'),
p('(E.g. "cars", "mtcars"”, "pressure”, "faithful”)'), hr(),
tableOutput('tbl")
)

server <- function(input, output) {
output$tbl <- renderTable({

to require that the user types something, use: ‘req(input$data)’

but better: require that input$data is valid and leave the last

valid table up

req(exists(input$data, "package:datasets”, inherits = FALSE),
cancelOutput = TRUE)

head(get(input$data, "package:datasets"”, inherits = FALSE))
»
}

shinyApp(ui, server)

}

restorelnput 161

restorelnput Restore an input value

Description
This restores an input value from the current restore context. It should be called early on inside of
input functions (like textInput()).

Usage

restorelnput(id, default)

Arguments
id Name of the input value to restore.
default A default value to use, if there’s no value to restore.
runApp Run Shiny Application
Description

Runs a Shiny application. This function normally does not return; interrupt R to stop the application
(usually by pressing Ctrl+C or Esc).

Usage

runApp (
appDir = getwd(),
port = getOption("shiny.port”),
launch.browser = getOption("”shiny.launch.browser"”, interactive()),
host = getOption("shiny.host”, "127.0.0.1"),

workerId = "",
quiet = FALSE,
display.mode = c("auto”, "normal”, "showcase"),
test.mode = getOption("shiny.testmode", FALSE)
)
Arguments
appDir The application to run. Should be one of the following:

* A directory containing server.R, plus, either ui.R or a www directory that
contains the file index.html.

* A directory containing app.R.

162 runApp

* An .R file containing a Shiny application, ending with an expression that
produces a Shiny app object.

* A list with ui and server components.

* A Shiny app object created by shinyApp().

port The TCP port that the application should listen on. If the port is not specified,
and the shiny.port option is set (with options(shiny.port = XX)), then that
port will be used. Otherwise, use a random port.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to true in interactive sessions only. This value of this
parameter can also be a function to call with the application’s URL.

host The IPv4 address that the application should listen on. Defaults to the shiny.host
option, if set, or "127.0.0.1" if not. See Details.

workerId Can generally be ignored. Exists to help some editions of Shiny Server Pro route
requests to the correct process.

quiet Should Shiny status messages be shown? Defaults to FALSE.

display.mode The mode in which to display the application. If set to the value "showcase”,
shows application code and metadata from a DESCRIPTION file in the application
directory alongside the application. If set to "normal”, displays the application
normally. Defaults to "auto”, which displays the application in the mode given
in its DESCRIPTION file, if any.

test.mode Should the application be launched in test mode? This is only used for recording
or running automated tests. Defaults to the shiny. testmode option, or FALSE
if the option is not set.

Details

The host parameter was introduced in Shiny 0.9.0. Its default value of "127.0.0@.1" means that,
contrary to previous versions of Shiny, only the current machine can access locally hosted Shiny
apps. To allow other clients to connect, use the value "0.0.0.0" instead (which was the value that
was hard-coded into Shiny in 0.8.0 and earlier).

Examples

Not run:
Start app in the current working directory
runApp()

Start app in a subdirectory called myapp
runApp("myapp”)

End(Not run)
Only run this example in interactive R sessions
if (interactive()) {

options(device.ask.default = FALSE)

Apps can be run without a server.r and ui.r file
runApp(list(

runExample 163

ui = bootstrapPage(
numericInput('n', 'Number of obs', 100),
plotOutput('plot’)

),

server = function(input, output) {
output$plot <- renderPlot({ hist(runif(input$n)) 3})

3

D)

Running a Shiny app object
app <- shinyApp(
ui = bootstrapPage(
numericInput('n', 'Number of obs', 100),
plotOutput('plot’)
),
server = function(input, output) {
output$plot <- renderPlot({ hist(runif(input$n)) 3})
3
)
runApp(app)

runExample Run Shiny Example Applications

Description

Launch Shiny example applications, and optionally, your system’s web browser.

Usage

runExample(
example = NA,
port = NULL,
launch.browser = getOption("shiny.launch.browser”, interactive()),
host = getOption("shiny.host”, "127.0.0.1"),

display.mode = c("auto”, "normal”, "showcase")
)
Arguments
example The name of the example to run, or NA (the default) to list the available examples.
port The TCP port that the application should listen on. Defaults to choosing a ran-
dom port.

launch.browser If true, the system’s default web browser will be launched automatically after
the app is started. Defaults to true in interactive sessions only.

164 runGadget

host The IPv4 address that the application should listen on. Defaults to the shiny.host
option, if set, or "127.0.0.1" if not.

display.mode The mode in which to display the example. Defaults to showcase, but may be
set to normal to see the example without code or commentary.

Examples

Only run this example in interactive R sessions
if (interactive()) {

List all available examples

runExample ()

Run one of the examples
runExample(”01_hello")

Print the directory containing the code for all examples
system.file("examples”, package="shiny")

runGadget Run a gadget

Description

Similar to runApp, but handles input$cancel automatically, and if running in RStudio, defaults to
viewing the app in the Viewer pane.

Usage

runGadget (
app,
server = NULL,
port = getOption("shiny.port”),
viewer = paneViewer(),
stopOnCancel = TRUE

)
Arguments
app Either a Shiny app object as created by shinyApp() et al, or, a UI object.
server Ignored if app is a Shiny app object; otherwise, passed along to shinyApp (i.e.
shinyApp(ui = app, server = server)).
port See runApp().
viewer Specify where the gadget should be displayed—viewer pane, dialog window, or

external browser—by passing in a call to one of the viewer () functions.

stopOnCancel If TRUE (the default), then an observeEvent is automatically created that han-
dles input$cancel by calling stopApp() with an error. Pass FALSE if you want
to handle input$cancel yourself.

runTests 165

Value

The value returned by the gadget.

Examples

Not run:
library(shiny)

ui <- fillPage(...)
server <- function(input, output, session) {

}

Either pass ui/server as separate arguments...
runGadget (ui, server)

...or as a single app object
runGadget (shinyApp(ui, server))

End(Not run)

runTests Runs the tests associated with this Shiny app

Description

Sources the .R files in the top-level of tests/ much like R CMD check. These files are typically
simple runners for tests nested in other directories under tests/.

Usage
runTests(appDir = ".", filter = NULL, assert = TRUE, envir = globalenv())
Arguments
appDir The base directory for the application.
filter If not NULL, only tests with file names matching this regular expression will be
executed. Matching is performed on the file name including the extension.
assert Logical value which determines if an error should be thrown if any error is
captured.
envir Parent testing environment in which to base the individual testing environments.
Details

Historically, shinytest recommended placing tests at the top-level of the tests/ directory. This older
folder structure is not supported by runTests. Please see shinyAppTemplate() for more details.

https://rstudio.github.io/shinytest/

166 runUrl

Value

A data frame classed with the supplemental class "shiny_runtests”. The data frame has the
following columns:

Name Type Meaning
file character(1) File name of the runner script in tests/ that was sourced.
pass logical(1) Whether or not the runner script signaled an error when sourced.
result any or NA The return value of the runner
runUrl Run a Shiny application from a URL
Description

runUrl() downloads and launches a Shiny application that is hosted at a downloadable URL. The
Shiny application must be saved in a .zip, .tar, or .tar.gz file. The Shiny application files must
be contained in the root directory or a subdirectory in the archive. For example, the files might
be myapp/server.r and myapp/ui.r. The functions runGitHub() and runGist() are based on
runUrl(), using URL’s from GitHub (https://github.com) and GitHub gists (https://gist.
github.com), respectively.

Usage
runUrl(url, filetype = NULL, subdir = NULL, destdir = NULL, ...)
runGist(gist, destdir = NULL, ...)
runGitHub(
repo,
username = getOption("github.user"),
ref = "master”,

subdir = NULL,
destdir = NULL,

Arguments
url URL of the application.
filetype The file type (".zip", ".tar", or ".tar.gz". Defaults to the file extension
taken from the url.
subdir A subdirectory in the repository that contains the app. By default, this function

will run an app from the top level of the repo, but you can use a path such as
"inst/shinyapp”.

https://github.com
https://gist.github.com
https://gist.github.com

safeError 167

destdir Directory to store the downloaded application files. If NULL (the default), the
application files will be stored in a temporary directory and removed when the
app exits

Other arguments to be passed to runApp (), such as port and launch.browser.

gist The identifier of the gist. For example, if the gist is https://gist.github.com/jcheng5/3239667,
then 3239667, '3239667"',and "https://gist.github.com/jcheng5/3239667'

are all valid values.

repo Name of the repository.
username GitHub username. If repo is of the form "username/repo”, username will be
taken from repo.
ref Desired git reference. Could be a commit, tag, or branch name. Defaults to
"master”.
Examples

Only run this example in interactive R sessions
if (interactive()) {
runUrl('https://github.com/rstudio/shiny_example/archive/master.tar.gz")

Can run an app from a subdirectory in the archive
runUrl("https://github.com/rstudio/shiny_example/archive/master.zip”,
subdir = "inst/shinyapp/")
3
Only run this example in interactive R sessions
if (interactive()) {
runGist(3239667)
runGist("https://gist.github.com/jcheng5/3239667")

0ld URL format without username
runGist("https://gist.github.com/3239667")
3

Only run this example in interactive R sessions
if (interactive()) {

runGitHub("shiny_example”, "rstudio”)

or runGitHub("rstudio/shiny_example™)

Can run an app from a subdirectory in the repo
runGitHub("shiny_example”, "rstudio”, subdir = "inst/shinyapp/")

3

safeError Declare an error safe for the user to see

Description

This should be used when you want to let the user see an error message even if the default is to
sanitize all errors. If you have an error e and call stop(safeError(e)), then Shiny will ignore the
value of getOption(”shiny.sanitize.errors") and always display the error in the app itself.

168 safeError

Usage
safeError(error)
Arguments
error Either an "error" object or a "character" object (string). In the latter case, the
string will become the message of the error returned by safeError.
Details

An error generated by safeError has priority over all other Shiny errors. This can be dangerous.
For example, if you have set options(shiny.sanitize.errors = TRUE), then by default all error
messages are omitted in the app, and replaced by a generic error message. However, this does not
apply to safeError: whatever you pass through error will be displayed to the user. So, this should
only be used when you are sure that your error message does not contain any sensitive information.
In those situations, safeError can make your users’ lives much easier by giving them a hint as to
where the error occurred.

Value

An "error" object

See Also

shiny-options()

Examples

Only run examples in interactive R sessions
if (interactive()) {

uncomment the desired line to experiment with shiny.sanitize.errors
options(shiny.sanitize.errors = TRUE)
options(shiny.sanitize.errors = FALSE)

Define UI

ui <- fluidPage(
textInput('number', 'Enter your favorite number from 1 to 10', '5'"),
textOutput('normalError'),
textOutput('safeError')

)

Server logic
server <- function(input, output) {
output$normalError <- renderText({
number <- input$number
if (number %in% 1:10) {
return(paste('You chose', number, '!'))
} else {
stop(
paste(number, 'is not a number between 1 and 10')

selectInput 169

)
}
D)
output$safeError <- renderText({
number <- input$number
if (number %in% 1:10) {

return(paste('You chose', number, '!'))

} else {
stop(safeError(

paste(number, 'is not a number between 1 and 10')

)

3

»
3

Complete app with UI and server components
shinyApp(ui, server)

}

selectInput Create a select list input control

Description

Create a select list that can be used to choose a single or multiple items from a list of values.

Usage
selectInput(
inputld,
label,
choices,
selected = NULL,
multiple = FALSE,
selectize = TRUE,
width = NULL,
size = NULL
)
selectizeInput(inputIld, ..., options = NULL, width = NULL)
Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
choices List of values to select from. If elements of the list are named, then that name —

rather than the value — is displayed to the user. It’s also possible to group related
inputs by providing a named list whose elements are (either named or unnamed)

170 selectInput

lists, vectors, or factors. In this case, the outermost names will be used as the
group labels (leveraging the <optgroup> HTML tag) for the elements in the
respective sublist. See the example section for a small demo of this feature.

selected The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.

multiple Is selection of multiple items allowed?

selectize Whether to use selectize.js or not.

width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().
size Number of items to show in the selection box; a larger number will result in a

taller box. Not compatible with selectize=TRUE. Normally, when multiple=FALSE,
a select input will be a drop-down list, but when size is set, it will be a box in-
stead.

Arguments passed to selectInput().

options A list of options. See the documentation of selectize.js for possible options
(character option values inside base: :I() will be treated as literal JavaScript
code; see renderDataTable () for details).

Details

By default, selectInput() and selectizeInput() use the JavaScript library selectize.js (https:
//github.com/selectize/selectize. js) instead of the basic select input element. To use the
standard HTML select input element, use selectInput() with selectize=FALSE.

In selectize mode, if the first element in choices has a value of "", its name will be treated
as a placeholder prompt. For example: selectInput(”letter”,"”Letter"”,c("Choose one” =
"" LETTERS))

Value

A select list control that can be added to a Ul definition.

Server value

A vector of character strings, usually of length 1, with the value of the selected items. When
multiple=TRUE and nothing is selected, this value will be NULL.

Note

The selectize input created from selectizeInput() allows deletion of the selected option even in
a single select input, which will return an empty string as its value. This is the default behavior
of selectize.js. However, the selectize input created from selectInput(...,selectize = TRUE)
will ignore the empty string value when it is a single choice input and the empty string is not in the
choices argument. This is to keep compatibility with selectInput(...,selectize = FALSE).

https://github.com/selectize/selectize.js
https://github.com/selectize/selectize.js

serverlnfo 171

See Also

updateSelectInput() varSelectInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), sliderInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

basic example
shinyApp(
ui = fluidPage(
selectInput(”variable”, "Variable:",
c("Cylinders” = "cyl"”,
"Transmission” = "am",
"Gears" = "gear")),
tableOutput(”data”)
),
server = function(input, output) {
output$data <- renderTable({
mtcars[, c("mpg", input$variable), drop = FALSE]
}, rownames = TRUE)

}
)
demoing group support in the ‘choices" arg
shinyApp(
ui = fluidPage(
selectInput(”state”, "Choose a state:”,

list(‘East Coast® = list("NY", "NJ", "CT"),
‘West Coast* = list("WA", "OR", "CA"),
‘Midwest® = Llist("MN", "WI", "IA"))
),
textOutput("result”)
),
server = function(input, output) {
output$result <- renderText({
paste(”"You chose”, input$state)
»
3
)
3

serverInfo Collect information about the Shiny Server environment

172 session

Description
This function returns the information about the current Shiny Server, such as its version, and
whether it is the open source edition or professional edition. If the app is not served through the
Shiny Server, this function just returns 1list (shinyServer = FALSE).

Usage

serverInfo()

Details

This function will only return meaningful data when using Shiny Server version 1.2.2 or later.

Value

A list of the Shiny Server information.

session Session object

Description

Shiny server functions can optionally include session as a parameter (e.g. function(input, out-
put, session)). The session object is an environment that can be used to access information and
functionality relating to the session. The following list describes the items available in the environ-
ment; they can be accessed using the $ operator (for example, session$clientData$url_search).

Value

allowReconnect(value)

If value is TRUE and run in a hosting environment (Shiny Server or Connect)
with reconnections enabled, then when the session ends due to the network con-
nection closing, the client will attempt to reconnect to the server. If a recon-
nection is successful, the browser will send all the current input values to the
new session on the server, and the server will recalculate any outputs and send
them back to the client. If value is FALSE, reconnections will be disabled (this
is the default state). If "force", then the client browser will always attempt to
reconnect. The only reason to use "force” is for testing on a local connection
(without Shiny Server or Connect).

clientData A reactiveValues() object that contains information about the client.

* allowDataUriScheme is a logical value that indicates whether the browser
is able to handle URIs that use the data: scheme.

* pixelratio reports the "device pixel ratio” from the web browser, or 1 if
none is reported. The value is 2 for Apple Retina displays.

e singletons - for internal use

session 173

e url_protocol, url_hostname, url_port, url_pathname, url_search,
url_hash_initial and url_hash can be used to get the components of
the URL that was requested by the browser to load the Shiny app page.
These values are from the browser’s perspective, so neither HTTP proxies
nor Shiny Server will affect these values. The url_search value may be
used with parseQueryString() to access query string parameters.

clientData also contains information about each output. output_outputld_width

and output_outputld_height give the dimensions (using offsetWidth and

of fsetHeight) of the DOM element that is bound to outputld, and output_outputld_hidden
is a logical that indicates whether the element is hidden. These values may be

NULL if the output is not bound.

input The session’s input object (the same as is passed into the Shiny server function
as an argument).

isClosed() A function that returns TRUE if the client has disconnected.

ns(id) Server-side version of ns <-NS(id). If bare IDs need to be explicitly names-
paced for the current module, session$ns("name") will return the fully-qualified
ID.

onEnded(callback)

Synonym for onSessionEnded.
onFlush(func, once=TRUE)
Registers a function to be called before the next time (if once=TRUE) or every
time (if once=FALSE) Shiny flushes the reactive system. Returns a function that
can be called with no arguments to cancel the registration.
onFlushed(func, once=TRUE)
Registers a function to be called after the next time (if once=TRUE) or every time
(if once=FALSE) Shiny flushes the reactive system. Returns a function that can
be called with no arguments to cancel the registration.
onSessionEnded(callback)
Registers a function to be called after the client has disconnected. Returns a
function that can be called with no arguments to cancel the registration.

output The session’s output object (the same as is passed into the Shiny server function
as an argument).

reactlog For internal use.

registerDataObj(name, data, filterFunc)
Publishes any R object as a URL endpoint that is unique to this session. name
must be a single element character vector; it will be used to form part of the
URL. filterFunc must be a function that takes two arguments: data (the value
that was passed into registerDataObj) and req (an environment that imple-
ments the Rook specification for HTTP requests). filterFunc will be called
with these values whenever an HTTP request is made to the URL endpoint. The
return value of filterFunc should be a Rook-style response.

reload() The equivalent of hitting the browser’s Reload button. Only works if the session
is actually connected.

request An environment that implements the Rook specification for HTTP requests.
This is the request that was used to initiate the websocket connection (as op-
posed to the request that downloaded the web page for the app).

174 session

userData An environment for app authors and module/package authors to store whatever
session-specific data they want.
resetBrush(brushId)

Resets/clears the brush with the given brushId, if it exists on any imageOutput
or plotOutput in the app.
sendCustomMessage (type, message)
Sends a custom message to the web page. type must be a single-element char-
acter vector giving the type of message, while message can be any jsonlite-
encodable value. Custom messages have no meaning to Shiny itself; they are
used soley to convey information to custom JavaScript logic in the browser. You
can do this by adding JavaScript code to the browser that calls Shiny . addCustomMessageHandler (type,
as the page loads; the function you provide to addCustomMessageHandler will
be invoked each time sendCustomMessage is called on the server.
sendBinaryMessage (type, message)
Similar to sendCustomMessage, but the message must be a raw vector and the
registration method on the client is Shiny.addBinaryMessageHandler (type, function(message){. ..
The message argument on the client will be a DataView.
sendInputMessage(inputld, message)
Sends a message to an input on the session’s client web page; if the input is
present and bound on the page at the time the message is received, then the
input binding object’s receiveMessage(el,message) method will be called.
sendInputMessage should generally not be called directly from Shiny apps,
but through friendlier wrapper functions like updateTextInput().
setBookmarkExclude(names)
Set input names to be excluded from bookmarking.
getBookmarkExclude ()
Returns the set of input names to be excluded from bookmarking.
onBookmark(fun)
Registers a function that will be called just before bookmarking state.
onBookmarked(fun)
Registers a function that will be called just after bookmarking state.

onRestore(fun) Registers a function that will be called when a session is restored, before all
other reactives, observers, and render functions are run.

onRestored(fun)
Registers a function that will be called when a session is restored, after all other
reactives, observers, and render functions are run.

doBookmark () Do bookmarking and invoke the onBookmark and onBookmarked callback func-
tions.
exportTestValues()
Registers expressions for export in test mode, available at the test snapshot URL.
getTestSnapshotUrl (input=TRUE, output=TRUE, export=TRUE, format="json")
Returns a URL for the test snapshots. Only has an effect when the shiny. testmode
option is set to TRUE. For the input, output, and export arguments, TRUE means
to return all of these values. It is also possible to specify by name which values
to return by providing a character vector, as in input=c("x","y"). The format
can be "rds" or "json".

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView

setBookmarkExclude 175

setBookmarkExclude Exclude inputs from bookmarking

Description
This function tells Shiny which inputs should be excluded from bookmarking. It should be called
from inside the application’s server function.

Usage

setBookmarkExclude(names = character(@), session = getDefaultReactiveDomain())

Arguments
names A character vector containing names of inputs to exclude from bookmarking.
session A shiny session object.

Details

This function can also be called from a module’s server function, in which case it will exclude
inputs with the specified names, from that module. It will not affect inputs from other modules or
from the top level of the Shiny application.

See Also

enableBookmarking() for examples.

shinyApp Create a Shiny app object

Description

These functions create Shiny app objects from either an explicit Ul/server pair (shinyApp), or by
passing the path of a directory that contains a Shiny app (shinyAppDir).

Usage
shinyApp(
ui,
server,
onStart = NULL,
options = list(),
uiPattern = "/",

enableBookmarking = NULL

176 shinyApp

shinyAppDir(appDir, options = list())

shinyAppFile(appFile, options = list())

Arguments

ui The UI definition of the app (for example, a call to fluidPage() with nested
controls).

If bookmarking is enabled (see enableBookmarking), this must be a single ar-
gument function that returns the Ul definition.

server A function with three parameters: input, output, and session. The function
is called once for each session ensuring that each app is independent.

onStart A function that will be called before the app is actually run. This is only needed
for shinyAppObj, since in the shinyAppDir case, a global.R file can be used
for this purpose.

options Named options that should be passed to the runApp call (these can be any of
the following: "port", "launch.browser", "host", "quiet", "display.mode" and
"test.mode"). You can also specify width and height parameters which pro-
vide a hint to the embedding environment about the ideal height/width for the
app.

uiPattern A regular expression that will be applied to each GET request to determine whether
the ui should be used to handle the request. Note that the entire request path
must match the regular expression in order for the match to be considered suc-
cessful.

enableBookmarking
Can be one of "url”, "server”, or "disable". The default value, NULL, will re-
spect the setting from any previous calls to enableBookmarking(). See enableBookmarking()
for more information on bookmarking your app.

appDir Path to directory that contains a Shiny app (i.e. a server.R file and either ui.R or
www/index.html)

appFile Path to a .R file containing a Shiny application

Details

Normally when this function is used at the R console, the Shiny app object is automatically passed
to the print() function, which runs the app. If this is called in the middle of a function, the value
will not be passed to print() and the app will not be run. To make the app run, pass the app object
to print() or runApp().

Value

An object that represents the app. Printing the object or passing it to runApp () will run the app.

shinyAppTemplate 177

Examples

Only run this example in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

shinyApp(
ui = fluidPage(
numericInput(”"n”, "n", 1),
plotOutput(”plot")
),
server = function(input, output) {
output$plot <- renderPlot(plot(head(cars, input$n)))
3
)

shinyAppDir(system.file("examples/@1_hello"”, package="shiny"))

The object can be passed to runApp()
app <- shinyApp(
ui = fluidPage(
numericInput(”"n”, "n", 1),
plotOutput(”plot")
),
server = function(input, output) {
output$plot <- renderPlot(plot(head(cars, input$n)))
3
)

runApp (app)

shinyAppTemplate Generate a Shiny application from a template

Description

This function populates a directory with files for a Shiny application.

Usage
shinyAppTemplate(path = NULL, examples = "default”, dryrun = FALSE)

Arguments
path Path to create new shiny application template.
examples Either one of "default", "ask", "all", or any combination of "app", "rdir", "mod-

ule", "shinytest", and "testthat". In an interactive session, "default" falls back
to "ask"; in a non-interactive session, "default" falls back to "all". With "ask",

178 shinyAppTemplate

this function will prompt the user to select which template items will be added
to the new app directory. With "all", all template items will be added to the app
directory.

dryrun If TRUE, don’t actually write any files; just print out which files would be written.

Details

In an interactive R session, this function will, by default, prompt the user to select which compo-
nents to add to the application. Choices are

1: All

2: app.R : Main application file

3: R/example.R : Helper file with R code

4: R/example-module.R : Example module

5: tests/shinytest/ : Tests using the shinytest package
6: tests/testthat/ : Tests using the testthat package

If option 1 is selected, the full example application including the following files and directories is
created:

appdir/

|- app.R

|- R

| |- example-module.R
| ‘- example.R

‘- tests
|- shinytest.R
|- shinytest
| ‘- mytest.R
|- testthat.R
‘- testthat

|- test-examplemodule.R
|- test-server.R
‘- test-sort.R

Some notes about these files:

* app.Ris the main application file.
 All files in the R/ subdirectory are automatically sourced when the application is run.

* R/example.R and R/example-module.R are automatically sourced when the application is
run. The first contains a function lexical_sort(), and the second contains code for module
created by the moduleServer () function, which is used in the application.

* tests/ contains various tests for the application. You may choose to use or remove any of them.
They can be executed by the runTests() function.

* tests/shinytest.Ris a test runner for test files in the tests/shinytest/ directory.

* tests/shinytest/mytest.R is a test that uses the shinytest package to do snapshot-based
testing.

https://rstudio.github.io/shinytest/

showBookmarkUrlModal 179

* tests/testthat.Ris atest runner for test files in the tests/testthat/ directory using the testthat
package.

* tests/testthat/test-examplemodule.R is a test for an application’s module server func-
tion.

* tests/testthat/test-server.Ris a test for the application’s server code

* tests/testthat/test-sort.Ris a test for a supporting function in the R/ directory.

showBookmarkUrlModal Display a modal dialog for bookmarking

Description

This is a wrapper function for urlModal () that is automatically called if an application is book-
marked but no other onBookmark() callback was set. It displays a modal dialog with the bookmark
URL, along with a subtitle that is appropriate for the type of bookmarking used ("url" or "server").

Usage
showBookmarkUr1Modal (url)

Arguments
url A URL to show in the modal dialog.
showModal Show or remove a modal dialog
Description

This causes a modal dialog to be displayed in the client browser, and is typically used with modalDialog().

Usage

showModal (ui, session = getDefaultReactiveDomain())

removeModal (session = getDefaultReactiveDomain())

Arguments

ui UI content to show in the modal.

session The session object passed to function given to shinyServer.
See Also

modalDialog() for examples.

https://testthat.r-lib.org/

showNotification

showNotification Show or remove a notification

Description

These functions show and remove notifications in a Shiny application.

Usage

showNotification(
ui,
action = NULL,
duration = 5,
closeButton = TRUE,

id = NULL,
type = c("default”, "message"”, "warning”, "error"),
session = getDefaultReactiveDomain()

removeNotification(id, session = getDefaultReactiveDomain())

Arguments
ui Content of message.
action Message content that represents an action. For example, this could be a link that
the user can click on. This is separate from ui so customized layouts can handle
the main notification content separately from action content.
duration Number of seconds to display the message before it disappears. Use NULL to
make the message not automatically disappear.
closeButton If TRUE, display a button which will make the notification disappear when clicked.
If FALSE do not display.
id A unique identifier for the notification.
id is optional for showNotification(): Shiny will automatically create one if
needed. If you do supply it, Shiny will update an existing notification if it exists,
otherwise it will create a new one.
id is required for removeNotification().
type A string which controls the color of the notification. One of "default" (gray),
"message" (blue), "warning" (yellow), or "error" (red).
session Session object to send notification to.
Value

An ID for the notification.

showTab 181

Examples

Only run examples in interactive R sessions
if (interactive()) {
Show a message when button is clicked
shinyApp(
ui = fluidPage(
actionButton("show”, "Show")
),
server = function(input, output) {
observeEvent (input$show, {
showNotification("Message text”,

action = a(href = "javascript:location.reload();", "Reload page")
)
»
}
)
App with show and remove buttons
shinyApp(
ui = fluidPage(
actionButton("show"”, "Show"),
actionButton("remove”, "Remove")
),

server = function(input, output) {
A queue of notification IDs
ids <- character(@)
A counter
n<-29

observeEvent (input$show, {
Save the ID for removal later
id <- showNotification(paste(”"Message”, n), duration = NULL)
ids <<- c(ids, id)
n<<-n+1

D

observeEvent (input$remove, {
if (length(ids) > @)
removeNotification(ids[1])
ids <<- ids[-1]
»

showTab Dynamically hide/show a tabPanel

182 showTab

Description

Dynamically hide or show a tabPanel() (or a navbarMenu())from an existing tabsetPanel(),
navlistPanel () or navbarPage().

Usage

showTab(inputld, target, select = FALSE, session = getDefaultReactiveDomain())

hideTab(inputId, target, session = getDefaultReactiveDomain())

Arguments
inputId The id of the tabsetPanel (or navlistPanel or navbarPage) in which to find
target.
target The value of the tabPanel to be hidden/shown. See Details if you want to
hide/show an entire navbarMenu instead.
select Should target be selected upon being shown?
session The shiny session within which to call this function.
Details

For navbarPage, you can hide/show conventional tabPanels (whether at the top level or nested
inside a navbarMenu), as well as an entire navbarMenu (). For the latter case, target should be the
menuName that you gave your navbarMenu when you first created it (by default, this is equal to the
value of the title argument).

See Also

insertTab()

Examples

Only run this example in interactive R sessions
if (interactive()) {

ui <- navbarPage("Navbar page”, id = "tabs”,
tabPanel ("Home",
actionButton("hideTab"”, "Hide 'Foo' tab"),
actionButton("showTab"”, "Show 'Foo' tab"),
actionButton("hideMenu”, "Hide 'More' navbarMenu"),
actionButton("showMenu”, "Show 'More' navbarMenu")
),
tabPanel ("Foo”, "This is the foo tab"),
tabPanel("Bar”, "This is the bar tab"),
navbarMenu("More",
tabPanel("Table"”, "Table page"),
tabPanel("About”, "About page"),
"Even more!",
tabPanel("Email”, "Email page")

sidebarLayout 183

)
)

server <- function(input, output, session) {
observeEvent (input$hideTab, {
hideTab(inputId = "tabs"”, target = "Foo")
b))

observeEvent (input$showTab, {
showTab(inputId = "tabs"”, target = "Foo")
»

observeEvent (input$hideMenu, {
hideTab(inputld = "tabs", target = "More")

D

observeEvent (input$showMenu, {
showTab(inputId = "tabs"”, target = "More")
b))
3

shinyApp(ui, server)

}

sidebarLayout Layout a sidebar and main area

Description

Create a layout (sidebarLayout ()) with a sidebar (sidebarPanel()) and main area (mainPanel()).
The sidebar is displayed with a distinct background color and typically contains input controls. The
main area occupies 2/3 of the horizontal width and typically contains outputs.

Usage

sidebarLayout(
sidebarPanel,
mainPanel,
position = c("left”, "right"),
fluid = TRUE

sidebarPanel(..., width = 4)

mainPanel (..., width = 8)

184 sidebarLayout

Arguments

sidebarPanel The sidebarPanel() containing input controls.

mainPanel The mainPanel () containing outputs.
position The position of the sidebar relative to the main area ("left" or "right").
fluid TRUE to use fluid layout; FALSE to use fixed layout.

Output elements to include in the sidebar/main panel.

width The width of the sidebar and main panel. By default, the sidebar takes up 1/3 of
the width, and the main panel 2/3. The total width must be 12 or less.

See Also

Other layout functions: fillPage(), fixedPage(), flowLayout (), fluidPage(), navbarPage(),
splitlLayout(), verticallLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

Define UI
ui <- fluidPage(

Application title
titlePanel("Hello Shiny!"),

sidebarLayout(

Sidebar with a slider input
sidebarPanel(
sliderInput(”obs”,
"Number of observations:”,
min = 0,
max = 1000,
value = 500)
),

Show a plot of the generated distribution
mainPanel(
plotOutput(”"distPlot")
)
)
)

Server logic
server <- function(input, output) {
output$distPlot <- renderPlot({
hist(rnorm(input$obs))
D
3

sizeGrowthRatio 185

Complete app with UI and server components
shinyApp(ui, server)

}

sizeGrowthRatio Create a sizing function that grows at a given ratio

Description

Returns a function which takes a two-element vector representing an input width and height, and
returns a two-element vector of width and height. The possible widths are the base width times the
growthRate to any integer power. For example, with a base width of 500 and growth rate of 1.25,
the possible widths include 320, 400, 500, 625, 782, and so on, both smaller and larger. Sizes are
rounded up to the next pixel. Heights are computed the same way as widths.

Usage

sizeGrowthRatio(width = 400, height = 400, growthRate = 1.2)

Arguments

width, height Base width and height.

growthRate Growth rate multiplier.

See Also

This is to be used with renderCachedPlot().

Examples

f <- sizeGrowthRatio(500, 500, 1.25)
f(c(400, 400))
f(c(500, 500))
f(c(530, 550))
f(c(625, 700))

186

sliderInput

sliderInput

Slider Input Widget

Description

Constructs a slider widget to select a numeric value from a range.

Usage

sliderInput(

)

inputlId,
label,

min,

max,

value,

step = NULL,
round = FALSE,
format = NULL,
locale = NULL,

ticks = TRUE,
animate = FALSE,
width = NULL,
sep = ",",

pre = NULL,

post = NULL,

timeFormat = NULL,
timezone = NULL,
dragRange = TRUE

animationOptions(

)

interval = 1000,
loop = FALSE,
playButton = NULL,

pauseButton = NULL

Arguments

inputId
label
min

max

value

The input slot that will be used to access the value.
Display label for the control, or NULL for no label.
The minimum value (inclusive) that can be selected.

The maximum value (inclusive) that can be selected.

The initial value of the slider. A numeric vector of length one will create a

regular slider; a numeric vector of length two will create a double-ended range
slider. A warning will be issued if the value doesn’t fit between min and max.

sliderInput

step

round

format
locale

ticks

animate

width
sep
pre
post

timeFormat

timezone

dragRange

interval
loop
playButton

pauseButton

Server value

187

Specifies the interval between each selectable value on the slider (if NULL, a
heuristic is used to determine the step size). If the values are dates, step is in
days; if the values are times (POSIXt), step is in seconds.

TRUE to round all values to the nearest integer; FALSE if no rounding is desired;
or an integer to round to that number of digits (for example, 1 will round to the
nearest 10, and -2 will round to the nearest .01). Any rounding will be applied
after snapping to the nearest step.

Deprecated.
Deprecated.

FALSE to hide tick marks, TRUE to show them according to some simple heuris-
tics.

TRUE to show simple animation controls with default settings; FALSE not to; or a
custom settings list, such as those created using animationOptions().

The width of the input, e.g. '400px "', or '100%'; see validateCssUnit().
Separator between thousands places in numbers.

A prefix string to put in front of the value.

A suffix string to put after the value.

Only used if the values are Date or POSIXt objects. A time format string, to be
passed to the Javascript strftime library. See https://github.com/samsonjs/
strftime for more details. The allowed format specifications are very similar,
but not identical, to those for R’s base: :strftime() function. For Dates, the
default is "%F" (like "2015-07-01"), and for POSIXt, the default is "%F %T"
(like "2015-07-01 15:32:10").

Only used if the values are POSIXt objects. A string specifying the time zone
offset for the displayed times, in the format "+HHMM" or "-HHMM". If NULL (the
default), times will be displayed in the browser’s time zone. The value "+0000"
will result in UTC time.

This option is used only if it is a range slider (with two values). If TRUE (the
default), the range can be dragged. In other words, the min and max can be
dragged together. If FALSE, the range cannot be dragged.

The interval, in milliseconds, between each animation step.
TRUE to automatically restart the animation when it reaches the end.

Specifies the appearance of the play button. Valid values are a one-element
character vector (for a simple text label), an HTML tag or list of tags (using
tag() and friends), or raw HTML (using HTML()).

Similar to playButton, but for the pause button.

A number, or in the case of slider range, a vector of two numbers.

https://github.com/samsonjs/strftime
https://github.com/samsonjs/strftime

188 snapshotExclude

See Also

updateSliderInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(),dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
submitButton(), textArealnput(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

ui <- fluidPage(

sliderInput(”obs”, "Number of observations:",
min = @, max = 1000, value = 500

)?

plotOutput("distPlot")

)

Server logic
server <- function(input, output) {
output$distPlot <- renderPlot({
hist(rnorm(input$obs))
i)
3

Complete app with UI and server components
shinyApp(ui, server)

}

snapshotExclude Mark an output to be excluded from test snapshots

Description

Mark an output to be excluded from test snapshots

Usage

snapshotExclude(x)

Arguments

X A reactive which will be assigned to an output.

snapshotPreprocessInput 189

snapshotPreprocessInput
Add a function for preprocessing an input before taking a test snapshot

Description

Add a function for preprocessing an input before taking a test snapshot

Usage

snapshotPreprocessInput(inputId, fun, session = getDefaultReactiveDomain())

Arguments
inputId Name of the input value.
fun A function that takes the input value and returns a modified value. The returned
value will be used for the test snapshot.
session A Shiny session object.

snapshotPreprocessOutput

Add a function for preprocessing an output before taking a test snap-
shot

Description

Add a function for preprocessing an output before taking a test snapshot

Usage

shapshotPreprocessOutput (x, fun)

Arguments
X A reactive which will be assigned to an output.
fun A function that takes the output value as an input and returns a modified value.

The returned value will be used for the test snapshot.

190 splitLayout

splitLayout Split layout

Description

Lays out elements horizontally, dividing the available horizontal space into equal parts (by default).

Usage
splitLayout(..., cellWidths = NULL, cellArgs = list())
Arguments
Unnamed arguments will become child elements of the layout. Named argu-
ments will become HTML attributes on the outermost tag.
cellWidths Character or numeric vector indicating the widths of the individual cells. Recy-
cling will be used if needed. Character values will be interpreted as CSS lengths
(see validateCssUnit()), numeric values as pixels.
cellArgs Any additional attributes that should be used for each cell of the layout.
See Also

Other layout functions: fillPage(), fixedPage(), flowLayout (), fluidPage(), navbarPage(),
sidebarLayout(), verticallLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

Server code used for all examples

server <- function(input, output) {
output$plotl <- renderPlot(plot(cars))
output$plot2 <- renderPlot(plot(pressure))
output$plot3 <- renderPlot(plot(AirPassengers))

3

Equal sizing

ui <- splitLayout(
plotOutput(”plot1”),
plotOutput(”plot2")

)

shinyApp(ui, server)

Custom widths
ui <- splitLayout(cellWidths = c("25%", "75%"),
plotOutput(”plot1”),

stopApp 191

plotOutput(”plot2”)
)

shinyApp(ui, server)

All cells at 300 pixels wide, with cell padding
and a border around everything
ui <- splitLayout(
style = "border: 1px solid silver;",
cellWidths = 300,
cellArgs = list(style = "padding: 6px"),
plotOutput(”plot1”),
plotOutput(”plot2"),
plotOutput(”plot3”)
)
shinyApp(ui, server)

}

stopApp Stop the currently running Shiny app

Description

Stops the currently running Shiny app, returning control to the caller of runApp().

Usage

stopApp(returnValue = invisible())

Arguments
returnValue The value that should be returned from runApp ().
submitButton Create a submit button
Description

Create a submit button for an app. Apps that include a submit button do not automatically update
their outputs when inputs change, rather they wait until the user explicitly clicks the submit button.
The use of submitButton is generally discouraged in favor of the more versatile actionButton()
(see details below).

Usage

submitButton(text = "Apply Changes”, icon = NULL, width = NULL)

192 submitButton

Arguments

text Button caption

icon Optional icon() to appear on the button

width The width of the button, e.g. '400px ', or '100%"'; see validateCssUnit().
Details

Submit buttons are unusual Shiny inputs, and we recommend using actionButton() instead of
submitButton when you want to delay a reaction. See this article for more information (including
a demo of how to "translate" code using a submitButton to code using an actionButton).

In essence, the presence of a submit button stops all inputs from sending their values automatically
to the server. This means, for instance, that if there are rwo submit buttons in the same app, clicking
either one will cause all inputs in the app to send their values to the server. This is probably not what
you’d want, which is why submit button are unwieldy for all but the simplest apps. There are other
problems with submit buttons: for example, dynamically created submit buttons (for example, with
renderUI() or insertUI()) will not work.

Value

A submit button that can be added to a UI definition.

See Also

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(),dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), textArealnput(), textInput(), varSelectInput()

Examples

if (interactive()) {

shinyApp(
ui = basicPage(
numericInput(”num”, label = "Make changes”, value = 1),
submitButton("Update View”, icon("refresh")),
helpText("When you click the button above, you should see”,
"the output below update to reflect the value you",
"entered at the top:"),
verbatimTextOutput(”value")
),

server = function(input, output) {

submit buttons do not have a value of their own,

they control when the app accesses values of other widgets.
input$num is the value of the number widget.

output$value <- renderPrint({ input$num })

http://shiny.rstudio.com/articles/action-buttons.html

tableOutput 193

tableOutput Create a table output element

Description

Render a renderTable() or renderDataTable() within an application page. renderTable uses a
standard HTML table, while renderDataTable uses the DataTables Javascript library to create an
interactive table with more features.

Usage

tableOutput (outputId)

dataTableOutput (outputId)

Arguments

outputId output variable to read the table from

Value

A table output element that can be included in a panel

See Also

renderTable(), renderDataTable().

Examples

Only run this example in interactive R sessions
if (interactive()) {
table example
shinyApp(
ui = fluidPage(
fluidRow(
column(12,
tableOutput ('table')
)
)
),
server = function(input, output) {
output$table <- renderTable(iris)
}
)

DataTables example
shinyApp(
ui = fluidPage(

194 tabPanel

fluidRow(
column(12,
dataTableOutput('table"')
)
)
),
server = function(input, output) {
output$table <- renderDataTable(iris)
}
)
3

tabPanel Create a tab panel

Description

Create a tab panel

Usage
tabPanel(title, ..., value = title, icon = NULL)
tabPanelBody(value, ..., icon = NULL)
Arguments
title Display title for tab
Ul elements to include within the tab
value The value that should be sent when tabsetPanel reports that this tab is selected.
If omitted and tabsetPanel has an id, then the title will be used.
icon Optional icon to appear on the tab. This attribute is only valid when using a
tabPanel within a navbarPage().
Value

A tab that can be passed to tabsetPanel ()

Functions

* tabPanel: Create a tab panel that can be included within a tabsetPanel () or anavbarPage().

* tabPanelBody: Create a tab panel that drops the title argument. This function should be used
within tabsetPanel(type = "hidden"). See tabsetPanel () for example usage.

See Also

tabsetPanel ()

tabsetPanel 195

Examples

Show a tabset that includes a plot, summary, and
table view of the generated distribution
mainPanel(
tabsetPanel (
tabPanel ("Plot"”, plotOutput(”plot”)),
tabPanel("Summary”, verbatimTextOutput(”summary")),
tabPanel("Table"”, tableOutput(”table"))

)
)

tabsetPanel Create a tabset panel

Description

Create a tabset that contains tabPanel() elements. Tabsets are useful for dividing output into
multiple independently viewable sections.

Usage

tabsetPanel(

id = NULL,

selected = NULL,

type = c("tabs"”, "pills”, "hidden"),
position = NULL

)
Arguments
tabPanel () elements to include in the tabset
id If provided, you can use input$id in your server logic to determine which of the
current tabs is active. The value will correspond to the value argument that is
passed to tabPanel().
selected The value (or, if none was supplied, the title) of the tab that should be selected
by default. If NULL, the first tab will be selected.
type "tabs" Standard tab look
"pills"” Selected tabs use the background fill color
"hidden" Hides the selectable tabs. Use type = "hidden" in conjunction with
tabPanelBody () and updateTabsetPanel () to control the active tab via
other input controls. (See example below)
position This argument is deprecated; it has been discontinued in Bootstrap 3.
Value

A tabset that can be passed to mainPanel ()

196 testServer

See Also

tabPanel (), updateTabsetPanel (), insertTab(), showTab()

Examples

Show a tabset that includes a plot, summary, and
table view of the generated distribution
mainPanel(
tabsetPanel(
tabPanel ("Plot"”, plotOutput(”plot”)),
tabPanel ("Summary”, verbatimTextOutput(”summary”)),
tabPanel("Table"”, tableOutput(”table”))
)
)

ui <- fluidPage(
sidebarLayout(
sidebarPanel(
radioButtons(”controller”, "Controller”, 1:3, 1)
),
mainPanel(
tabsetPanel(
id = "hidden_tabs",
Hide the tab values.
Can only switch tabs by using ‘updateTabsetPanel()*
type = "hidden”,
tabPanelBody("panell”, "Panel 1 content”),
tabPanelBody("panel2”, "Panel 2 content"”),
tabPanelBody("panel3”, "Panel 3 content")

)
)
)

server <- function(input, output, session) {
observeEvent (input$controller, {
updateTabsetPanel(session, "hidden_tabs"”, selected = paste@("panel”, input$controller))
b))

3

if (interactive()) {
shinyApp(ui, server)

}

testServer Reactive testing for Shiny server functions and modules

Description

A way to test the reactive interactions in Shiny applications. Reactive interactions are defined in the
server function of applications and in modules.

testServer 197
Usage
testServer(app = NULL, expr, args = list(), session = MockShinySession$new())
Arguments
app The path to an application or module to test. In addition to paths, applica-
tions may be represented by any object suitable for coercion to an appObj by
as.shiny.appobj. Application server functions must include a session argu-
ment in order to be tested. If app is NULL or not supplied, the nearest enclosing
directory that is a Shiny app, starting with the current directory, is used.
expr Test code containing expectations. The test expression will run in the server
function environment, meaning that the parameters of the server function (e.g.
input, output, and session) will be available along with any other values
created inside of the server function.
args Additional arguments to pass to the module function. If app is a module, and no
id argument is provided, one will be generated and supplied automatically.
session The MockShinySession object to use as the reactive domain. The same session
object is used as the domain both during invocation of the server or module
under test and during evaluation of expr.
Examples
server <- function(id, multiplier = 2, prefix = "I am ") {

moduleServer(id, function(input, output, session) {
myreactive <- reactive({
input$x * multiplier

D

output$txt <- renderText({
paste@(prefix, myreactive())

D
»
3

testServer(server, args = list(multiplier = 2), {
session$setInputs(x = 1)
You're also free to use third-party
testing packages like testthat:
expect_equal(myreactive(), 2)
stopifnot(myreactive() == 2)
stopifnot(output$txt == "I am 2")

session$setInputs(x = 2)

stopifnot(myreactive() == 4)

stopifnot(output$txt == "I am 4")

Any additional arguments, below, are passed along to the module.

b

198

textArealnput

textArealnput

Create a textarea input control

Description

Create a textarea input control for entry of unstructured text values.

Usage

textArealnp
inputld,
label,
value =
width = N

n

ut(

n
’

ULL,

height = NULL,

cols = NU
rows = NU
placehold
resize =

Arguments
inputId
label
value
width
height

cols

rows

placeholder

resize

Value

LL,
LL,
er =
NULL

NULL,

The input slot that will be used to access the value.

Display label for the control, or NULL for no label.

Initial value.

The width of the input, e.g. '400px "', or '100%'; see validateCssUnit().
The height of the input, e.g. '40@px ', or '100%"; see validateCssUnit().

Value of the visible character columns of the input, e.g. 80. This argument will
only take effect if there is not a CSS width rule defined for this element; such a
rule could come from the width argument of this function or from a containing
page layout such as fluidPage().

The value of the visible character rows of the input, e.g. 6. If the height
argument is specified, height will take precedence in the browser’s rendering.

A character string giving the user a hint as to what can be entered into the con-
trol. Internet Explorer 8 and 9 do not support this option.

Which directions the textarea box can be resized. Can be one of "both”, "none”,
"vertical”, and "horizontal"”. The default, NULL, will use the client browser’s
default setting for resizing textareas.

A textarea input control that can be added to a Ul definition.

textInput 199

Server value

nn

A character string of the text input. The default value is "" unless value is provided.

See Also

updateTextArealnput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), submitButton(), textInput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
textArealnput(”caption”, "Caption”, "Data Summary”, width = "1000px"),
verbatimTextOutput(”value")

)

server <- function(input, output) {
output$value <- renderText({ input$caption })

3

shinyApp(ui, server)

}

textInput Create a text input control

Description

Create an input control for entry of unstructured text values

Usage

textInput(inputld, label, value = "", width = NULL, placeholder = NULL)
Arguments

inputId The input slot that will be used to access the value.

label Display label for the control, or NULL for no label.

value Initial value.

width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().

placeholder A character string giving the user a hint as to what can be entered into the con-

trol. Internet Explorer 8 and 9 do not support this option.

200 textOutput

Value

A text input control that can be added to a Ul definition.

Server value

nn

A character string of the text input. The default value is "" unless value is provided.

See Also

updateTextInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), dateInput(),
dateRangelInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), submitButton(), textArealnput(), varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
textInput(”caption”, "Caption”, "Data Summary"),
verbatimTextOutput("”value")

)

server <- function(input, output) {
output$value <- renderText({ input$caption })

3

shinyApp(ui, server)

}

textOutput Create a text output element

Description

Render a reactive output variable as text within an application page. textOutput () is usually paired
with renderText () and puts regular text in <div> or ; verbatimTextOutput() is usually
paired with renderPrint () and provudes fixed-width text in a <pre>.

Usage

textOutput (outputId, container = if (inline) span else div, inline = FALSE)

verbatimTextOutput (outputId, placeholder = FALSE)

titlePanel

Arguments

outputId
container
inline

placeholder

Details

201

output variable to read the value from
a function to generate an HTML element to contain the text
use an inline (span()) or block container (div()) for the output

if the output is empty or NULL, should an empty rectangle be displayed to serve
as a placeholder? (does not affect behavior when the the output in nonempty)

In both funtions, text is HTML-escaped prior to rendering.

Value

A output element for use in UL

Examples

Only run this example in interactive R sessions
if (interactive()) {

shinyApp(

ui = basicPage(
textInput(”"txt”, "Enter the text to display below:"),
textOutput("text"),
verbatimTextOutput(”verb”)

),

server = function(input, output) {
output$text <- renderText({ input$txt })
output$verb <- renderText({ input$txt })

3
)
}

titlePanel

Create a panel containing an application title.

Description

Create a panel containing an application title.

Usage

titlePanel(title, windowTitle = title)

Arguments

title

windowTitle

An application title to display
The title that should be displayed by the browser window.

202 updateActionButton

Details
Calling this function has the side effect of including a title tag within the head. You can also
specify a page title explicitly using the title parameter of the top-level page function.

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
titlePanel("Hello Shiny!")

)
shinyApp(ui, server = function(input, output) { })
3
updateActionButton Change the label or icon of an action button on the client
Description

Change the label or icon of an action button on the client

Usage
updateActionButton(session, inputId, label = NULL, icon = NULL)

updateActionLink(session, inputId, label = NULL, icon = NULL)

Arguments

session The session object passed to function given to shinyServer.

inputId The id of the input object.

label The label to set for the input object.

icon The icon to set for the input object. To remove the current icon, use icon=character(0).
Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput () and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

updateActionButton 203

See Also

actionButton()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
actionButton("update”, "Update other buttons and link"),

brQ,
actionButton("goButton”, "Go"),
br(),
actionButton("goButton2", "Go 2", icon = icon("area-chart")),
brQ,
actionButton("goButton3”, "Go 3"),
brQ,
actionLink("goLink”, "Go Link")
)
server <- function(input, output, session) {
observe({
req(input$update)

Updates goButton's label and icon
updateActionButton(session, "goButton”,
label = "New label”,
icon = icon("calendar"))

Leaves goButton2's label unchaged and

removes its icon

updateActionButton(session, "goButton2”,
icon = character(0))

Leaves goButton3's icon, if it exists,

unchaged and changes its label

updateActionButton(session, "goButton3”,
label = "New label 3")

Updates goLink's label and icon
updateActionButton(session, "goLink",
label = "New link label”,
icon = icon("1link"))
D)
3

shinyApp(ui, server)

3

204

updateCheckboxGrouplnput

updateCheckboxGroupInput

Change the value of a checkbox group input on the client

Description

Change the value of a checkbox group input on the client

Usage

updateCheckboxGroupInput(

session,
inputld,

label = NULL,
NULL,

choices =

selected = NULL,
inline = FALSE,

choiceNames
choiceValues

Arguments
session
inputId
label

choices

selected
inline

choiceNames

choiceValues

NULL,

= NULL

The session object passed to function given to shinyServer.
The id of the input object.
The label to set for the input object.

List of values to show checkboxes for. If elements of the list are named then that
name rather than the value is displayed to the user. If this argument is provided,
then choiceNames and choiceValues must not be provided, and vice-versa.
The values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

The values that should be initially selected, if any.
If TRUE, render the choices inline (i.e. horizontally)

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of Ul object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows

updateCheckboxGrouplnput 205

any type of Ul object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

checkboxGroupInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
p("The first checkbox group controls the second”),
checkboxGroupInput(”inCheckboxGroup”, "Input checkbox"”,
c("Item A", "Item B", "Item C")),
checkboxGroupInput ("”inCheckboxGroup2”, "Input checkbox 2",
c("Item A", "Item B", "Item C"))
)

server <- function(input, output, session) {
observe({
x <= input$inCheckboxGroup

Can use character(@) to remove all choices
if (is.null(x))
x <- character (@)

Can also set the label and select items

updateCheckboxGroupInput(session, "inCheckboxGroup2”,
label = paste("Checkboxgroup label”, length(x)),
choices = x,
selected = x

)

D)
}

shinyApp(ui, server)

206 updateCheckboxInput

updateCheckboxInput Change the value of a checkbox input on the client

Description

Change the value of a checkbox input on the client

Usage
updateCheckboxInput(session, inputId, label = NULL, value = NULL)

Arguments
session The session object passed to function given to shinyServer.
inputId The id of the input object.
label The label to set for the input object.
value The value to set for the input object.
Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(0).

See Also

checkboxInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”controller”, "Controller”, @, 1, 0, step = 1),
checkboxInput("”inCheckbox"”, "Input checkbox™)

)

updateDatelInput 207
server <- function(input, output, session) {
observe({
TRUE if input$controller is odd, FALSE if even.
x_even <- input$controller %% 2 == 1
updateCheckboxInput(session, "inCheckbox"”, value = x_even)
b))
3
shinyApp(ui, server)
3
updateDatelnput Change the value of a date input on the client
Description
Change the value of a date input on the client
Usage
updateDatelInput(
session,
inputld,
label = NULL,
value = NULL,
min = NULL,
max = NULL
)
Arguments
session The session object passed to function given to shinyServer.
inputId The id of the input object.
label The label to set for the input object.
value The desired date value. Either a Date object, or a string in yyyy-mm-dd format.
Supply NA to clear the date.
min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.
max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd

format.

208 updateDateRangelnput

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput () and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

dateInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”"n”, "Day of month”, 1, 30, 10),
dateInput(”inDate”, "Input date”)

)

server <- function(input, output, session) {
observe({
date <- as.Date(paste@(”2013-04-", input$n))
updateDateInput(session, "inDate”,
label = paste("Date label”, input$n),
value = date,
min date - 3,
max date + 3
)
D)
3

shinyApp(ui, server)
3

updateDateRangeInput Change the start and end values of a date range input on the client

Description

Change the start and end values of a date range input on the client

updateDateRangelnput 209

Usage
updateDateRangeInput
session,
inputld,
label = NULL,
start = NULL,
end = NULL,
min = NULL,
max = NULL
)
Arguments
session The session object passed to function given to shinyServer.
inputId The id of the input object.
label The label to set for the input object.
start The start date. Either a Date object, or a string in yyyy-mm-dd format. Supplying
NA clears the start date.
end The end date. Either a Date object, or a string in yyyy-mm-dd format. Supplying
NA clears the end date.
min The minimum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.
max The maximum allowed date. Either a Date object, or a string in yyyy-mm-dd
format.
Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

dateRangeInput()

210

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”"n”, "Day of month”, 1, 30, 10),
dateRangelInput("”inDateRange"”, "Input date range")
)

server <- function(input, output, session) {
observe({
date <- as.Date(paste@("2013-04-", input$n))

updateDateRangeInput(session, "inDateRange",
label = paste(”"Date range label”, input$n),
start = date - 1,
end = date + 1,
min = date - 5,
max = date + 5

updateNumericlnput

)
D)
3
shinyApp(ui, server)
3
updateNumericInput Change the value of a number input on the client
Description

Change the value of a number input on the client

Usage

updateNumericInput(

session,

inputld,

label = NULL,
value = NULL,

min = NULL,

max = NULL,

step = NULL

Arguments

session The session object passed to function given to shinyServer.

updateNumericlnput 211

inputId The id of the input object.
label The label to set for the input object.
value The value to set for the input object.
min Minimum value.
max Maximum value.
step Step size.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

numericInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”controller”, "Controller”, @, 20, 10),
numericInput(”inNumber"”, "Input number"”, @),
numericInput(”inNumber2"”, "Input number 2", @)

)
server <- function(input, output, session) {

observeEvent (input$controller, {
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

updateNumericInput(session, "inNumber”, value = x)

updateNumericInput(session, "inNumber2”,
label = paste(”Number label ", x),
value = x, min = x-10, max = x+10, step = 5)

D

212 updateQueryString

shinyApp(ui, server)

}

updateQueryString Update URL in browser’s location bar

Description

This function updates the client browser’s query string in the location bar. It typically is called from
an observer. Note that this will not work in Internet Explorer 9 and below.

Usage
updateQueryString(
queryString,
mode = c("replace”, "push"),
session = getDefaultReactiveDomain()
)
Arguments
queryString The new query string to show in the location bar.
mode When the query string is updated, should the the current history entry be re-
placed (default), or should a new history entry be pushed onto the history stack?
The former should only be used in a live bookmarking context. The latter is use-
ful if you want to navigate between states using the browser’s back and forward
buttons. See Examples.
session A Shiny session object.
Details

For mode = "push”, only three updates are currently allowed:

1. the query string (format: ?parami=vali¶m2=val?2)
2. the hash (format: #hash)
3. both the query string and the hash (format: ?parami=vali¶m2=val2#hash)

In other words, if mode = "push”, the queryString must start with either ? or with #.

A technical curiosity: under the hood, this function is calling the HTMLS history API (which
is where the names for the mode argument come from). When mode = "replace”, the function
called is window.history.replaceState(null,null,queryString). When mode = "push”, the
function called is window.history.pushState(null,null, queryString).

See Also

enableBookmarking(), getQueryString()

updateQueryString 213

Examples

Only run these examples in interactive sessions
if (interactive()) {

App 1: Doing "live" bookmarking
Update the browser's location bar every time an input changes.
This should not be used with enableBookmarking("server"),
because that would create a new saved state on disk every time
the user changes an input.
enableBookmarking("url”)
shinyApp(
ui = function(req) {
fluidPage(
textInput("txt", "Text"),
checkboxInput("chk", "Checkbox")

)
1,
server = function(input, output, session) {
observe({
Trigger this observer every time an input changes
reactiveValuesTolList(input)
session$doBookmark()
b))

onBookmarked (function(url) {
updateQueryString(url)
)]
}
)

App 2: Printing the value of the query string
(Use the back and forward buttons to see how the browser
keeps a record of each state)
shinyApp(
ui = fluidPage(
textInput(”txt”, "Enter new query string”),
helpText("Format: ?paraml=valil¶m2=val2"),
actionButton("go"”, "Update"),
hrQ),
verbatimTextOutput("query")
),
server = function(input, output, session) {
observeEvent (input$go, {
updateQueryString(input$txt, mode = "push")
b))
output$query <- renderText({
query <- getQueryString()
queryText <- paste(names(query), query,
sep = "=", collapse=", ")
paste("Your query string is:\n", queryText)
b))
3
)

214 updateRadioButtons

updateRadioButtons Change the value of a radio input on the client

Description

Change the value of a radio input on the client

Usage

updateRadioButtons(
session,
inputld,
label = NULL,
choices = NULL,
selected = NULL,
inline = FALSE,
choiceNames = NULL,
choiceValues = NULL

)
Arguments

session The session object passed to function given to shinyServer.

inputId The id of the input object.

label The label to set for the input object.

choices List of values to select from (if elements of the list are named then that name
rather than the value is displayed to the user). If this argument is provided, then
choiceNames and choiceValues must not be provided, and vice-versa. The
values should be strings; other types (such as logicals and numbers) will be
coerced to strings.

selected The initially selected value (if not specified then defaults to the first value)

inline If TRUE, render the choices inline (i.e. horizontally)

choiceNames List of names and values, respectively, that are displayed to the user in the app

and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of
using both of these over a named list for choices is that choiceNames allows
any type of Ul object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

choiceValues List of names and values, respectively, that are displayed to the user in the app
and correspond to the each choice (for this reason, choiceNames and choiceValues
must have the same length). If either of these arguments is provided, then the
other must be provided and choices must not be provided. The advantage of

updateRadioButtons 215

using both of these over a named list for choices is that choiceNames allows
any type of Ul object to be passed through (tag objects, icons, HTML code, ...),
instead of just simple text. See Examples.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

radioButtons()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
p("The first radio button group controls the second”),

radioButtons("”inRadioButtons”, "Input radio buttons”,
c("Item A", "Item B", "Item C")),
radioButtons("”inRadioButtons2", "Input radio buttons 2",

c("Item A", "Item B", "Item C"))
)

server <- function(input, output, session) {
observe({
x <- input$inRadioButtons

Can also set the label and select items

updateRadioButtons(session, "inRadioButtons2",
label = paste("radioButtons label”, x),
choices = x,
selected = x

)

1))
3

shinyApp(ui, server)

}

216 updateSelectInput
updateSelectInput Change the value of a select input on the client
Description
Change the value of a select input on the client
Usage
updateSelectInput(
session,
inputlId,
label = NULL,
choices = NULL,
selected = NULL
)
updateSelectizeInput(
session,
inputld,
label = NULL,
choices = NULL,
selected = NULL,
options = list(),
server = FALSE
)
updateVarSelectInput(
session,
inputlId,
label = NULL,
data = NULL,
selected = NULL
)
updateVarSelectizeInput(
session,
inputlId,
label = NULL,
data = NULL,
selected = NULL,
options = list(),
server = FALSE
)
Arguments

session The session object passed to function given to shinyServer.

updateSelectInput

inputId
label

choices

selected

options

server

data

Details

217

The id of the input object.
The label to set for the input object.

List of values to select from. If elements of the list are named, then that name —
rather than the value — is displayed to the user. It’s also possible to group related
inputs by providing a named list whose elements are (either named or unnamed)
lists, vectors, or factors. In this case, the outermost names will be used as the
group labels (leveraging the <optgroup> HTML tag) for the elements in the
respective sublist. See the example section for a small demo of this feature.

The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.

A list of options. See the documentation of selectize.js for possible options
(character option values inside base: :I() will be treated as literal JavaScript
code; see renderDataTable() for details).

whether to store choices on the server side, and load the select options dynam-
ically on searching, instead of writing all choices into the page at once (i.e.,
only use the client-side version of selectize.js)

A data frame. Used to retrieve the column names as choices for a selectInput()

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished

running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

selectInput() varSelectInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(

p("The checkbox group controls the select input"”),
checkboxGroupInput (”inCheckboxGroup”, "Input checkbox"”,
c("Item A", "Item B", "Item C")),
selectInput(”inSelect”, "Select input”,
c("Item A", "Item B", "Item C"))

218

)

server <- function(input, output, session) {
observe({
x <= input$inCheckboxGroup

Can use character(@) to remove all choices
if (is.null(x))
x <- character (@)

Can also set the label and select items

updateSelectInput(session, "inSelect”,
label = paste("Select input label”, length(x)),
choices = x,
selected = tail(x, 1)

)

D)
3

shinyApp(ui, server)

}

updateSliderInput

updateSliderInput Update Slider Input Widget

Description

Change the value of a slider input on the client.

Usage

updateSliderInput(
session,
inputld,
label = NULL,
value = NULL,
min = NULL,
max = NULL,
step = NULL,
timeFormat = NULL,
timezone = NULL

Arguments

session The session object passed to function given to shinyServer.

inputId The id of the input object.
label The label to set for the input object.

updateSliderInput

value The value to set for the input object.

min Minimum value.

max Maximum value.

step Step size.

timeFormat Date and POSIXt formatting.

timezone The timezone offset for POSIXt objects.
Details

219

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For

example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also
sliderInput()
Examples
Only run this example in interactive R sessions
if (interactive()) {
shinyApp(
ui = fluidPage(
sidebarlLayout(
sidebarPanel(
p("The first slider controls the second”),
sliderInput(”control”, "Controller:", min=0, max=20, value=10,
step=1),
sliderInput(”"receive”, "Receiver:"”, min=0, max=20, value=10,
step=1)
),
mainPanel()
)
),
server = function(input, output, session) {
observe({

val <- input$control
Control the value, min, max, and step.
Step size is 2 when input value is even; 1 when value is odd.
updateSliderInput(session, "receive"”, value = val,
min = floor(val/2), max = val+4, step = (val+1)%%2 + 1)
1))

220 updateTabsetPanel

updateTabsetPanel Change the selected tab on the client

Description

Change the selected tab on the client

Usage

updateTabsetPanel (session, inputld, selected = NULL)
updateNavbarPage(session, inputIld, selected = NULL)

updateNavlistPanel(session, inputld, selected = NULL)

Arguments
session The session object passed to function given to shinyServer.
inputId The id of the tabsetPanel, navlistPanel, or navbarPage object.
selected The name of the tab to make active.

See Also

tabsetPanel (), navlistPanel (), navbarPage()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(sidebarlLayout(
sidebarPanel(
sliderInput(”controller”, "Controller”, 1, 3, 1)
),
mainPanel(
tabsetPanel(id = "inTabset”,
tabPanel(title = "Panel 1", value = "panell”, "Panel 1 content"”),
tabPanel(title = "Panel 2", value = "panel2"”, "Panel 2 content"),
tabPanel(title = "Panel 3", value = "panel3”, "Panel 3 content"”)
)
)
))

server <- function(input, output, session) {
observeEvent (input$controller, {

updateTextArealnput

updateTabsetPanel (session, "inTabset”,
selected = paste@("panel”, input$controller)

221

)
»
3
shinyApp(ui, server)
3
updateTextArealnput Change the value of a textarea input on the client
Description

Change the value of a textarea input on the client

Usage
updateTextArealnput(
session,
inputld,
label = NULL,
value = NULL,
placeholder = NULL
)
Arguments
session The session object passed to function given to shinyServer.
inputId The id of the input object.
label The label to set for the input object.
value The value to set for the input object.
placeholder The placeholder to set for the input object.
Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished

running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For

example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

222 updateTextInput

See Also

textArealnput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”controller”, "Controller”, @, 20, 10),
textArealnput("inText"”, "Input textarea”),
textArealnput("inText2", "Input textarea 2")

)

server <- function(input, output, session) {
observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

This will change the value of input$inText, based on x
updateTextArealnput(session, "inText"”, value = paste(”New text”, x))

Can also set the label, this time for input$inText2
updateTextArealnput(session, "inText2",

label = paste(”New label”, x),

value = paste(”New text”, x))

D)
}
shinyApp(ui, server)
}
updateTextInput Change the value of a text input on the client
Description

Change the value of a text input on the client

Usage

updateTextInput(
session,
inputld,
label = NULL,
value = NULL,
placeholder = NULL

updateTextInput 223

Arguments
session The session object passed to function given to shinyServer.
inputId The id of the input object.
label The label to set for the input object.
value The value to set for the input object.

placeholder The placeholder to set for the input object.

Details

The input updater functions send a message to the client, telling it to change the settings of an input
object. The messages are collected and sent after all the observers (including outputs) have finished
running.

The syntax of these functions is similar to the functions that created the inputs in the first place. For
example, numericInput() and updateNumericInput() take a similar set of arguments.

Any arguments with NULL values will be ignored; they will not result in any changes to the input
object on the client.

For radioButtons(), checkboxGroupInput() and selectInput(), the set of choices can be
cleared by using choices=character(@). Similarly, for these inputs, the selected item can be
cleared by using selected=character(9).

See Also

textInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(
sliderInput(”controller”, "Controller”, @, 20, 10),
textInput(”inText”, "Input text"),
textInput("inText2", "Input text 2")

)

server <- function(input, output, session) {
observe({
We'll use the input$controller variable multiple times, so save it as x
for convenience.
x <- input$controller

This will change the value of input$inText, based on x
updateTextInput(session, "inText”, value = paste("New text”, x))

Can also set the label, this time for input$inText2
updateTextInput(session, "inText2",

label = paste(”New label”, x),

value = paste(”New text”, x))

224 validate

»
}

shinyApp(ui, server)

}

urlModal Generate a modal dialog that displays a URL

Description

The modal dialog generated by urlModal will display the URL in a textarea input, and the URL
text will be selected so that it can be easily copied. The result from urlModal should be passed to
the showModal () function to display it in the browser.

Usage

urlModal(url, title = "Bookmarked application link"”, subtitle = NULL)

Arguments
url A URL to display in the dialog box.
title A title for the dialog box.
subtitle Text to display underneath URL.
validate Validate input values and other conditions
Description

For an output rendering function (e.g. renderPlot()), you may need to check that certain input
values are available and valid before you can render the output. validate gives you a convenient
mechanism for doing so.

Usage

validate(..., errorClass = character(@))

need(expr, message = paste(label, "must be provided”), label)

validate 225

Arguments
A list of tests. Each test should equal NULL for success, FALSE for silent failure,
or a string for failure with an error message.
errorClass A CSS class to apply. The actual CSS string will have shiny-output-error-
prepended to this value.
expr An expression to test. The condition will pass if the expression meets the con-
ditions spelled out in Details.
message A message to convey to the user if the validation condition is not met. If no
message is provided, one will be created using label. To fail with no message,
use FALSE for the message.
label A human-readable name for the field that may be missing. This parameter is not
needed if message is provided, but must be provided otherwise.
Details

The validate function takes any number of (unnamed) arguments, each of which represents a
condition to test. If any of the conditions represent failure, then a special type of error is signaled
which stops execution. If this error is not handled by application-specific code, it is displayed to the
user by Shiny.

An easy way to provide arguments to validate is to use the need function, which takes an expres-
sion and a string; if the expression is considered a failure, then the string will be used as the error
message. The need function considers its expression to be a failure if it is any of the following:

* FALSE

* NULL

* An empty atomic vector

* An atomic vector that contains only missing values

* A logical vector that contains all FALSE or missing values
* An object of class "try-error”

* A value that represents an unclicked actionButton()

If any of these values happen to be valid, you can explicitly turn them to logical values. For ex-
ample, if you allow NA but not NULL, you can use the condition !is.null(input$foo), because
!is.null(NA) == TRUE.

If you need validation logic that differs significantly from need, you can create other validation test
functions. A passing test should return NULL. A failing test should return an error message as a
single-element character vector, or if the failure should happen silently, FALSE.

Because validation failure is signaled as an error, you can use validate in reactive expressions, and
validation failures will automatically propagate to outputs that use the reactive expression. In other
words, if reactive expression a needs input$x, and two outputs use a (and thus depend indirectly
on input$x), it’s not necessary for the outputs to validate input$x explicitly, as long as a does
validate it.

226

Examples

Only run examples
if (interactive()) {
options(device.ask.d

ui <- fluidPage(
checkboxGroupInput
selectizeInput('in
plotOutput('plot')
)

server <- function(i
output$plot <- ren
validate(
need(input$ini
need(input$in2
)
plot(1:10, main
D)
3

shinyApp(ui, server)

}

varSelectInput

in interactive R sessions

efault = FALSE)

('in1',
2', 'Select a state', choices

'Check some letters', choices = head(LETTERS)),
state.name),

nput, output) {
derPlot ({

'Check at least one letter!'),
"', 'Please choose a state.')

’

)

—

= paste(c(input$inl, input$in2), collapse D))

’

varSelectInput

Select variables from a data frame

Description

Create a select list that can be used to choose a single or multiple items from the column names of

a data frame.

Usage

varSelectInput(
inputld,
label,
data,
selected = NULL,
multiple
selectize
width = NULL,
size = NULL

varSelectizeInput(inputld,

FALSE,
TRUE,

., options = NULL, width = NULL)

varSelectInput 227

Arguments
inputId The input slot that will be used to access the value.
label Display label for the control, or NULL for no label.
data A data frame. Used to retrieve the column names as choices for a selectInput()
selected The initially selected value (or multiple values if multiple = TRUE). If not spec-
ified then defaults to the first value for single-select lists and no values for mul-
tiple select lists.
multiple Is selection of multiple items allowed?
selectize Whether to use selectize.js or not.
width The width of the input, e.g. '400px', or '100%"; see validateCssUnit().
size Number of items to show in the selection box; a larger number will result in a
taller box. Not compatible with selectize=TRUE. Normally, when multiple=FALSE,
a select input will be a drop-down list, but when size is set, it will be a box in-
stead.
Arguments passed to varSelectInput().
options A list of options. See the documentation of selectize.js for possible options
(character option values inside base: :I() will be treated as literal JavaScript
code; see renderDataTable () for details).
Details

By default, varSelectInput() and selectizeInput() use the JavaScript library selectize.js (https:
//github.com/selectize/selectize. js) to instead of the basic select input element. To use the
standard HTML select input element, use selectInput () with selectize=FALSE.

Value

A variable select list control that can be added to a UI definition.

Server value
The resulting server input value will be returned as:

* A symbol if multiple = FALSE. The input value should be used with rlang’s rlang::!!().
For example, ggplot2::aes(!!input$variable).

* Alistof symbolsif multiple = TRUE. The input value should be used with rlang’s rlang::!!!()
to expand the symbol list as individual arguments. For example, dplyr: :select(mtcars,!!!input$variabls)
which is equivalent to dplyr: : select(mtcars, ! linput$variabls[[1]], ! linput$variabls[[2]1],...,!!input$

Note

The variable selectize input created from varSelectizeInput() allows deletion of the selected
option even in a single select input, which will return an empty string as its value. This is the default

behavior of selectize.js. However, the selectize input created from selectInput(...,selectize
= TRUE) will ignore the empty string value when it is a single choice input and the empty string is
not in the choices argument. This is to keep compatibility with selectInput(...,selectize =

FALSE).

https://github.com/selectize/selectize.js
https://github.com/selectize/selectize.js

228 verticalLayout

See Also

updateSelectInput()

Other input elements: actionButton(), checkboxGroupInput(), checkboxInput(), datelnput(),
dateRangeInput(), fileInput(), numericInput(), passwordInput(), radioButtons(), selectInput(),
sliderInput(), submitButton(), textArealnput(), textInput()

Examples

Only run examples in interactive R sessions
if (interactive()) {

library(ggplot2)

single selection

shinyApp(
ui = fluidPage(
varSelectInput(”variable”, "Variable:", mtcars),
plotOutput(”data”)
),

server = function(input, output) {
output$data <- renderPlot({
ggplot(mtcars, aes(!!input$variable)) + geom_histogram()
»
}
)

multiple selections
Not run:
shinyApp(
ui = fluidPage(
varSelectInput(”variables”, "Variable:", mtcars, multiple = TRUE),
tableOutput(”data”)
),
server = function(input, output) {
output$data <- renderTable({
if (length(input$variables) == @) return(mtcars)
mtcars %>% dplyr::select(!!!input$variables)
}, rownames = TRUE)
3

)
End(Not run)

}

verticallLayout Lay out Ul elements vertically

viewer 229

Description

Create a container that includes one or more rows of content (each element passed to the container
will appear on it’s own line in the UI)

Usage

verticallLayout(..., fluid = TRUE)
Arguments

- Elements to include within the container

fluid TRUE to use fluid layout; FALSE to use fixed layout.
See Also

Other layout functions: fillPage(), fixedPage(), flowLayout (), fluidPage(), navbarPage(),
sidebarLayout(), splitLayout()

Examples

Only run examples in interactive R sessions
if (interactive()) {

ui <- fluidPage(

verticallLayout(
a(href="http://example.com/1ink1"”, "Link One"),
aChref="http://example.com/1link2", "Link Two"),
a(href="http://example.com/1ink3"”, "Link Three")

)
)
shinyApp(ui, server = function(input, output) { })
3
viewer Viewer options
Description

Use these functions to control where the gadget is displayed in RStudio (or other R environments
that emulate RStudio’s viewer pane/dialog APIs). If viewer APIs are not available in the cur-
rent R environment, then the gadget will be displayed in the system’s default web browser (see
utils::browseURL()).

Usage
paneViewer(minHeight = NULL)

dialogViewer(dialogName, width = 600, height = 600)

browserViewer (browser = getOption("browser"))

230 wellPanel

Arguments
minHeight The minimum height (in pixels) desired to show the gadget in the viewer pane. If
a positive number, resize the pane if necessary to show at least that many pixels.
If NULL, use the existing viewer pane size. If "maximize”, use the maximum
available vertical space.
dialogName The window title to display for the dialog.

width, height The desired dialog width/height, in pixels.

browser See utils: :browseURL().

Value

A function that takes a single url parameter, suitable for passing as the viewer argument of
runGadget ().

wellPanel Create a well panel

Description

Creates a panel with a slightly inset border and grey background. Equivalent to Bootstrap’s well
CSS class.

Usage

wellPanel(...)

Arguments

Ul elements to include inside the panel.

Value

The newly created panel.

withMathJax 231

withMathJax Load the MathJax library and typeset math expressions

Description

This function adds MathJax to the page and typeset the math expressions (if found) in the content

. It only needs to be called once in an app unless the content is rendered after the page is
loaded, e.g. via renderUI(), in which case we have to call it explicitly every time we write math
expressions to the output.

Usage
withMathJax(...)

Arguments

any HTML elements to apply MathJax to

Examples

withMathJax(helpText("Some math here $$\\alpha+\\beta$$"))
now we can just write "static” content without withMathJax()
div(”"more math here $$\\sqrt{2}$$")

withProgress Reporting progress (functional API)

Description

Reports progress to the user during long-running operations.

Usage

withProgress(
expr,
min =
max = 1,
value = min + (max - min) * 0.1,
message = NULL,
detail = NULL,
style = getShinyOption("progress.style”, default = "notification”),
session = getDefaultReactiveDomain(),
env = parent.frame(),
quoted = FALSE

’

N —

232

setProgress(
value = NULL,
message = NULL,
detail = NULL,
session = getDefaultReactiveDomain()

)

incProgress(
amount = 0.1,
message = NULL,
detail = NULL,
session = getDefaultReactiveDomain()

withProgress

)
Arguments

expr The work to be done. This expression should contain calls to setProgress.

min The value that represents the starting point of the progress bar. Must be less
tham max. Default is 0.

max The value that represents the end of the progress bar. Must be greater than min.
Default is 1.

value Single-element numeric vector; the value at which to set the progress bar, rela-
tive to min and max.

message A single-element character vector; the message to be displayed to the user, or
NULL to hide the current message (if any).

detail A single-element character vector; the detail message to be displayed to the user,
or NULL to hide the current detail message (if any). The detail message will be
shown with a de-emphasized appearance relative to message.

style Progress display style. If "notification” (the default), the progress indicator
will show using Shiny’s notification APIL. If "old", use the same HTML and
CSS used in Shiny 0.13.2 and below (this is for backward-compatibility).

session The Shiny session object, as provided by shinyServer to the server function.
The default is to automatically find the session by using the current reactive
domain.

env The environment in which expr should be evaluated.

quoted Whether expr is a quoted expression (this is not common).

amount For incProgress, the amount to increment the status bar. Default is 0.1.

Details

This package exposes two distinct programming APIs for working with progress. Using withProgress

with incProgress or setProgress provide a simple function-based interface, while the Progress ()
reference class provides an object-oriented API.

Use withProgress to wrap the scope of your work; doing so will cause a new progress panel to
be created, and it will be displayed the first time incProgress or setProgress are called. When
withProgress exits, the corresponding progress panel will be removed.

withProgress 233

The incProgress function increments the status bar by a specified amount, whereas the setProgress
function sets it to a specific value, and can also set the text displayed.

Generally, withProgress/incProgress/setProgress should be sufficient; the exception is if the
work to be done is asynchronous (this is not common) or otherwise cannot be encapsulated by a
single scope. In that case, you can use the Progress reference class.

As of version 0.14, the progress indicators use Shiny’s new notification API. If you want to use the
old styling (for example, you may have used customized CSS), you can use style="o0ld" each time
you call withProgress(). If you don’t want to set the style each time withProgress is called, you
can instead call shinyOptions(progress.style="0ld") just once, inside the server function.

See Also

Progress()

Examples

Only run examples in interactive R sessions
if (interactive()) {
options(device.ask.default = FALSE)

ui <- fluidPage(
plotOutput(”"plot”)
)

server <- function(input, output) {
output$plot <- renderPlot({

withProgress(message = 'Calculation in progress',
detail = 'This may take a while...', value = 0, {
for (i in 1:15) {
incProgress(1/15)
Sys.sleep(0.25)
}
1))
plot(cars)
k)]

}

shinyApp(ui, server)

}

Index

+Topic datasets
NS, 98

absolutePanel, 6

actionButton, 8, 19, 20, 27, 30, 48, 100, 116,
126, 171, 188, 192, 199, 200, 228

actionButton(), 11, 105, 106, 159, 191, 192,
203, 225

actionLink (actionButton), 8

addResourcePath, 10

addResourcePath(), 25

animationOptions (sliderInput), 186

animationOptions(), 187

appendTab (insertTab), 66

as.shiny.appobj, 197

base: :.Random.seed(), 158
base::as.list(), 136
base::cat(), 154
base::I1(), 146, 170,217,227
base::invisible(), 151
base::local(), 74
base::logical(), 159
base::strftime(), 187
base::Sys.time(), 132
basicPage (bootstrapPage), 13
basicPage(), 13
bookmarkButton, 11
bootstrapLib, 12
bootstrapPage, 13
bootstrapPage(), 13
browserViewer (viewer), 229
brushedPoints, 14
brushOpts, 16
brushOpts(), 117

Cairo::CairoPNG(), 122
callModule, 17
callModule(), 17, 93

234

checkboxGroupInput, 9, 18, 20, 27, 30, 48,
100, 116, 126, 171, 188, 192, 199,
200, 202, 205, 206, 208, 209, 211,
215,217,219, 221,223,228

checkboxGroupInput(), 20, 205

checkboxInput, 9, 19, 20, 27, 30, 48, 100,
116,126, 171, 188, 192, 199, 200,
228

checkboxInput(), 19, 206

clickOpts, 21

clickOpts(), 117

column, 21

column(), 52-55

commonmark: :markdown_html(), 78

conditionalPanel, 22

createRenderFunction, 24

createWebDependency, 25

dataTableOutput (tableOutput), 193

dataTableOutput(), 146

Date, 27, 30

datelnput, 9, 19, 20, 26, 30, 48, 100, 116,
126, 171, 188, 192, 199, 200, 228

dateInput(), 30, 208

dateRangelnput, 9, 19, 20, 27, 28, 48, 100,
116, 126, 171, 188, 192, 199, 200,
228

dateRangeInput(), 27, 209

dblclickOpts, 31

debounce, 31

dialogViewer (viewer), 229

digest::digest(), 141

diskCache, 33

diskCache(), 81, 140, 142

div(), 51

domain, 102

domains, 32, 37, 101, 104, 128

downloadButton, 38

downloadButton(), 39

downloadHandler, 39

INDEX

downloadHandler (), 38
downloadLink (downloadButton), 38
downloadLink(), 39
dynamic, 78, 86

enableBookmarking, 40
enableBookmarking(), 11, 175, 176, 212
eventReactive (observeEvent), 103
eventReactive(), 9
exportTestValues, 44
exprToFunction, 46
exprToFunction(), 72

filelnput, 9, 19, 20, 27, 30, 47, 100, 116,
126, 171, 188, 192, 199, 200, 228

fillCol (fillRow), 50

fillPage, 49, 53, 55, 97, 184, 190, 229

fillPage(), I3

fillRow, 50

fixedPage, 50, 52, 53, 55, 97, 184, 190, 229

fixedPage(), 14, 49

fixedPanel (absolutePanel), 6

fixedRow (fixedPage), 52

fixedRow(), 21

flowLayout, 50, 53, 53, 55, 97, 184, 190, 229

flowLayout(), 66

fluidPage, 50, 53, 54, 97, 184, 190, 229

fluidPage(), 13, 14,49, 52, 198

fluidRow (fluidPage), 54

fluidRow(), 13, 21

freezeReactiveVal, 56

freezeReactiveValue
(freezeReactiveVal), 56

getCurrentOutputInfo, 57
getDefaultReactiveDomain (domains), 37
getQueryString, 59
getQueryString(), 212
getShinyOption, 61

getUrlHash (getQueryString), 59
Github extensions, 78
glue::trim(), 78

graphics, 118
grDevices: :png(), 122, 140, 150
grDevices: :replayPlot(), 150
grid, 7118

helpText, 63
hideTab (showTab), 181

235

hoverOpts, 63

hoverOpts(), 117
HTML (), 156, 187

htmlOutput, 64

htmltools: :htmlDependency(), 25

icon, 65

icon(), 8, 11, 90, 192
imageOutput (plotOutput), 116
imageOutput(), 16, 21, 31, 63, 147
incProgress (withProgress), 231
inputPanel, 66

insertTab, 66
insertTab(), 97, 98, 182, 196
insertUI, 69

insertUI(), 192
installExprFunction, 71
invalidatelLater, 72
invalidatelLater(), 132
is.key_missing(), 35, 81
is.reactive (reactive), 127
is.reactivevalues, 73
is.reactivevalues(), 135
isolate, 74
isolate(), 62, 80, 104, 105, 135, 136
isRunning, 75

isTruthy (req), 158

key_missing(), 34, 35, 81
knit_print.reactive (knitr_methods), 76
knit_print.shiny.appobj
(knitr_methods), 76
knit_print.shiny.render.function
(knitr_methods), 76
knitr_methods, 76

list.files, 77
loadSupport, 76

mainPanel (sidebarlLayout), 183
mainPanel(), 195
makeReactiveBinding, 77
markdown, 78
markRenderFunction, 79
maskReactiveContext, 80
memoryCache, 80
memoryCache(), 141, 142
MockShinySession, 83, 197
modalButton, 90

236

modalDialog, 90
modalDialog(), 90, 179
moduleServer, 93
moduleServer(), 17,178

namespace(), 23

navbarMenu (navbarPage), 95

navbarMenu(), 66, 67, 182

navbarPage, 50, 53, 55, 95, 184, 190, 229

navbarPage(), 13,51, 65-67, 182, 194, 220

navlistPanel, 97

navlistPanel(), 66, 182, 220

nearPoints (brushedPoints), 14

need (validate), 224

need(), 9

NS, 98

ns.sep (NS), 98

numericInput, 9, 19, 20, 27, 30, 48,99, 116,
126, 171, 188, 192, 199, 200, 202,
205, 206, 208, 209, 211, 215, 217,
219,221, 223,228

numericInput(), 2711

observe, 101
observe(), 37, 105, 160
observeEvent, 103
observeEvent(), 9, 160
observers, 32
onBookmark, 107
onBookmark(), 41, 179
onBookmarked (onBookmark), 107
onBookmarked(), 41
onFlush, 111

onFlushed (onFlush), 111
onReactiveDomainEnded (domains), 37
onRestore (onBookmark), 107
onRestore(), 41

onRestored (onBookmark), 107
onRestored(), 41
onSessionEnded (onFlush), 111
onSessionEnded(), 712
onStop, 112

onStop(), 111
outputOptions, 113

pageWithSidebar(), 13
paneViewer (viewer), 229
parseQueryString, 114
parseQueryString(), 173

INDEX

passwordInput, 9, 19, 20, 27, 30, 48, 100,
115, 126, 171, 188, 192, 199, 200,
228

plotOutput, 116

plotOutput(), 15, 16, 21, 31, 53, 63, 140,
142, 150

plotPNG, 121

plotPNG(), 62, 148, 150

prependTab (insertTab), 66

Progress, 122

Progress(), 232, 233

radioButtons, 9, 19, 20, 27, 30, 48, 100, 116,
125,171, 188, 192, 199, 200, 202,
205, 206, 208, 209, 211, 215, 217,
219,221, 223,228

radioButtons(), 215

reactive, 127

reactive domain, 197

reactive expression, 105

Reactive expressions, 132

reactive(), 37, 105, 160

reactiveFileReader, 129

reactiveFileReader(), 131

reactivePoll, 130

reactivePoll(), 129

reactiveTimer, 132

reactiveTimer(), 73

reactiveVal, 133

reactiveVal(), 56

reactiveValues, 135

reactiveValues(), 56, 74, 134, 172

reactiveValuesTolList, 136

reactlog, 137

reactlog(), 133

reactlog: :reactlog_show, /138

reactlogReset (reactlog), 137

reactlogShow (reactlog), 137

reactlogShow(), 62, 138

registerInputHandler, 138

registerInputHandler(), 139

removeInputHandler, 139

removeInputHandler(), 139

removeModal (showModal), 179

removeModal (), 91

removeNotification (showNotification),
180

removeResourcePath (addResourcePath), 10

removeTab (insertTab), 66

INDEX

removeUI (insertUI), 69

renderCachedPlot, 140

renderCachedPlot(), 150, 185

renderDataTable, 145

renderDataTable(), 170, 193,217, 227

renderImage, 147

renderImage(), 17,116, 118

renderPlot, 149

renderPlot(), 116, 118, 142, 224

renderPrint, 151

renderPrint(), 155, 200

renderTable, 153

renderTable(), 193

renderText, 154

renderText(), 151, 200

renderUI, 156

renderUI(), 69, 192, 231

repeatable, 157

req, 158

req(), 9, 56

resourcePaths (addResourcePath), 10

restorelnput, 161

rlang::list2(), 86

runApp, 161

runApp(), 41,61, 62,112,137, 164, 167, 176,
191

runExample, 163

runGadget, 164

runGadget (), 230

runGist (runUrl), 166

runGitHub (runUrl), 166

runTests, 165

runTests(), 178

runUrl, 166

safeError, 167

selectInput, 9, 19, 20, 27, 30, 48, 100, 116,
126, 169, 188, 192, 199, 200, 202,
205, 206, 208, 209, 211, 215, 217,
219,221, 223, 228

selectInput(), 217,227

selectizeInput (selectInput), 169

serverInfo, 171

session, 172

setBookmarkExclude, 175

setBookmarkExclude(), /1

setProgress (withProgress), 231

setProgress(), 122

shiny (shiny-package), 6

237

shiny-options, 6

shiny-options (getShinyOption), 61

shiny-package, 6

shinyApp, 175

shinyApp(), 41, 162, 164

shinyAppDir (shinyApp), 175

shinyAppFile (shinyApp), 175

shinyAppTemplate, 177

shinyAppTemplate(), 165

shinyDeprecated(), 61

shinyOptions (getShinyOption), 61

shinyOptions(), /42

shinyOptions(progress.style=old), 122,
233

shinyUI, 13, 52, 54, 96

showBookmarkUrlModal, 179

showModal, 179

showModal (), 224

showNotification, 180

showReactLog (reactlog), 137

showTab, 181

showTab(), 67, 97, 98, 196

sidebarLayout, 50, 53, 55, 97, 183, 190, 229

sidebarLayout(), 13, 51, 54

sidebarPanel (sidebarLayout), 183

singleton(), 10

sizeGrowthRatio, 185

sizeGrowthRatio(), 140

sliderInput, 9, 19, 20, 27, 30, 48, 100, 116,
126, 171, 186, 192, 199, 200, 228

sliderInput(), 219

snapshotExclude, 188

snapshotPreprocessInput, 189

snapshotPreprocessOutput, 189

splitlLayout, 50, 53, 55, 97, 184, 190, 229

stacktrace(), 72, 101, 128

stopApp, 191

submitButton, 9, 19, 20, 27, 30, 48, 100, 116,
126, 171, 188, 191, 199, 200, 228

tableOutput, 193

tableOutput(), 154

tabPanel, 194

tabPanel (), 65, 66, 95-98, 182, 195, 196
tabPanelBody (tabPanel), 194
tabPanelBody(), /95

tabsetPanel, 195
tabsetPanel (), 66, 97, 182, 194, 220
tag(), 187

238

taglList(), 5/

testServer, 196

testServer(), 17, 83, 93

textArealnput, 9, 19, 20, 27, 30, 48, 100,
116, 126, 171, 188, 192, 198, 200,
228

textArealnput(), 222

textInput, 9, 19, 20, 27, 30, 48, 100, 116,
126,171, 188, 192, 199, 199, 228

textInput(), 161,223

textOutput, 200

textOutput(), 155

throttle (debounce), 31

titlePanel, 201

titlePanel(), 54

tryCatch(), 35, 82

uiOutput (htmlOutput), 64
uiOutput(), 157
updateActionButton, 202
updateActionLink (updateActionButton),
202
updateCheckboxGroupInput, 204
updateCheckboxGroupInput(), 19
updateCheckboxInput, 206
updateCheckboxInput(), 20
updateDateInput, 207
updateDateInput(), 27
updateDateRangeInput, 208
updateDateRangeInput(), 30
updateNavbarPage (updateTabsetPanel),
220
updateNavbarPage(), 97
updateNavlistPanel (updateTabsetPanel),
220
updateNavlistPanel(), 98
updateNumericInput, 210
updateNumericInput(), 100
updateQueryString, 212
updateQueryString(), 41, 59
updateRadioButtons, 214
updateRadioButtons(), 126
updateSelectInput, 216
updateSelectInput(), 171, 228
updateSelectizelInput
(updateSelectInput), 216
updateSliderInput, 218
updateSliderInput(), 188
updateTabsetPanel, 220

INDEX

updateTabsetPanel (), 195, 196
updateTextArealnput, 221
updateTextArealnput(), /199
updateTextInput, 222
updateTextInput(), 116, 174, 200
updateVarSelectInput
(updateSelectInput), 216
updateVarSelectizelInput
(updateSelectInput), 216
urlModal, 224
urlModal(), 179
utils: :browseURL(), 229, 230
utils::capture.output(), 151, 155

validate, 224

validateCssUnit(), 8, 18, 20, 27, 29, 47,
100, 115, 125, 170, 187, 190, 192,
198, 199, 227

validation, 105

varSelectInput, 9, 19, 20, 27, 30, 48, 100,
116,126,171, 188, 192, 199, 200,
226

varSelectInput(), 171,217

varSelectizelnput (varSelectInput), 226

verbatimTextOutput (textOutput), 200

verbatimTextOutput(), 151

verticallayout, 50, 53, 55, 97, 184, 190, 228

viewer, 229

viewer(), 164

wellPanel, 230

withMathJax, 231
withProgress, 231
withProgress(), 122, 124
withReactiveDomain (domains), 37

xtable: :print.xtable(), 154
xtable: :xtable(), 153, 154

	shiny-package
	absolutePanel
	actionButton
	addResourcePath
	bookmarkButton
	bootstrapLib
	bootstrapPage
	brushedPoints
	brushOpts
	callModule
	checkboxGroupInput
	checkboxInput
	clickOpts
	column
	conditionalPanel
	createRenderFunction
	createWebDependency
	dateInput
	dateRangeInput
	dblclickOpts
	debounce
	diskCache
	domains
	downloadButton
	downloadHandler
	enableBookmarking
	exportTestValues
	exprToFunction
	fileInput
	fillPage
	fillRow
	fixedPage
	flowLayout
	fluidPage
	freezeReactiveVal
	getCurrentOutputInfo
	getQueryString
	getShinyOption
	helpText
	hoverOpts
	htmlOutput
	icon
	inputPanel
	insertTab
	insertUI
	installExprFunction
	invalidateLater
	is.reactivevalues
	isolate
	isRunning
	knitr_methods
	loadSupport
	makeReactiveBinding
	markdown
	markRenderFunction
	maskReactiveContext
	memoryCache
	MockShinySession
	modalButton
	modalDialog
	moduleServer
	navbarPage
	navlistPanel
	NS
	numericInput
	observe
	observeEvent
	onBookmark
	onFlush
	onStop
	outputOptions
	parseQueryString
	passwordInput
	plotOutput
	plotPNG
	Progress
	radioButtons
	reactive
	reactiveFileReader
	reactivePoll
	reactiveTimer
	reactiveVal
	reactiveValues
	reactiveValuesToList
	reactlog
	registerInputHandler
	removeInputHandler
	renderCachedPlot
	renderDataTable
	renderImage
	renderPlot
	renderPrint
	renderTable
	renderText
	renderUI
	repeatable
	req
	restoreInput
	runApp
	runExample
	runGadget
	runTests
	runUrl
	safeError
	selectInput
	serverInfo
	session
	setBookmarkExclude
	shinyApp
	shinyAppTemplate
	showBookmarkUrlModal
	showModal
	showNotification
	showTab
	sidebarLayout
	sizeGrowthRatio
	sliderInput
	snapshotExclude
	snapshotPreprocessInput
	snapshotPreprocessOutput
	splitLayout
	stopApp
	submitButton
	tableOutput
	tabPanel
	tabsetPanel
	testServer
	textAreaInput
	textInput
	textOutput
	titlePanel
	updateActionButton
	updateCheckboxGroupInput
	updateCheckboxInput
	updateDateInput
	updateDateRangeInput
	updateNumericInput
	updateQueryString
	updateRadioButtons
	updateSelectInput
	updateSliderInput
	updateTabsetPanel
	updateTextAreaInput
	updateTextInput
	urlModal
	validate
	varSelectInput
	verticalLayout
	viewer
	wellPanel
	withMathJax
	withProgress
	Index

