Package ‘timeseriesdb’

August 6, 2018

Type Package
Version 0.4.1
Title Manage Time Series for Official Statistics with R and PostgreSQL

Description Archive and manage times series data from official statistics. The 'timeseriesdb' pack-
age was designed to manage a large catalog of time series from official statistics which are typi-
cally published on a monthly, quarterly or yearly basis. Thus timeseriesdb is optimized to han-
dle updates caused by data revision as well as elaborate, multi-lingual meta information.

Author ““Matthias Bannert <bannert@kof.ethz.ch> [aut, cre]"
Depends R (>= 3.0.0), RPostgreSQL, jsonlite (>= 1.1), methods
Imports xts, zoo, xtable, shiny, DBI, openxlsx, data.table (>= 1.9.4),
Suggests knitr, testthat

VignetteBuilder knitr

Date 2018-07-19

License GPL-2

URL https://github.com/mbannert/timeseriesdb

BugReports https://github.com/mbannert/timeseriesdb/issues
LazyData true

Maintainer 'Matthias Bannert' <bannert@kof.ethz.ch>
RoxygenNote 6.0.1

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2018-08-06 11:20:03 UTC

R topics documented:

activateTsSet e
addKeysToTsSet e
addMetalnformation e

https://github.com/mbannert/timeseriesdb
https://github.com/mbannert/timeseriesdb/issues

2 activateTsSet
beginTransaction e e e e e 4
changeTsSetOwner e 5
createConObj L 5
createHstore L e 6
createTimeseriesMain e 7
dblsValid,PostgreSQLConnection-method 8
deactivateTsSet e e e e 8
deleteTimeSeries e e e e e e 9
deleteTsSet e e 10
exportMetaEnv oL 10
getListDepth o . 11
getMeta e e e 12
getTimeSeriesVintages L 12
indexToDate e e e e e e 13
JoinTsSets e 13
LStTSSets e e e 14
loadTsSet e 15
overwriteTsSet e 15
peCopyDf . . . e 16
readMetalnformation 17
readTimeSeries L e 18
removeKeysFromTsSet 19
rmAlIBut 19
runCreateTables e 20
runDbQuery 20
runUpgradeTables e 21
searchKVP e e 21
setAttrListWise L e e e e 22
storeListChunkWise e e 22
storeMetaChunkWise e 23
storeMetalnformation L 24
storeTimeSeries e e e 24
storeTSSet e e e e e 25
updateMetalnformation L. 26
writeLogFile 27
zooLikeDateconvert e e 27

Index 29

activateTsSet Activate a Set of Time Series

Description

Activate a set of time series to get in the user’s sight. Deactivated sets are not deleted though.

addKeysToTsSet

Usage

activateTsSet(con, set_name, user_name = Sys.info()["user"],

thl = "timeseries_sets"”, schema = "timeseries”)

Arguments

con PostgreSQL connection object

set_name character name of the set to be activated.

user_name character name of the user. Defaults to system user.

tbl character name of set tgble. Defaults to timeseries_sets.

schema character name of the database schema. Defaults to timeseries.
Author(s)

Matthias Bannert, Ioan Gabriel Bucur

addKeysToTsSet Add keys to an existing Time Series set

Description

Add keys to an existing Time Series set

Usage

addKeysToTsSet(con, set_name, ts_keys, user_name = Sys.info()["user"],

thl = "timeseries_sets"”, schema = "timeseries”)

Arguments

con PostgreSQL connection

set_name The name of the set

ts_keys A character vector of keys to be added

user_name The user name of the set’s owner

tbl Name of the time series sets table

schema Schema of the time series database to use
Author(s)

Severin Thoni

4 beginTransaction

addMetaInformation Add Meta Information to R Environments

Description

This function adds meta information to environments that are explicitly meant to store Meta In-
formation. This function can be used separately in interactive R Session or to facilitate mapping
database information to R.

Usage

addMetalInformation(series, map_list, meta_env = NULL, overwrite_objects = F,
overwrite_elements = T)

Arguments
series character name key of
map_list list to represent key value mapping. Could also be of class miro.
meta_env an environment that already holds meta information and should be extended.

Defaults to NULL in which case it creates and returns a new environment.
overwrite_objects
logical should the entire existing meta information be overwritten inside the
environment? Defaults to FALSE
overwrite_elements
logical should single matching elements of a meta information objectes be over-
written. Defaults to TRUE.

beginTransaction Convenience Wrapper to SQL classics for BEGIN,COMMIT, ROLL-
BACK

Description

this set of function can speed up loops by starting a transaction, performing several queries and
ending them with either commit or rollback.

Usage
beginTransaction(con, quiet = T)
commitTransaction(con, quiet = T)

rollbackTransaction(con, quiet = T)

changeTsSetOwner 5

Arguments
con PostgreSQL connection object.
quiet logical should the query be executed quietly? Otherwise BEGIN, COMMIT or
ROLLBACK are echoed.
changeTsSetOwner Change the owner of a Time Series set
Description

Change the owner of a Time Series set

Usage

changeTsSetOwner(con, set_name, old_owner = Sys.info()["user”], new_owner,

tbl = "timeseries_sets”, schema = "timeseries”)

Arguments

con PostgreSQL connection

set_name Name of the set to be updates

old_owner User name of the set’s current owner

new_owner User name of the set’s new owner

tbl Name of the time series sets table

schema Schema of the time series database to use
Author(s)

Severin Thoni

createConObj Conveniently Create Connection Object to PostgreSQL based time-
seriesdb

Description

Create a conection object while getting user information from the R session. Also standard db
parameters like port and driver are set. Yet flexible information like host or dbname should be
added to Sys.setenv environments.

Usage

createConObj(dbuser = Sys.info()["user”],
dbname = Sys.getenv("TIMESERIESDB_NAME"),
dbhost = Sys.getenv("TIMESERIESDB_HOST"), passwd, dbport = 5432)

createHstore

Arguments
dbuser character username. Defaults to reading username from Sys.info()
dbname character name of the database, assumes dbname is stored in TIMESERIESDB_NAME.
dbhost character host address, asssumes dbhost ist stored in TIMESERIESDB_HOST.
passwd character password is used. No defaults, best way to pass a password is to
.1s.askForPassword to hide password entries when using R Studio.
dbport integer port number defaults to 5432 for postgres
createHstore Create Hstore
Description

Function to Create Hstore Key Value Pair Mapping

Usage

createHstore(x,

)

S3 method for class 'ts'

createHstore(x,

S3 method for class 'zoo
createHstore(x,

L)

S3 method for class 'data.frame'

createHstore(x,

)

S3 method for class 'list'

createHstore(x,

Arguments

X

Details

L)

a time series object, a two column data frame or object of S3 class miro (meta
information for R objects).

optional arguments, fct = TRUE create text expressions of hstore function calls.
also for data.frames key_pos and value_pos could be given if they are different
from 1 and 2. e.g. position of the key col and pasition of the value col in a
data.frame.

This function creates a key value pair mapping from a time series object. It returns an hstore object
that can be inserted to a PostgreSQL database relation field of type hstore.

create TimeseriesMain 7

Author(s)

Matthias Bannert

Examples

ts1 <- ts(rnorm(100),start = c(1990,1),frequency = 4)
createHstore(ts1)

createTimeseriesMain Create Statements for PostgreSQL tables

Description

These function creates statements to set up 5 Tables used to manage and archive time series infor-
mation in PostgreSQL. Make sure you have sufficient rights to create relations in your PostgreSQL
schema. These function are only used for an initial setup. You can either run this group of functions
separately or use runCreateTables to run all functions at once.

Usage
createTimeseriesMain(schema = "timeseries”, tbl = "timeseries_main")
createTimeseriesVintages(schema = "timeseries”, tbl = "timeseries_vintages")
createTimeseriesSets(schema = "timeseries”, tbl = "timeseries_sets")
createMetaUnlocalized(schema = "timeseries”, tbl = "meta_data_unlocalized”,
main = "timeseries_main")
createMetalocalized(schema = "timeseries”, tbl = "meta_data_localized",
main = "timeseries_main")
createMetaDatasets(schema = "timeseries”, tbl = "meta_datasets”)
Arguments
schema character denoting a PostgreSQL schema
tbl character denoting a table name
main character denoting name of the main table for referencing. This argument is

only available to meta data statements.

8 deactivateTsSet

Details
The following tables will be create in the given schema.

* "timeseries_main"contains time series themselves as hstore key value pairs.

* "timeseries_vintages"contains vintages of time series. This is useful for published data that
can be revised. see also OECD defintion of vintages

* "timeseries_sets"contains a vector of time series keys. This table can be used like a shopping
cart in an e-commerce application.

* "meta_data_unlocalized"contains translation agnostic meta information, e.g., username.

* "meta_data_localized"contains translation specific meta information, e.g., wording of a ques-
tion.

References

OECD Defintion of vintages: http://www.oecd.org/std/40315408. pdf

dbIsValid,PostgreSQLConnection-method
Check Validity of a PostgreSQL connection

Description

Is the PostgreSQL connection expired?

Usage

S4 method for signature 'PostgreSQLConnection
dbIsValid(dbObj)

Arguments

dbObj PostgreSQL connection object.

deactivateTsSet Deactivate a Set of Time Series

Description
This deactivates a set of time series to get out of the user’s sight, but it’s not the deleted because
users may not delete sets.

Usage

deactivateTsSet(con, set_name, user_name = Sys.info()["user"],
thl = "timeseries_sets”, schema = "timeseries")

http://www.oecd.org/std/40315408.pdf

deleteTimeSeries 9

Arguments
con PostgreSQL connection object
set_name character name of the set to be deactivated.
user_name character name of the user. Defaults to system user.
tbl character name of set tgble. Defaults to timeseries_sets.
schema character name of the database schema. Defaults to timeseries.
Author(s)

Matthias Bannert, Ioan Gabriel Bucur

deleteTimeSeries Delete Time Series from the database

Description

This function deletes time series AND their metainformation from the database. All meta infor-
mation in all series will be deleted. To only edit the original time series use storeTimeSeries to
overwrite existing series.

Usage
deleteTimeSeries(series, con, chunksize = 10000,
tbl_main = "timeseries_main”, schema = "timeseries")
Arguments
series character name of the timeseries
con a PostgreSQL connection object
chunksize integer max size of chunk when deleting chunkwise. Defaults to 10000.
tbl_main character name of the table that contains the main time series catalog. Defaults

to "timeseries_main’.

schema SQL schema name. Defaults to timeseries’.

10 exportMetaEnv

deleteTsSet Permanently delete a Set of Time Series Keys

Description

Permanently delete a Set of Time Series Keys

Usage

deleteTsSet(con, set_name, user_name = Sys.info()["user”],

thbl = "timeseries_sets"”, schema = "timeseries”)

Arguments

con PostgreSQL connection object

set_name The name of the set to be deleted

user_name Username to which the set belongs

tbl Name of set table

schema Name of timeseries schema
Author(s)

Severin Thoni

exportMetaEnv Export Content of Meta Information Environment to Various File For-
mats

Description

The idea of this function is to create a standalone meta information catalog. The catalog file can
be used as a companion to illustrate time series exports from timeseriesdb. Note that this function
imports functionality from other packages such as data.table and openxlsx.

Usage

exportMetaEnv(meta_env, fname = NULL, export_type = "pdf",

n,n

flexcols = NULL, row.names = F, sep = ";", overwrite = T)

getListDepth 11

Arguments
meta_env meta_env environment object.
fname character file name including file extension. If set to NULL no file is export.
The resulting data.frame is just displayed on the console in this case. Defaults
to NULL.
export_type character indication which file format should be exported. "pdf","tex","csv" are
the eligible.
flexcols which columns shoukd be kept in the data.frame. Defaults to NULL, using all
columns.
row.names logical should row.names be displayed in csv.
sep character seperator
overwrite should existing files be overwritten? Defaults to TRUE.
getListDepth Determine depth of a list
Description

This function recursively checks the depth of a list and returns an integer value of depth

Usage

getListDepth(this)
Arguments

this an object of class list
Details

Hat tip to flodel at stackoverflow for suggesting this light weight way analyze depth of a nested
list. Further complexity needs to be added to cover the fact that data.frame are lists, too. A more
sophisticated recursive function can be found in the gatveys2 package.

References

http://stackoverflow.com/questions/13432863/determine-level-of-nesting-in-r

12 getTimeSeries Vintages

getMeta Quickly Handle Meta Information

Description

Sometimes reading the entire meta description for all language or multiple time series might not be
necessary. Quick handle operators help users to access the information quickly as a non-nested list
for only one language is returned. These functions are alpha status, more will follow.

Usage
getMeta(series, lang, con, tbl = "meta_data_localized”,
schema = "timeseries”)
Arguments
series an R time series object
lang character name of the language of the meta information. Typically ’de’, ’it’, ’fr’
or’en’.
con connection object
tbl character name of the table that contains the meta information.
schema SQL schema name. Defaults to "timeseries’.

getTimeSeriesVintages Get all available vintages for the time series identified by series

Description

Get all available vintages for the time series identified by series

Usage
getTimeSeriesVintages(series, con, tbl_vintages = "timeseries_vintages”,
schema = "timeseries")
Arguments
series character Names of the time series for which to get the vintages
con PostgreSQL connection object.

tbl_vintages character string denoting the name of the vintages time series table in the Post-
greSQL database.

schema SQL schema name. Defaults to timeseries.

indexToDate 13

indexToDate Convert ts style time index Date representation

Description

Helper function to convert time series indices of the form 2005.75 to a date representation like
2005-07-01. Does not currently support sub-monthly frequencies.

Usage

indexToDate(x, as.string = FALSE)

Arguments
X numeric A vector of time series time indices (e.g. from stats::time)
as.string logical If as.string is TRUE the string representation of the Date is returned,
otherwise a Date object.
Author(s)

Severin Thoni

joinTsSets Join two Time Series sets together

Description

This will create a new set set_name_new with the keys from both set_name_1 and set_name_2
combined. By default the description will be a combination of the descriptions of the subsets and
the new set will only be active it BOTH subsets were active.

Usage

joinTsSets(con, set_name_1, set_name_2, set_name_new,
user_namel = Sys.info()["user"], user_name2 = user_namel,
user_name_new = user_namel, description = NULL, active = NULL,
thl = "timeseries_sets”, schema = "timeseries")

14 listTsSets

Arguments
con PostgreSQL connection
set_name_1 Name of the first set
set_name_2 Name of the second set

set_name_new Name of the set to be created
user_namel User name of the first set’s owner
user_name2 User name of the second set’s owner

user_name_new User name of the new set’s owner

description Description of the new set

active Should the new set be marked as active

tbl The time series set table

schema The time series db schema to use
Author(s)

Severin Thoni

listTsSets List All Time Series Sets for a Particular User

Description

Show the names of all sets that are available to a particular user.

Usage

listTsSets(con, user_name = Sys.info()["user”], tbl = "timeseries_sets”,

schema = "timeseries")

Arguments

con PostgreSQL connection object

user_name character name of the user. Defaults to system user.

tbl character name of set tgble. Defaults to timeseries_sets.

schema character name of the database schema. Defaults to timeseries.
Author(s)

Matthias Bannert, Gabriel Bucur

loadTsSet 15

loadTsSet Load a Time Series Set

Description

Loads a Time Series Set.

Usage

loadTsSet(con, set_name, user_name = Sys.info()["user"],

thl = "timeseries_sets"”, schema = "timeseries"”)

Arguments

con PostgreSQL connection object

set_name character name of the set to be loaded.

user_name character name of the user. Defaults to system user.

tbl character name of set tgble. Defaults to timeseries_sets.

schema character name of the database schema. Defaults to timeseries.
Author(s)

Matthias Bannert, Ioan Gabriel Bucur

overwriteTsSet Overwrite a Time Series set with a new one

Description

Completely replaces the set set_name of user_name with the new values (keys, description, active)
of the new one. If the set does not yet exist for the given user it will be created.

Usage

overwriteTsSet(con, set_name, ts_keys, user_name = Sys.info()["user"],
description = "", active = TRUE, tbl = "timeseries_sets”,
schema = "timeseries")

16

Arguments
con PostgreSQL connection
set_name The name of the set to be overwritten
ts_keys The keys in the new set
user_name The owner of the set to be overwritten
description The description of the new set
active Should the new set be active?
tbl Name of the time series sets table
schema Schema of the time series database to use
Author(s)

Severin Thoni

pgCopyDf

pgCopyDf Copy data.frame to postgres using bulk copy

Description

Copy data.frame to postgres using bulk copy

Usage

pgCopyDf (con, d, q, chunksize = 10000)

Arguments
con PostgreSQL connection object.
d data.frame
q character string containing a SQL query.

chunksize integer, defaults to 10000.

readMetalnformation 17

readMetalInformation Read Meta Information from a Time Series Database

Description

This function reads meta information from a timeseriesdb package PostgreSQL database and puts
into a meta information environment.

Usage
readMetalnformation(series, con, locale = "de", tbl = "meta_data_localized",
overwrite_objects = F, overwrite_elements = T, meta_env = NULL,
schema = "timeseries”)
Arguments
series character name of a time series object.
con PostgreSQL connection object
locale character denoting the locale of the meta information that is queried. defaults
to ’de’ for German. At the KOF Swiss Economic Institute meta information
should be available als in English ’en’, French *fr’ and Italian ’it’. Set the locale
to NULL to query unlocalized meta information.
tbl character name of the table that contains meta information. Defaults to *'meta_data_localized’.

Choose meta 'meta_data_unlocalized’ when locale is set to NULL.

overwrite_objects
logical should the entire object for a key be overwritten. Defaults to FALSE.

overwrite_elements
logical should single elements inside the environment be overwritten. Defaults
to TRUE.

meta_env environment to which the meta information should be added. Defaults to NULL.
In this case an environment will be returned. If you run this function in a loop
best create an empty environment before the loop or apply call and pass the
environment to this function. By doing so new elements will be added to the
environment.

schema SQL schema name. Defaults to timeseries.

18

readTimeSeries

readTimeSeries

Read Time Series From PostgreSQL database

Description

This function reads a time series from a PostgreSQL relation that uses Postgres’ key value pair
storage (hstore). After reading the information from the database a standard R time series object of
class ’ts’ is built and returned. Irregular time series return zoo objects.

Usage

readTimeSeries(series, con, valid_on = NULL, tbl = "timeseries_main”,
tbl_vintages = "timeseries_vintages”, schema = "timeseries”, env = NULL,

pkg_for_irreg =

n n

xts"”, chunksize = 10000, respect_release_date = FALSE,

regex = FALSE)

Arguments

series
con

valid_on

tbl

tbl_vintages
schema

env

pkg_for_irreg

chunksize

character vector of time series keys
a PostgreSQL connection object

character date string on which the series should be valid. Defaults to NULL.
Only needed when different vintages of a time series are stored.

character string denoting the name of the relation that contains ts_key, ts_data,
ts_frequency.

character table name of the relation that holds time series vintages
character SQL schema name. Defaults to timeseries.

environment, optional argument to dump time series directly into an environ-
ment. Most often used with globalenv(), which gives all time series directly
back to the global env.

character name of package for irregular series. xts or zoo, defaults to xts.

numeric value of threshold at which input vector should be processed in chunks.
defaults to 70000.

respect_release_date

regex

Author(s)

logical should the relaase set in the database be respected. If TRUE, the last
observation will be cut off if server time is before release date. Reasonable for
relesae date.

If set to TRUE, series will be interpreted as a regular exporession, so that all
time series whose keys match the pattern will be returned.

Matthias Bannert, Gabriel Bucur

removeKeysFromTsSet 19

removeKeysFromTsSet Remove keys from a Time Series set (if present)

Description

Remove keys from a Time Series set (if present)

Usage
removeKeysFromTsSet(con, set_name, ts_keys, user_name = Sys.info()["user"],
tbl = "timeseries_sets"”, schema = "timeseries”)
Arguments
con PostgreSQL connection
set_name character name of a time series set.
ts_keys A character vector of keys to be removed.
user_name The user name of the set’s owner.
tbl Name of the time series sets table.
schema Schema of the time series database to use.
Author(s)

Severin Thoni

rmA11But Delete all objects except for specific objects

Description
Run rm(list=Is()) but sparing some objects from being deleted. This function is particularly handy
when you want to clear the memory but want to keep the the database connection object.

Usage

rmAll1But(but, env = .GlobalEnv, quiet = F)

Arguments
but character vector of variables that should not be deleted.
env environment to clean up. Defaults to .Globalenv

quiet logical should functions print output? Defaults to falase.

20 runDbQuery

runCreateTables Run Setup: Create all mandatory tables

Description

Creates all tables absolutely needed for timeseriesdb to work correctly. This function should only
be run once as an initial setup. Make sure you got sufficient access rights. The function returns a
list of status reports for the its 5 database queries. look at this helps you to see whether anything

went wrong.
Usage
runCreateTables(con, schema = "timeseries")
Arguments
con PostgreSQL connection object. Typically created with createConObj.
schema character denoting a PostgreSQL schema.
runDbQuery Run SELECT query
Description

Run database queries using dbSendQuery, fetch and dbClearResult in similar fashion as dbGetQuery
but provide better error handling. This function always returns a data.frame as opposed to different
types in case of an exception. However, if the database query fails and empty data.frame is re-
turned. Besides query status and database error are returned as attributes. Make sure to use BEGIN
and COMMIT outside of these statements.

Usage
runDbQuery(con, sqgl_query, ...)
Arguments
con PostgreSQL connection object
sql_query character string containing a SQL query
Additional arguments to be passed to dbGetQuery
Examples

There's no connection, so this returns a proper error message.

out_obj <- runDbQuery(bogus_connection, "SELECT * FROM some_table")
attributes(out_obj)

runUpgradeTables 21

runUpgradeTables Add Release Date Column to Tables

Description

Adds a release column to tables of older versions of timeseriesdb.

Usage
runUpgradeTables(con, schema = "timeseries")
Arguments
con PostgreSQLL connection object
schema database schema, defaults to 'timeseries’.
searchKVpP Search Key-Value Fairs, look for existing keys in an Hstore
Description

Search hstore key value in PostgreSQL. Very handsome when crawling the database by meta infor-
maiton. Currently works for non translated meta information.

Usage
searchkVP(key, value, con = get(Sys.getenv("TIMESERIESDB_CON")),
hstore = "meta_data”, tbl = "meta_data_unlocalized”, where = NULL,
schema = "timeseries”)

lookForKey(key, con = get(Sys.getenv("TIMESERIESDB_CON")),

hstore = "meta_data”, tbl = "meta_data_unlocalized”, where = NULL,
schema = "timeseries")
Arguments
key character
value in the hstore
con PostgreSQL connection object
hstore name of the hstore column
tbl name of the table to be queried. defaults to *'meta_data_localized’
where character restrict the SQL query by an additional where clause. Defaults to
NULL.

schema SQL schema name. defaults to timeseries. E.g.: ts_key LIKE ...

22 storeListChunkWise

setAttrListWise Set Attributes to Each Element of List According to a Given Vector

Description
An attribute is set to all elements of a list given a vector of possible instances of the the attribute.
Note that this function fails to excecute if the vector is not of the same length list.

Usage

setAttrListWise(li, attrib, vec)

Arguments
1i a list
attrib character name of the attribute
vec vector containing all instances of the attribute
storeListChunkWise Store a List of Time Series Chunk Wise to Avoid Memory Problem
Description

This function is a wrapper around storeTimeSeries. It is used to split large lists of time series
according to memory limitations. This function uses INSERT INTO instead of the more convenient
dbWritetable for performance reasons. DO NOT USE THIS FUNCTIONS IN LOOPS OR LAP-
PLY! This function can handle a set of time series on its own and is much faster than looping over
a list. Non-unique primary keys are overwritten !

Usage
storeListChunkWise(series, con, 1i = NULL, tbl = "timeseries_main",
md_unlocal = "meta_data_unlocalized”, overwrite = T, chunksize = 10000,
schema = "timeseries"”, show_progress = FALSE)
Arguments
series character name of a time series, S3 class ts. When used with lists it is convenient
to set series to names(li). Note that the series name needs to be unique in the
database!
con a PostgreSQL connection object.
1i list of time series. Defaults to NULL to no break legacy calls that use lookup

environments.

storeMetaChunkWise

tbl

md_unlocal

overwrite

chunksize
schema

show_progress

Author(s)

23

character string denoting the name of the main time series table in the Post-
greSQL database.

character string denoting the name of the table that holds unlocalized meta in-
formation.

logical should existing records (same primary key) be overwritten? Defaults to
TRUE.

integer number of chunks. Defaults to chunks of 10K.
SQL schema name. Defaults to timeseries.

If TRUE, storeListChunkWise will print a progress indicator to the console.
Default FALSE.

Matthias Bannert, Gabriel Bucur

storeMetaChunkWise Store Meta Information Chunk Wise to Avoid Memory Problem

Description

FUNCTION DEPRECATED. This function is a wrapper around updateMetaInformation. It is
used to split large environments of meta info to avoid memory limitations. This function uses
INSERT INTO instead of the more convenient dbWritetable for performance reasons. DO NOT
USE THIS FUNCTIONS IN LOOPS OR LAPPLY! This function can handle a set of time series
on its own and is much faster than looping over a list. Non-unique primary keys are overwritten !

Usage
storeMetaChunkWise(meta_envir, con, schema = "timeseries”,
tbl = "meta_data_unlocalized"”, keys = NULL, chunksize = NULL,
quiet = T)
Arguments

meta_envir
con

schema

tbl

keys

chunksize

quiet

object of class meta_env. Most likely generated by addMetaInformation

a PostgreSQL connection object

character name of the schema to write to. Defaults to "timeseries’.

character name of the meta information table to write to. Defaults to *'meta_data_unlocalized’.

character vector of time series. If specified only the selected meta information
is stored. Defaults to NULL which stores all meta information records in the
environment.

integer number of chunks. Defaults to NULL which automatically choose chunks
based on Cstack size.

logical should the update function be quiet? Defaults to TRUE.

24 storeTimeSeries

storeMetaInformation Store Meta Information to the Database

Description

This function stores meta information to the database for a given time series. Make sure that corre-
sponding time series had been inserted to the main table before.

Usage
storeMetalnformation(series, con, tbl = "meta_data_localized”,
lookup_env = "meta_data_localized”, locale = "de", overwrite = F,
quiet = F, schema = "timeseries")
Arguments
series a character name of an time series object
con a PostgreSQL connection object
tbl name of the meta information table, defaults to localized meta data: meta_data_localized.
Alternatively choose meta_data_unlocalized if you are not translating meta in-
formation.
lookup_env name of the R environment in which to look for meta information objects
locale character locale fo the metainformation. Defaults to Germen ’de’. See also
readMetaInformation. If locale is set to NULL unlocalized meta is updated.
Make sure to change tbl to *'meta_data_unlocalized’.
overwrite logical, defaults to FALSE.
quiet logical, should there be console output for every query result ? Defaults to
FALSE.
schema SQL schema name, defaults to "timeseries’.
storeTimeSeries Write an R time series to a PostgreSQL database
Description

This function writes time series object into a relational PostgreSQL database make use of Post-
greSQL own ’key’=>’value’ storage called hstore. The schema and database needs to created
first. The parent R Package of this functions suggests a database structure designed to store a
larger amount of time series. This function uses INSERT INTO instead of the more convenient db-
Writetable for performance reasons. DO NOT USE THIS FUNCTIONS IN LOOPS OR LAPPLY!
This function can handle a set of time series on its own and is much faster than looping over a list.
Non-unique primary keys are overwritten !

storeTsSet 25

Usage
storeTimeSeries(series, con, 1li = NULL, valid_from = NULL,
release_date = NULL, store_freq = T, tbl = "timeseries_main”,
tbl_vintages = "timeseries_vintages”,
md_unlocal = "meta_data_unlocalized”, lookup_env = .GlobalEnv,
overwrite = T, schema = "timeseries")
Arguments
series character name of a time series, S3 class ts. When used with lists it is convenient
to set series to names(li). Note that the series name needs to be unique in the
database!
con a PostgreSQL connection object.
1i list of time series. Defaults to NULL to no break legacy calls that use lookup
environments.

valid_from

release_date

store_freq

tbl

tbl_vintages

md_unlocal

lookup_env

overwrite

schema

Author(s)

character date lower bound of a date range.

character date string indicating when a series should be released. This facilitates
implementations that only share part of the information before a certain release
date.

logical, should frequencies be stored. Defaults to TRUE.

character string denoting the name of the main time series table in the Post-
greSQL database.

character string denoting the name of the vintages time series table in the Post-
greSQL database.

character string denoting the name of the table that holds unlocalized meta in-
formation.

environment to look in for timeseries. Defaults to .GobalEnv.

logical should existing records (same primary key) be overwritten? Defaults to
TRUE.

SQL schema name. Defaults to timeseries.

Matthias Bannert, Charles Clavadetscher, Gabriel Bucur

storeTsSet

Store a New Set of Time Series

Description

Store a new set of Time Series to the database. Users can select the time series keys that should be
grouped inside a set.

26 updateMetalnformation

Usage
storeTsSet(con, set_name, set_keys, user_name = Sys.info()["user"],
description = "", active = TRUE, tbl = "timeseries_sets”,
schema = "timeseries")
Arguments
con PostgreSQL connection object
set_name character name of a set time series in the database.
set_keys list of keys contained in the set and their type of key.
user_name character name of the user. Defaults to system user.
description character description of the set to be stored in the db.
active logical should a set be active? Defaults to TRUE. If set to FALSE a set is not
seen directly in the GUI directly after being stored and needs to be activated
first.
tbl character name of set tgble. Defaults to timeseries_sets.
schema character name of the database schema. Defaults to timeseries.
Author(s)

Toan Gabriel Bucur, Matthias Bannert, Severin Thoni

updateMetaInformation Update Meta Information Records

Description

When a time series is stored to the database by storeTimeSeries a minimal unlocalized (i.e. un-
translatable) meta information record is being generated. This meta information can be supplement
using the updateMetalnformation methods. Depending on the class of the environment that holds
the meta information localized or unlocalized meta information is updated. NOTE: AVOID loop-
ing over this function. This functions accepts entire environments and creates large SQL queries
instead of looping over multiple small queries. In other words loops are moved to the databse level
for massive speed gain.

Usage
updateMetalInformation(meta, con, schema = "timeseries”,
tbl = "meta_data_unlocalized”, locale = NULL, keys = NULL, quiet = F,
chunksize = 10000)
S3 method for class 'meta_env'
updateMetalInformation(meta, con, schema = "timeseries”,
tbl = "meta_data_unlocalized”, locale = NULL, keys = NULL, quiet = F,

chunksize = 10000)

writeLogFile 27

Arguments
meta object of class meta_env. Most likely generated by addMetaInformation
con a PostgreSQL connection object
schema character name of the schema to write to. Defaults to "timeseries’.
tbl character name of the meta information table to write to. Defaults to *'meta_data_unlocalized’.
locale character iso 2 digit locae description. Defaults to NULL.
keys character vector of time series. If specified only the selected meta information
is stored. Defaults to NULL which stores all meta information records in the
environment.
quiet logical should function be quiet instead of returning a message when done? De-
faults to FALSE.
chunksize integer max size of chunks to split large query in.
writelogFile Simple Log File Writer
Description

Most simple log file writer just write steps of a script to a text file.

Usage

writeLogFile(msg, filename = NULL, line_end = "\n")

Arguments
msg log file message
filename character name of a textfile. Defaults to NULL.
line_end line end character
zoolLikeDateconvert Zoo like Date Conversion
Description

This function is taken from the zoo package. It is basically the S3 method as.Date.numeric of
the package zoo. It is used to turn 2005.75 (3rd quarter of 2005) like date formats into dates like
2005-07-01.

Usage

zoolLikeDateConvert(x, offset = 0, ...)

28 zooLikeDateconvert

Arguments
X object of class ts or zoo (experimental)
offset numeric defaults to 0. See the zoo package for more information.
optional arguments.
Author(s)

Achim Zeileis, Gabor Grothendieck, Jeffrey A. Ryan, Felix Andrews

Index

activateTsSet, 2 indexToDate, 13
addKeysToTsSet, 3
addMetalInformation, 4, 23, 27 joinTsSets, 13
beginTransaction, 4 listTsSets, 14
loadTsSet, 15
changeTsSetOwner, 5 lookForKey (searchKVP), 21
commitTransaction (beginTransaction), 4
createConObj, 5, 20 overwriteTsSet, 15
createHstore, 6
createMetaDatasets pgCopyDf, 16
createTimeseriesMain), 7 .
(.) readMetaInformation, 17, 24
createMetalocalized

readTimeSeries, 18

removeKeysFromTsSet, 19

rmAl1But, 19

rollbackTransaction (beginTransaction),
4

runCreateTables, 7, 20

runDbQuery, 20

runUpgradeTables, 21

(createTimeseriesMain), 7
createMetalUnlocalized
(createTimeseriesMain), 7
createTimeseriesMain, 7
createTimeseriesSets
(createTimeseriesMain), 7
createTimeseriesVintages
(createTimeseriesMain), 7

searchKVP, 21
dbGetQuery, 20 setAttrLlstW1se122
. storelListChunkWise, 22
dbIsValid -
toreMetaChunkWise, 23

dbIsvValid,PostgreSQLC tion-method).
(dbIsvalid,PostgreSQLConnection-me Os)toreMetaInformation,24

dbClearResult, 20

8 . .
dbIsValid,PostgreSQLConnection-method, storeTimeSeries, 9, 22, 24, 26
] storeTsSet, 25

dbSendQuery, 20
deactivateTsSet, 8
deleteTimeSeries, 9 writeLogFile, 27
deleteTsSet, 10

updateMetalnformation, 23, 26

zoolLikeDateConvert
exportMetaknv, 10 (zooLikeDateconvert), 27

zoolLikeDateconvert, 27
fetch, 20

getlListDepth, 11
getMeta, 12
getTimeSeriesVintages, 12

29

	activateTsSet
	addKeysToTsSet
	addMetaInformation
	beginTransaction
	changeTsSetOwner
	createConObj
	createHstore
	createTimeseriesMain
	dbIsValid,PostgreSQLConnection-method
	deactivateTsSet
	deleteTimeSeries
	deleteTsSet
	exportMetaEnv
	getListDepth
	getMeta
	getTimeSeriesVintages
	indexToDate
	joinTsSets
	listTsSets
	loadTsSet
	overwriteTsSet
	pgCopyDf
	readMetaInformation
	readTimeSeries
	removeKeysFromTsSet
	rmAllBut
	runCreateTables
	runDbQuery
	runUpgradeTables
	searchKVP
	setAttrListWise
	storeListChunkWise
	storeMetaChunkWise
	storeMetaInformation
	storeTimeSeries
	storeTsSet
	updateMetaInformation
	writeLogFile
	zooLikeDateconvert
	Index

