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1 Introduction

Statisticians and their clients have always been fond of single number summaries for a data set,
perhaps too much so. Consider the hypothetical data shown in figure 1 comparing treatments A
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Figure 1: Treatment effects for a hypothetical study.

and B with age as a confounder. What is a succinct but useful summary of the difference between
treatment arms A and B? One approach is to select a fixed population for the age distribution,
and then compute the mean effect over that population.

More formally, assume we have a fitted model. We want to compute the conditional expec-
tation

mA = EF (ŷ|trt = A)

where F is some chosen population for the covariates other than treatment. Important follow-
up questions are: what population should be used, what statistic should be averaged, what
computational algorithm should be used, and what are the statistical properties of the resulting
estimate? Neither the statistic nor population questions should be taken lightly, and both need
to be closely linked to the scientific question. If, for instance, the model of figure 1 were used to
inform a nursing home formulary, then the distribution F might be focused on higher ages.

Four common populations are

� Empirical: The data set itself. For the simple example above, this would be the distribution
of all n ages in the data set, irrespective of treatment.

� Factorial or Yates: This is only applicable if the adjusting variables are all categorical, and
consists of all unique combinations of them. That is, the data set one would envision for a
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balanced factorial experiment.

� External: An external reference such as the age/sex distribution of the US census. This is
common in epidemiology.

� SAS type 3: A factorial distribution for the categorical predictors and the data distribution
for the others. More will be said about this in section 7.

The yates function is designed to compute such population averages from a fitted model,
along with desired contrasts on the resultant estimates, e.g., whether the population average
effects for treatment A and treatment B are equal. The function has been tested with the results
of lm, glm, and coxph fits, and can easily be extended to any R model that includes a standard
set of objects in the result, i.e., terms, contrasts, xlevels, and assign.

The routine’s name is a nod to the 1934 paper by Yates [7] The analysis of multiple classi-
fications with unequal numbers in different classes. In dealing with an unbalanced 2-way layout
he states that

. . . in the absence of any further assumptions the efficient estimates of the average A
effects are obtained by taking the means of the observed sub-class means for like A
over all B sub-classes.

In his example these sub-class means are the predicted values for each A*B combination, thus his
estimate for each level of A is the mean predicted value over B, i.e., the mean prediction for A over
a factorial population for B. Yates then develops formulas for calculating these quantities and
testing their equality that are practical for the manual methods of the time; these are now easily
accomplished directly using matrix computations. (It is interesting that Yates’ paper focuses far
more on estimands than tests, while later references to his work focus almost exclusively on the
latter, e.g., the “Yates sum of squares”. Reflecting, again, our profession’s singular focus on p
values.)

This concept of population averages is actually a common one in statistics. Taking an average
is, after all, nearly the first thing a statistician will do. Yates’ weighted means analysis, the g-
estimates of causal models, direct adjusted survival curves, and least squares means are but
a small sample of the idea’s continual rediscovery. Searle et. al. [6] use the term population
marginal mean (PMM), which we will adopt as the acronym, though they deal only with linear
models, assume a factorial population, and spend most of their energy writing out explicit
formulas for particular cases. They also use a separate acronym to distinguish the estimated
PMM based on a model fit from the ideal, which we will not do.

2 Solder Example

2.1 Data

In 1988 an experiment was designed and implemented at one of AT&T’s factories to investigate
alternatives in the wave soldering procedure for mounting electronic components to printed circuit
boards. The experiment varied a number of factors relevant to the process. The response,
measured by eye, is the number of visible solder skips. The data set was used in the book
Statistical Models in S [1] and is included in the survival package.
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Figure 2: Overview of the solder data.

> summary(solder)

Opening Solder Mask PadType Panel skips

L:300 Thick:450 A1.5:180 D4 : 90 1:300 Min. : 0.00

M:300 Thin :450 A3 :270 D6 : 90 2:300 1st Qu.: 0.00

S:300 A6 : 90 D7 : 90 3:300 Median : 2.00

B3 :180 L4 : 90 Mean : 5.53

B6 :180 L6 : 90 3rd Qu.: 7.00

L7 : 90 Max. :48.00

(Other):360

> length(unique(solder$PadType))

[1] 10

A perfectly balanced experiment would have 3*2*10*3 = 180 observations for each Mask,
corresponding to all combinations of Opening, Solder Thickness, PadType and Panel. The A3
Mask has extra replicates for a subset of the Opening*Thickness combinations, however, while
Mask A6 lacks observations for these sets. Essentially, one extra run of 180 was done with a
mixture of Masks. Figure 2 gives an overview of univariate results for each factor.
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2.2 Linear model

A subset of the solder data that excludes Mask A6 is exactly the type of data set considered in
Yates’ paper: a factorial design whose data set is not quite balanced. Start with a simple fit and
then obtain the Yates predictions.

> with(solder[solder$Mask!='A6',], ftable(Opening, Solder, PadType))

PadType D4 D6 D7 L4 L6 L7 L8 L9 W4 W9

Opening Solder

L Thick 15 15 15 15 15 15 15 15 15 15

Thin 15 15 15 15 15 15 15 15 15 15

M Thick 12 12 12 12 12 12 12 12 12 12

Thin 12 12 12 12 12 12 12 12 12 12

S Thick 15 15 15 15 15 15 15 15 15 15

Thin 12 12 12 12 12 12 12 12 12 12

> fit1 <- lm(skips ~ Opening + Solder + Mask + PadType + Panel,

data=solder, subset= (Mask != 'A6'))

> y1 <- yates(fit1, ~Opening, population = "factorial")

> print(y1, digits=2) # (less digits, for vignette page width)

Opening pmm std test chisq df ss Pr

L 2.0 0.29 Opening 560 2 13892 <1e-08

M 2.2 0.32

S 10.9 0.31

The printout has two parts: the left hand columns are population marginal mean (PMM)
values and the right hand columns are tests on those predicted values. The default is a single
global test that these PMM are all equal. Under a factorial population these are the Yates’
weighted means [7] and the corresponding test is the Yates’ sum of squares for that term. These
would be labeled as “least squares means” and “type III SS”, respectively, by the glm procedure
of SAS. More on this correspondence appears in the section on the SGTT algorithm. Now we
repeat this using the default population, which is the set of all 810 combinations for Solder,
Mask, PadType and Panel found in the non-A6 data. The pairwise option requests tests on all
pairs of openings.

> y2 <- yates(fit1, "Opening", population = "data", test="pairwise")

> print(y2, digits=2)

Opening pmm std test chisq df ss Pr

L 1.7 0.29 1 vs 2 0.1 1 3.1 0.7

M 1.8 0.32 1 vs 3 447.8 1 11099.3 <1e-08

S 10.5 0.30 2 vs 3 386.4 1 9577.7 <1e-08

Opening 560.5 2 13891.8 <1e-08

> #

> # compare the two results

> temp <- rbind(diff(y1$estimate[,"pmm"]), diff(y2$estimate[,"pmm"]))

> dimnames(temp) <- list(c("factorial", "empirical"), c("2 vs 1", "3 vs 2"))

> round(temp,5)
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2 vs 1 3 vs 2

factorial 0.15366 8.71084

empirical 0.15366 8.71084

Although the PMM values shift with the new population, the difference in PMM values
between any two pairs is unchanged. This is because we have fit a model with no interactions.
Referring to figure 1, this is a model where all of the predictions are parallel lines; shifting the
population left or right will change the PMM, but has no effect on the difference between two
lines. For a linear model with no interactions, the test statistics created by the yates function
are thus not very interesting, since they will be no different than simple comparisons of the model
coefficients.

Here are results from a more interesting fit that includes interactions.

> fit2 <- lm(skips ~ Opening + Mask*PadType + Panel, solder,

subset= (Mask != "A6"))

> temp <- yates(fit2, ~Opening, population="factorial")

> print(temp, digits=2)

Opening pmm std test chisq df ss Pr

L 2.0 0.32 Opening 436 2 13086 <1e-08

M 2.2 0.35

S 10.6 0.34

This solder data set is close to being balanced, and the means change only a small amount. (One
hallmark of a completely balanced experiment is that any PMM values are unaffected by the
addition of interaction terms.)

2.3 Missing cells

Models that involve factors and interactions can have an issue with missing cells as shown by
the example below using the full version of the solder data.

> fit3 <- lm(skips ~ Opening * Mask + Solder + PadType + Panel, solder)

> temp <- yates(fit3, ~Mask, test="pairwise")

> print(temp, digits=2)

Mask pmm std test chisq df ss Pr

A1.5 1.6 0.34 1 vs 2 6 1 124 0.01

A3 2.7 0.29 1 vs 3 NA NA NA NA

A6 NA NA 1 vs 4 62 1 1266 <1e-08

B3 5.4 0.34 1 vs 5 342 1 6978 <1e-08

B6 10.4 0.34 2 vs 3 NA NA NA NA

2 vs 4 36 1 740 <1e-08

2 vs 5 305 1 6216 <1e-08

3 vs 4 NA NA NA NA

3 vs 5 NA NA NA NA

4 vs 5 113 1 2300 <1e-08

Mask NA NA NA NA
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The population predictions for each Mask include all combinations of Opening, Solder, Pad-
Type, and Panel that are found in the data. The above call implicity uses the default value
of population=‘data’, which is the option that users will normally select. The underlying
algorithm amounts to:

1. Make a copy of the data set (900 obs), and set Mask to A1.5 for all observations

2. Get the 900 resulting predicted values from the model, and take their average

3. Repeat 1 and 2 for each mask type.

However, there were no observations in the data set with Mask = A6 and Opening = Large.
Formally, predictions for the A6/Large combination are not estimable, and as a consequence
neither are any population averages that include those predicted values, nor any tests that involve
those population averages. This lack of estimability is entirely due to the inclusion of a Mask by
Opening interaction term in the model, which states that each Mask/Opening combination has
a unique effect, which in turn implies that we need an estimate for all Mask*Opening pairs to
compute population predictions for all levels of the Mask variable.

If you do the above steps ‘by hand’ using the R predict function, it will return a value for
all 900 observations along with a warning message that the results may not be reliable, and the
warning is correct in this case. The result of coef(fit2) reveals that the fit generated an NA
as one of the coefficients. The presence of a missing value shows that some preditions will not
be estimable, but it is not possible to determine which ones are estimable from the coefficients
alone. The predict function knows that some predictions will be wrong, but not which ones.
A formal definition of estimability for a given prediction is that it can be written as a linear
combination of the rows of X, the design matrix for the fit. The yates function performs the
necessary calculations to verify formal estimability of each predicted value, and thus is able to
correctly identify the deficient terms.

3 Generalized linear models

Since the solder response is a count of the number of skips, Poisson regression is a more natural
modeling approach than linear regression. In a glm model we need to consider more carefully
both the population and the statistic to be averaged.

> gfit2 <- glm(skips ~ Opening * Mask + PadType + Solder, data=solder,

family=poisson)

> y1 <- yates(gfit2, ~ Mask, predict = "link")

> print(y1, digits =2)

Mask pmm std test chisq df Pr

A1.5 -0.26 0.093 Mask NA NA NA

A3 0.48 0.051

A6 NA NA

B3 0.94 0.052

B6 1.84 0.032

> print( yates(gfit2, ~ Mask, predict = "response"), digits=2)
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Mask pmm std test chisq df Pr

A1.5 1.6 0.094 Mask NA NA NA

A3 2.7 0.112

A6 NA 0.281

B3 5.4 0.165

B6 10.4 0.239

Mean predicted values for the number of skips using type=‘response’ in predict.glm are
similar to estimates when the linear regression model was used. Prediction of type ‘link’ yields a
population average of the linear predictor Xβ. Though perfectly legal (you can, after all, take the
mean of anything you want), the linear predictor PMM values can be more difficult to interpret.
Since the default link function for Poisson regression is log(), the PMM of the linear predictor
equals the mean of the log(predicted values). Since exp(mean(log(x))) defines the geometric
mean of a random variable x, one can view the exponentiated version of the link estimate as a
geometric mean of predicted values over the population. Given the skewness of Poisson counts,
this may actually be an advantageous summary. Arguments for other links are much less clear,
however: the authors have for instance never been able to come to a working understanding of
what an “average log odds” would represent, i.e., the link from logistic regression.

One computational advantage of the linear predictor lies in creating the variance. Since
mean(Z %*% b) = colMeans(Z) %*%b the computation can be done in 3 steps: first create Z
with one row for each observation in the population, obtain the vector of column means d =
1′Z/m, and then the PMM estimate is d′β̂ and its variance is d′V d where V is the variance

matrix of β̂. For other PMM quantities the routine samples nsim vectors from b ∼ N(β̂, V ),
then computes PMM estimates separately for each vector b and forms an empirical variance of
the PMM estimates from the results.

For nonlinear predictors such as the response, the population choice matters even for an
additive model. The two results below have different estimates for the“between PMM differences”
and tests.

> gfit1 <- glm(skips ~ Opening + Mask +PadType + Solder, data=solder,

family=poisson)

> yates(gfit1, ~ Opening, test="pairwise", predict = "response",

population='data')

Opening pmm std test chisq df Pr

L 1.8066 0.086646 1 vs 2 122.4 1 < 1e-08

M 3.1998 0.090841 1 vs 3 2251.1 1 < 1e-08

S 11.0920 0.181359 2 vs 3 1466.9 1 < 1e-08

Opening 2251.1 2 < 1e-08

> yates(gfit1, ~ Opening, test="pairwise", predict = "response",

population="yates")

Opening pmm std test chisq df Pr

L 2.0157 0.098949 1 vs 2 96.44 1 < 1e-08

M 3.5700 0.108111 1 vs 3 1778.82 1 < 1e-08

S 12.3754 0.223836 2 vs 3 1238.95 1 < 1e-08

Opening 1785.93 2 < 1e-08
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4 Free Light Chain

As an example for the more usual case, a data set which does not arise from a balanced factorial
experiment, we will look at the free light chain data set. In 2012, Dispenzieri and colleagues
examined the distribution and consequences of the free light chain value, a laboratory test, on
a large fraction of the 1995 population of Olmsted County, Minnesota aged 50 or older [4, 2].
The R data set flchain contains a 50% random sample of this larger study and is included as a
part of the survival package. The primary purpose of the study was to measure the amount of
plasma immunoglobulin and its components. Intact immunoglobulins are composed of a heavy
chain and light chain portion. In normal subjects there is overproduction of the light chain
component by the immune cells leading to a small amount of free light chain in the circulation.
Excessive amounts of free light chain (FLC) are thought to be a marker of disregulation in the
immune system. An important medical question is whether high levels of FLC have an impact
on survival, which will be explored using a Cox model. Free light chains have two major forms
denoted as kappa and lambda; we will use the sum of the two.

A confounding factor is that FLC values rise with age, in part because it is eliminated by the
kidneys and renal function declines with age. The age distribution of males and females differs,
so we will adjust any comparisons for both age and sex. The impact of age on mortality is
dominatingly large and so correction for the age imbalance is critical when exploring the impact
of FLC on survival.

Figure 3 shows the trend in FLC values as a function of age. For illustration of linear models
using factors, we have also created a categorical age value using deciles of age.

The table of counts shows that the sex distribution becomes increasingly unbalanced at the
older ages, from about 1/2 females in the youngest group to a 4:1 ratio in the oldest.

> flchain$flc <- flchain$kappa + flchain$lambda

> age2 <- cut(flchain$age, c(49, 59, 69, 79, 89, 120),

labels=c("50-59", "60-69", "70-79", "80-89", "90+"))

> fgroup <- cut(flchain$flc, quantile(flchain$flc, c(0, .5, .75, .9, 1)),

include.lowest=TRUE, labels=c("<50", "50-75", "75-90", ">90"))

> counts <- with(flchain, table(sex, age2))

> counts

age2

sex 50-59 60-69 70-79 80-89 90+

F 1647 1214 949 459 81

M 1510 1115 674 202 23

> #

> # Mean FLC in each age/sex group

> cellmean <- with(flchain, tapply(flc, list(sex, age2), mean))

> round(cellmean,1)

50-59 60-69 70-79 80-89 90+

F 2.6 2.9 3.2 3.9 5

M 2.8 3.2 3.9 4.6 6

Notice that the male/female difference in FLC varies with age, 2.6 versus 2.8 at age 50–59
years and 5 versus 6 at age 90 years, and as shown in figure 3. The data does not fit a simple
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additive model; there are “interactions” to use statistical parlance. Men and women simply do
not age in quite the same way.

4.1 Linear models

Compare the mean FLC for males to females, with and without adjusting for age.

> library(splines)

> flc1 <- lm(flc ~ sex, flchain)

> flc2a <- lm(flc ~ sex + ns(age, 3), flchain)

> flc2b <- lm(flc ~ sex + age2, flchain)

> flc3a <- lm(flc ~ sex * ns(age, 3), flchain)

> flc3b <- lm(flc ~ sex * age2, flchain)

> #

> # prediction at age 65 (which is near the mean)

> tdata <- data.frame(sex=c("F", "M"), age=65, age2="60-69")

> temp <- rbind("unadjusted" = predict(flc1, tdata),

"additive, continuous age" = predict(flc2a, tdata),

"additive, discrete age" = predict(flc2b, tdata),

"interaction, cont age" = predict(flc3a, tdata),

"interaction, discrete" = predict(flc3b, tdata))

> temp <- cbind(temp, temp[,2]- temp[,1])

> colnames(temp) <- c("Female", "Male", "M - F")

> round(temp,2)

Female Male M - F

unadjusted 3.01 3.28 0.27

additive, continuous age 2.84 3.24 0.39

additive, discrete age 2.87 3.25 0.38

interaction, cont age 2.86 3.21 0.35

interaction, discrete 2.91 3.22 0.31

The between sex difference is underestimated without adjustment for age. The females are
over-represented at the high ages, which inflates their estimate. For this particular data set, both
continuous and categorical age adjustment are able to recover the true size of the increment for
males. Now look at population adjustment.

> yates(flc3a, ~sex) # additive, continuous age

sex pmm std test chisq df ss Pr

F 2.9666 0.026677 sex 102.4 1 314.11 < 1e-08

M 3.3720 0.029876

> #

> yates(flc3b, ~sex) # interaction, categorical age

sex pmm std test chisq df ss Pr

F 2.9688 0.026785 sex 95.06 1 294.03 < 1e-08

M 3.3607 0.029973
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> #

> yates(flc3b, ~sex, population="factorial")

sex pmm std test chisq df ss Pr

F 3.5320 0.045874 sex 41.05 1 126.96 < 1e-08

M 4.1218 0.079802

The population average values are just a bit higher than the prediction at the mean due to
the upward curvature of the age vs FLC curve. The average for a factorial population is larger
yet, however. This is because it is the average for an unusual population which has as many 90+
year old subjects as 50–59 year old; i.e., it is the correct answer to a rather odd question, since
this is a population that will never be encountered in real life.

We can also reverse the question and examine age effects after adjusting for sex. For the
continuous model the age values for the PMM need to be specified using the levels argument;
otherwise the routine will not know which ages are “of interest” to the reader. (With a factor the
routine will assume that you want all the levels, but a subset can be chosen using the levels

argument.)

> yates(flc3a, ~ age, levels=c(65, 75, 85))

age pmm std test chisq df ss Pr

65 3.0167 0.028773 ns(age, 3) 492.5 2 1510.3 < 1e-08

75 3.5788 0.036833

85 4.5148 0.060191

> yates(flc3b, ~ age2)

age2 pmm std test chisq df ss Pr

50-59 2.7098 0.031361 age2 654.7 4 2025.1 < 1e-08

60-69 3.0451 0.036514

70-79 3.5316 0.043749

80-89 4.2563 0.071581

90+ 5.4371 0.196449

Not surprisingly the predicton at age 65 years for a continuous model is quite close to that for
the 60–69 year age group from a dicrete model.

5 Cox Models

Finally we come to Cox models which are, after all, the point of this vignette, and the question
that prompted creation of the yates function. Here the question of what to predict is more
serious. To get a feel for the data look at three simple models.

> options(show.signif.stars=FALSE) # show statistical intelligence

> coxfit1 <- coxph(Surv(futime, death) ~ sex, flchain)

> coxfit2 <- coxph(Surv(futime, death) ~ sex + age, flchain)

> coxfit3 <- coxph(Surv(futime, death) ~ sex * age, flchain)

> anova(coxfit1, coxfit2, coxfit3)

12



Analysis of Deviance Table

Cox model: response is Surv(futime, death)

Model 1: ~ sex

Model 2: ~ sex + age

Model 3: ~ sex * age

loglik Chisq Df P(>|Chi|)

1 -18866

2 -17558 2616.2896 1 <2e-16

3 -17557 2.4728 1 0.1158

> #

> exp(c(coef(coxfit1), coef(coxfit2)[1])) # sex estimate without and with age

sexM sexM

1.087766 1.492334

The model with an age*sex interaction does not fit substantially better than the additive
model. This is actually not a surprise: in a plot of log(US death rate) the curves for males and
females are essentially parallel after age 50 years. (See the survexp.us data set, for instance.)
The sex coefficients for models 1 and 2 differ substantially. Males in this data set have almost
1.5 the death rate of females at any given age, but when age is ignored the fact that females
dominate the oldest ages almost completely cancels this out and males appear to have the same
‘overall’ mortality. Adjustment for both age and sex is critical to understanding the potential
effect of FLC on survival.

Dispenzieri [2] looked at the impact of FLC by dividing the sample into those above and
below the 90th percentile of FLC; for illustration we will use 4 groups consisting of the lowest
50%, 50 to 75th percentile, 75 to 90th percentile and above the 90th percentile.

> coxfit4 <- coxph(Surv(futime, death) ~ fgroup*age + sex, flchain)

> yates(coxfit4, ~ fgroup, predict="linear")

fgroup pmm std test chisq df Pr

<50 -0.240427 0.26286 fgroup 198.6 3 < 1e-08

50-75 0.047037 0.29391

75-90 0.269650 0.29651

>90 0.989285 0.29809

> yates(coxfit4, ~ fgroup, predict="risk")

fgroup pmm std test chisq df Pr

<50 1.6958 0.098349 fgroup 153.8 3 < 1e-08

50-75 2.0425 0.098063

75-90 2.3355 0.126600

>90 4.1586 0.207148

We see that after adjustment for age and sex, FLC is a strong predictor of survival. Since the
Cox model is a model of relative risk, any constant term is arbitrary: one could add 100 to all
of the log rates (type ‘linear’ above) and have as valid an answer. To keep the coefficients on a
sensible scale, the yates function centers the mean linear predictor of the original data at zero.
This centers the linear predictor at 0 but does not precisely center the risks at exp(0) = 1 due
to Jensen’s inequality, but suffices to keep values in a sensible range for display.
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A similar argument to that found in section 3 about the arithmetic versus geometric mean can
be made here, but a more fundamental issue is that the overall hazard function for a population is
not the average of the hazards for each of its members, and in fact will change over time as higher
risk members of the population die. Though computable, the mean hazard ratio only applies
to the study at time 0, before selective death begins to change the structure of the remaining
population, and likewise for the average linear predictor = mean log hazard ratio. A PMM based
on either of these estimates is hard to interpret.

Survival curves, however, do lead to a proper average: the survival curve of a population is
the mean of the individual survival curves of its members. Functions computed from the survival
curve, such as the mean time until event, will also be proper and interpretable. The longest death
time for the FLC data set is at 13.7 years; as a one number summary of each PMM curve we
will use a restricted mean survival with a threshold of 13 years.

> # longest time to death

> round(max(flchain$futime[flchain$death==1]) / 365.25, 1)

[1] 13.7

> #compute naive survival curve

> flkm <- survfit(Surv(futime, death) ~ fgroup, data=flchain)

> print(flkm, rmean= 13*365.25, scale=365.25)

Call: survfit(formula = Surv(futime, death) ~ fgroup, data = flchain)

n events *rmean *se(rmean) median 0.95LCL 0.95UCL

fgroup=<50 3940 680 11.85 0.0465 NA NA NA

fgroup=50-75 1971 543 11.14 0.0794 NA NA NA

fgroup=75-90 1182 454 10.12 0.1234 NA NA NA

fgroup=>90 781 492 7.32 0.1779 7.35 6.54 8.14

* restricted mean with upper limit = 13

Straightforward survival prediction takes longer than recommended for a CRAN vignette:
there are 7874 subjects in the study and 4 FLC groups, which leads to just over 30 thousand
predicted survival curves when using the default population=‘data’, and each curve has over
2000 time points (the number of unique death times). To compute a variance, this is then
repeated the default nsim = 200 times. We can use this as an opportunity to demonstrate
a user supplied population, i.e., a data set containing a population of values for the control
variables. We’ll use every 20th observation in the flchain data as the population and also
reduce the number of simulations to limit the run time.

> mypop <- flchain[seq(1, nrow(flchain), by=20), c("age", "sex")]

> ysurv <- yates(coxfit4, ~fgroup, predict="survival", nsim=50,

population = mypop,

options=list(rmean=365.25*13))

> ysurv

fgroup pmm std test chisq df Pr

<50 4164.0 16.704 fgroup 115.2 3 < 1e-08

50-75 4054.4 24.798

75-90 3958.6 31.094

>90 3494.4 63.726

14



> # display side by side

> temp <- rbind("simple KM" = summary(flkm, rmean=13*365.25)$table[, "*rmean"],

"population adjusted" = ysurv$estimate[,"pmm"])

> round(temp/365.25, 2)

fgroup=<50 fgroup=50-75 fgroup=75-90 fgroup=>90

simple KM 11.85 11.14 10.12 7.32

population adjusted 11.40 11.10 10.84 9.57

>

The spread in restricted mean values between the different FLC groups is considerably less in
the marginal (i.e., PMM) survival curves than in the unadjusted Kaplan-Meier, with the biggest
change for those above the 90th percentile of FLC. Males dominate the highest FLC values.
Without adjustment for sex, the survival for the high FLC group is biased downward by the
male predominance.

The ysurv object also contains an optional summary component, which in this case is the
set of 4 PMM survival curves. Plot these along with the unadjusted curves, with solid lines for
the PMM estimates and dashed for the unadjusted curves. This shows the difference between
adjusted and unadjusted even more clearly. Adjustment for age and sex has pulled the curves
together, though the > 90th percentile group still stands apart from the rest. (It is not a 1
number summary with a simple p value, however, and so spurned by users and journals ;-).

> plot(flkm, xscale=365.25, fun="event", col=1:4, lty=2,

xlab="Years", ylab="Death")

> lines(ysurv$summary, fun="event", col=1:4, lty=1, lwd=2)

> legend(0, .65, levels(fgroup), lty=1, lwd=2, col=1:4, bty='n')
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6 Mathematics

The underlying code uses a simple brute force algorithm. It first builds a population data set
for the control variables that includes a placeholder for the variable of interest. Then one at
a time, it places each level of variable(s) of interest in all rows of the data (e.g., sex=F for all
rows). It computes the model’s prediction for all rows, and then comptes the mean prediction.
Since predicted values are independent of how the variables in a model are coded, the result is
also independent of coding.

When the prediction is the simple linear predictor Xβ, we take advantage of the fact that
mean(Xβ) = [column means(X)]β = cβ. If C is the matrix of said column means, one row for
each of the groups of interest, then Cβ is the vector of PMM values and CV C ′ is the variance
covariance matrix of those values, where V is the variance matrix of β̂. The lion’s share of the
work is building the individual X matrices, and that is unchanged.

For other than the linear case, the variance is obtained by simulation. Assume that β̂ ∼
N(β, V ), and draw nsim independent samples b from N(β̂, V ). PMM values are computed for
each instance of b, and an empirical variance matrix for the PMM values is then computed.
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7 SAS glim type III (SGTT) algorithm

Earlier in this document reference was made to the SAS “type 3” estimates, and we now delve
into that topic. It is placed at the end because it is a side issue with respect to population
averages. However, whatever one’s opinion on the wisdom or folly of the SAS estimator, one
cannot ignore its ubiquity, and showing how it fits into this framework is an important part of
the picture.

As groundwork we start with some compuational facts about ANOVA. Assume an X matrix
for the model in standard order: the intercept, then main effects, then first order interactions,
second order interactions, etc. as one proceeds from the leftmost column.

� Let LDL′ = (X ′X) be the generalized Cholesky decomposition of the X ′X matrix, where
L is lower triangular with Lii = 1 and D is diagonal. Dii will be zero if column i of X can
be written as a linear combination of prior columns and will be positive otherwise.

� Let L′k refer to the rows of L′ that correspond to the kth term in the model, e.g., a main
effect. Then the test statistics for L′1β = 0, L′2β = 0, . . . , are the sums of squares for the
standard ANOVA table, often referred to as type I or sequential sums of squares.

� If X corresponds to a balanced factorial design, then Lij 6= 0 only if i < j and term j
contains i. The interaction x1:x2 contains x1 for instance.

The blocks of zeros implied by the last of these leads to one of the most well known identities
in ANOVA: for a balanced factorial design, the type I SS for a term does not depend on its order
in the model. (Swapping the order of two main effects, for instance, simply swaps those rows
and columns of L.) In SAS parlance, type I and type II sums of squares are identical. Some
statisticians see this independence between the test and the order of the terms within the model
as an interesting aside while others view it as a central aspect of estimation, one which should
be emulated in other models whenever possible. Goodnight writes

For most unbalanced designs it is usually possible to test the same set of hypotheses
(estimable functions) that would have been tested if the design had been balanced.
For those designs which started out balanced, but for which observations were lost
due to external forces, there is no reason to alter the hypothesis [5].

This is actually quite different than the rationale found in Yates [?]: Yates focused on an estimate
of interest (a marginal mean) for which he derived a test statistic, while the above is focused on
the test statistic itself. Type I and II never coincide for continuous variables and so none of this
argument applies to them, however.

The L′ matrix for the sequential sums of squares is orthogonal with respect to (X ′X)−, the

variance matrix of β̂, i.e., L′i(X
′X)−Lj = 0 for any terms i and j with i 6= j. One way to

construct the Yates’ SS, i.e., the global test that the PMM values for all levels of a particular
factor are equal, is to find an L′ matrix that is upper triangular, maximal rank, has zeros off
the diagonal for unrelated terms, and is orthogonal to (Z ′Z)−, where Z is the design matrix for
an orthogonal subset. If there are no missing cells in the design, i.e., no combination of factors
which is present in the model statement but not in the data, then Z = unique(X) is a direct
way to create a balanced subset, with L the Cholesky decomposition of Z ′Z.
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The SAS type III definition simply carries this idea forward. The formal definition is found
in [5]: “A set of Ls, one for each effect in the model, is type III if each L is a maximum rank
hypothesis involving only the parameters of the effect in question and parameters of effects that
contain it; and each L is orthogonal to all Ls of effects that contain the effect in question.” The
outline of an algorithm to create such an L for design that may or may not have missing cells
can be inferred from the examples of a second SAS technical report [3]. This is the algorithm
used by the yates function.

1. Create a design matrix X in standard form, i.e., intercept, then main effects, then first
order interaction, etc., from left to right, with categorical variables coded in the same way
as the SAS GLM procedure.

� A categorical variable with k levels is represented by k 0/1 dummy variables, which
represent the first, second, etc. levels of the variable.

� The interaction between two categorical variables that have k and m levels will be
represented by km 0/1 columns, and likewise for higher level interactions.

2. Create the p by p dependency matrix D = (X ′X)−(X ′X) from the n by p matrix X.

� D will be upper triangular. If row i of X can be written as a linear combination of
prior rows, the ith column of D will contain those coefficients, otherwise the column
will be a copy of the identity.

� Sample R code is D = coef(lm(X ~I(X) -1))

3. Intialize L′ = D, and then partially orthogonalize L.

� If terms i and j, i < j, are such that term j includes term i, then make Li orthogonal to
Lj . That is, replace Li with the residuals from a regression of Li on Lj . (Orthogonalize
rows of L′ = columns of L.)

� Continuous variables or interactions involving a continuous variable are ignored in
this step.

The resulting L′ matrix is then used to compute test statistics for all of the terms that are
categorical or interactions of categoricals. Terms involving continuous variables use a type II
test and a completely separate computation, but then are labeled as type III.

The SGTT code in the yates function only handles models whose categorical variables have
been coded using either the contr.treatment or contr.SAS options, and that admit of full rank
tests. (If there are too many terms and too little data a factor with k levels, say, might not have
the expected k − 1 degrees of freedom test possible.) The point of the method=’sgtt’ option is
not to compute all cases but to illustrate what a type III test is and is not; and as an answer to
the widespread and uncritical use of such.

If the model/data combination has no missing cells, then the L′ construction of type III tests
gives exactly the same same result as PMM estimates using a factorial population followed by a
test for equality of the PMM estimates, which is in turn exactly equal to the proposal of Yates.
The SAS LSM values agree with the PMM estimates in this case as well, so it is fair to say that
type III tests are a global test for equality of a factor, adjusting for all others. If in addition
the model has continuous variables, then the SAS LSM estimates correspond the PMM for the
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mixed population=’SAS’ case, and again the type III test agrees with a test of equality for the
PMM values.

If there are missing cells, however, one or more of the PMM values will not be estimable
and there is no global population based test. A set of valid type III estimators can still be
constructed, which have an upper triangular matrix form, with appropriate blocks of zeros and
a particular orthogonality. It is however no longer clear what connection, if any, that these tests
have to a factorial population. The upper triangular part assures that the set of tests “covers the
space” in the way that type I tests do and the blocks of zeros ensure that they will be unchanged
by a reodering of the terms. But what exactly do they test? A few more ideas are presented in
an appendix.

Note that the SGTT algorithm is the SAS glm type 3 procedure. Several other SAS proce-
dures also create output labeled as “type 3” which is not necessarily the same. The SAS phreg
procedure appears to use the NSTT computation, for instance.

7.1 NSTT

A major problem with SAS type III computations is that almost no one knows exactly what is
being computed nor quite how to do it. The documentation is deficient for the glm procedure
and is largely non-existent for others. This has led to propogation of a false “type 3” algorithm
in multiple packages, which I call the not-safe-type-three (NSTT).

1. Build an X matrix from left to right in the standard order of intercept, then main effects,
then 2 way interactions, etc.

2. From left to right, remove any columns of X that are redundant, i.e., can be written as a
linear combination of prior columns. They will not be used again.

3. Fit the model using the revised X matrix.

4. For any given term k, do simple test that the coefficients corresponding to term k are zero.
In a model y ~a * b the test for b compares a model with the all the columms to one that
has only those for a and a:b (the restricted subset of a:b remaining after step 2).

Here is an example using the solder data:

> options(contrasts = c("contr.treatment", "contr.poly")) # default

> nfit1 <- lm(skips ~ Solder*Opening + PadType, solder)

> drop1(nfit1, ~Solder)

Single term deletions

Model:

skips ~ Solder * Opening + PadType

Df Sum of Sq RSS AIC

<none> 32260 3251.3

Solder 1 389.88 32650 3260.1

This shows a type III sum of squares of 389.88. However, if a different coding is used then
we get a very different SS: it increases by over 25 fold.
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> options(contrasts = c("contr.SAS", "contr.poly"))

> nfit2 <- lm(skips ~ Solder*Opening + PadType, solder)

> drop1(nfit2, ~Solder)

Single term deletions

Model:

skips ~ Solder * Opening + PadType

Df Sum of Sq RSS AIC

<none> 32260 3251.3

Solder 1 10680 42940 3506.7

The example shows a primary problem with the NSTT: the answer that you get depends on
how the contrasts were coded. For a simple 2 way interaction like the above, it turns out that
the NSTT actually tests the effect of Solder within the reference cell for Opening, the NSTT is
not a global test at all.

> with(solder, tapply(skips, list(Solder, Opening), mean))

L M S

Thick 0.3933333 2.80 5.52000

Thin 2.6733333 4.34 17.45333

Looking at the simple cell means shown above, it is no surprise that the contr.SAS fit, which
uses Opening=S as the reference will yield a large NSTT SS since it is a comparison of 17.4
and 5.5, while the contr.treatment version using Opening=L as reference has a much smaller
NSTT. In fact, re-running a particular analysis with different reference levels for one or more
of the adjusting variables is a quick way to diagnose probable use of the NSTT algorithm by a
program. Several R libraries that advertise type 3 computations actually use the NSTT.

The biggest problem with the NSTT is that it sometimes gives the correct answer. If one
uses summation constraints, a form of the model that most of us have not seen since graduate
school:

yijk = µ+ αi + βj + γij + ε∑
i

αi = 0∑
j

βj = 0

∑
ij

γij = 0

then the ‘reference cell’ for Opening is the mean Opening effect, and the NSTT for Solder will
correspond to an PMM using the factorial population, the PMM is invariant to the chosen coding.

> options(contrasts = c("contr.sum", "contr.poly"))

> nfit3 <- lm(skips ~ Solder*Opening + PadType, solder)

> drop1(nfit3, ~Solder )
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Single term deletions

Model:

skips ~ Solder * Opening + PadType

Df Sum of Sq RSS AIC

<none> 32260 3251.3

Solder 1 6204.2 38464 3407.6

> yates(nfit1, ~Solder, population='factorial')

Solder pmm std test chisq df ss Pr

Thick 2.9044 0.28461 Solder 170.2 1 6204.2 < 1e-08

Thin 8.1556 0.28461

Thus our acronym for this method of not-safe-type-three (NSTT), since the method does
work if one is particularly careful. Given the number of incorrect analyses that have arisen from
this approach ‘nonsense type 3’ would also be valid interpretation, however.

8 Conclusion

The population average predicted value or marginal estimate is a very useful statistical concept.
The yates function computes these using a direct approach: create the relevant population,
get all the predicted values, and average them. An advantage of this simple approach is that
because predicted values do not depend on how a model is parameterized, the results are naturally
invariant to how categorical variables are represented. But like many good ideas in statistics,
proper application of the idea requires some thought with respect to the choice of a statistic to
be averaged, and the population over which take the expectation. For linear models the simple
linear predictor Xβ is an obvious choice as a statistic, but for other models the choice is more
nuanced. For a Cox model we prefer the restricted mean, but this is an area that needs more
research for a firm recommendation.

In terms of the population choice, the population should match the research question at hand.
The factorial population in particular has been badly overused. This population is appropriate
for the use cases described in Yates [7] and Goodnight [5] that relate to designed experiments,
the solder data is a good example. But in observational or clinical data the factorial population
result will too often be the “answer to a question that nobody asked”. In the FLC data set,
for instance, the factorial population has equal numbers of subjects in every age group: a a
population that no one will ever observe. Using the result from such computations to inform
medical decisions begins to resemble medieval debates of angels dancing on the head of a pin.
This suboptimal population choice is the primary damming criticism for “type III” estimates.

Because the detailed algorithm and criteria for type III tests is not well documented, many
psuedo type 3 estimates have arisen of which the NSTT is perhaps the most common. Statistical
software that claims to produce a “type III” estimate while doing something else is indisputably
wrong, even dangerous, and should not be tolerated.
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A Miscellaneous notes.

None of the material below is presented with proof. Comments to the authors that fill in any of
these gaps are welcome.

A.1 Subsampling

One reaction that I have seen to the solder data is to instead analyse a balanced subset of the
data, throwing away extra observations, because then “the result is simple to understand”. Let’s
take this desire at face value, but then add statistics to it: rerun the two steps of “select a subset”
and “compute the balanced 2-way solution” multiple times, with different random subsets each
time. In fact, we could be more compuslive and tabulate the solution for all the possible balanced
subsets, and then take an average. This will give the Yates estimate.

A.2 Type 3

Based on the L matrix argument above, one natural defintion of type III contrasts would be an
upper triangular matrix, with appropriate zeros, whose terms were orthogonal with respect to
(Z ′Z)−, the design matrix for a balanced data set. The SAS algorithm creates contrasts in an
expanded basis, and these contrasts are instead made orthogonal with respect to the identity
matrix I. Why does this work? Multiple example cases have shown that in data with no missing
cells the resulting sum of squares agrees with the Yates’ SS, but a formal proof of equivalence
has been elusive.

It would be preferable to use an algorithm that does not require rebuilding the X matrix
in the extended basis set used by the SAS approach, but instead directly used the X matrix of
the user, as it would be simpler and more portable code. For the case of no missing cells the
Cholesky decompostion of Z ′Z, for instance, satisfies this requirement. The original fit may use
treatment, SAS, Helmert, or any other dummy variable coding for the factors without affecting
the computation or result. We have not been able to discover an approach that replicates the
SAS algorithm when there are missing cells, however.

Is there a unique set of contrasts that fullfill the type III requirements for any given model and
data set pair, or many? How might they be constructed? Since tests of L′β = 0 and cL′β = 0
are equivalent for any constant c, wlog we can assume that the diagonal of L is 0 or 1.

A.3 Additive models

Consider the free light chain data and a linear model containing age group and sex as predictors.
We have spoken of factorial, data, and external populations, each of which leads to a global
test comparing the PMM estimates for males versus females. What population would give the
smallest variance for that comparison? (A question that perhaps only an academic statistician
could love.)

Here are the sample sizes of each cell.

> with(flchain, table(sex, age2))

age2

sex 50-59 60-69 70-79 80-89 90+
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F 1647 1214 949 459 81

M 1510 1115 674 202 23

The optimal population for comparing male to female will have population sizes in each age
group that are proportional to the harmonic means in each column: (1/n11 + 1/n21)−1 for age
group 1, and etc. These are the familiar denominators found in the t-test. A PMM built using
these population weights will yield the same sex difference and test as a simple additive model
with sex and age group. Linear regression is, after all, the UMVE.
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