spmoran: Fast Spatial and Spatio-Temporal Regression using Moran Eigenvectors

Functions for estimating spatio-temporally varying coefficient models, mixed models, and other spatial regression models for Gaussian and non-Gaussian data. Moran eigenvectors are used to approximate spatial and spatio-temporal processes in residuals and regression coefficients.

Version: 0.3.0
Imports: sf, fields, vegan, Matrix, doParallel, foreach, ggplot2, spdep, rARPACK, RColorBrewer, splines, FNN, methods
Suggests: R.rsp
Published: 2024-09-24
DOI: 10.32614/CRAN.package.spmoran
Author: Daisuke Murakami [aut, cre]
Maintainer: Daisuke Murakami <dmuraka at ism.ac.jp>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/dmuraka/spmoran
NeedsCompilation: no
In views: Spatial
CRAN checks: spmoran results

Documentation:

Reference manual: spmoran.pdf
Vignettes: Spatial regression using the spmoran package: Boston housing price data examples (source)
Spatio-temporally varying coefficient modeling using the spmoran package (source)
Transformation-based generalized spatial regression using the spmoran package: Case study examples (source)

Downloads:

Package source: spmoran_0.3.0.tar.gz
Windows binaries: r-devel: spmoran_0.3.0.zip, r-release: spmoran_0.3.0.zip, r-oldrel: spmoran_0.3.0.zip
macOS binaries: r-release (arm64): spmoran_0.3.0.tgz, r-oldrel (arm64): spmoran_0.3.0.tgz, r-release (x86_64): spmoran_0.3.0.tgz, r-oldrel (x86_64): spmoran_0.3.0.tgz
Old sources: spmoran archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=spmoran to link to this page.