Package ‘bamdit’

August 23, 2016

Type Package
Title Bayesian Meta-Analysis of Diagnostic Test Data
Version 3.0.0
Date 2016-08-23
Depends R (>= 3.1.0)
Imports rjags (>= 3.4.0), R2jags (>= 0.04-03), ggplot2, ggExtra, MASS, grid, gridExtra
SystemRequirements JAGS (>= 3.4.0) (see http://mcmc-jags.sourceforge.net)
Description Functions for Bayesian meta-analysis of diagnostic test data which are based on a scale mixtures bivariate random-effects model.
License GPL (>= 2)
Repository CRAN
RoxygenNote 5.0.1
NeedsCompilation no
Author Pablo Emilio Verde [aut, cre]
Maintainer Pablo Emilio Verde <pabloemilio.verde@hhu.de>
Date/Publication 2016-08-23 16:31:13

R topics documented:

bamdit-package ... 2
bsroc ... 3
t ... 4
ep ... 5
glas ... 6
gould ... 6
metadiag ... 7
mri ... 13
plot.metadiag ... 14
plotcompare ... 16
Bayesian meta-analysis of diagnostic test data based on a scale mixtures bivariate random-effects model. This package was developed with the aim of simplifying the use of meta-analysis models that up to now have demanded great statistical expertise in Bayesian meta-analysis. The package implements a series of innovative statistical techniques including: the BSROC (Bayesian Summary ROC) curve, the BAUC (Bayesian AUC), predictive surfaces, the use of prior distributions that avoid boundary estimation problems of component of variance and correlation parameters, analysis of conflict of evidence and robust estimation of model parameters. In addition, the package comes with several published examples of meta-analysis that can be used for illustration or further research in this area.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>bamdit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>3.0.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2016-08-23</td>
</tr>
<tr>
<td>License:</td>
<td>GPL (>= 2)</td>
</tr>
<tr>
<td>LazyLoad:</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

PD Dr. Pablo Emilio Verde <pabloemilio.verde@hhu.de>

References

bsroc

bsroc

Description

This function plots the observed data in the ROC (Receiving Operating Characteristics) space with the Bayesian SROC (Summary ROC) curve. The predictive curves are approximated using a parametric model.

Usage

```r
bsroc(m, level = c(0.05, 0.5, 0.95), title = "Bayesian SROC Curve",
      fpr.x = seq(0.01, 0.99, 0.01), partial.AUC = TRUE, xlim.bsroc = c(0, 1),
      ylim.bsroc = c(0, 1), lower.auc = 0, upper.auc = 0.99,
      col.fill.points = "blue", results.bauc = TRUE, results.bsroc = FALSE,
      plot.post.bauc = FALSE, bins = 30, scale.size.area = 10)
```

Arguments

- `m`: The object generated by `metadiag`.
- `level`: Credibility levels of the predictive curve.
- `title`: Optional parameter for setting a title in the plot.
- `fpr.x`: Grid of values where the conditional distribution is calculated.
- `partial.AUC`: Automatically calculate the AUC for the observed range of FPRs, default is `TRUE`.
- `xlim.bsroc`: Limits of the x-axis for the BSROC curve plot.
- `ylim.bsroc`: Limits of the y-axis for the BSROC curve plot.
- `lower.auc`: Lower limit of the AUC.
- `upper.auc`: Upper limit of the AUC.
- `col.fill.points`: Color used to fill points, default is blue.
- `results.bauc`: Print results of the Bayesian Area Under the Curve, default value is `TRUE`.
- `results.bsroc`: Print results of the Bayesian SROC curve, default value is `FALSE`.
- `plot.post.bauc`: The BSROC and the posterior of the BAUC are plotted in the same page, default is `FALSE`.
- `bins`: Histograms’ bins.
- `scale.size.area`: Scale area for the plotted points, default = 10.

See Also

`metadiag`
Examples

```r
## execute analysis
## Not run:
data(glas)
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.m1 <- metadiag(glas.t, re = "normal", link = "logit")
bsroc(glas.m1)
bsroc(glas.m1, plot.post.bauc = TRUE)
```

In this example the range of the observed FPR is less than 20%. Calculating the BSROC curve makes no sense! You will get a warning message!

```r
data(mri)
mri.m <- metadiag(mri)
bsroc(mri.m)
```

```r
## End(Not run)
```

Diagnosis of appendicities with computer tomography scans

Description

This data frame corresponds to 51 clinical studies reporting the accuracy of computer tomography (CT) scans for the diagnosis of appendicities.

Format

A matrix with 51 rows and 16 columns. Each row represents study results, the columns are:

- `tp` number of true positives.
- `n1` number of patients with disease.
- `fp` number of false positives.
- `n2` number of patients without disease.
- `country` Country: EU = 1, others/USA = 2.
- `hosp` Type of hospital: 1 = university, 2 = others.
- `inclus` Inclusion criteria: 1 = Suspected, 2 = appendectomy.
- `indfind` Other CT findings included: 1 = no, 2 = yes.
- `design` Study design: 1 = prospective, 2 = retrospective.
- `contr` Contrast medium: 1 = no, 2 = yes.
- `localis` Localisation: 1 = one area, 2 = more than one area.
- `child` Children included: 1 = no, 2 = yes.
- `fup.na` Followup: 0 = no, 1 = yes.
- `refer.na` Valid reference: 0 = no, 1 = yes.
- `sample.na` Sample: 0 = selected, 1= consecutive/random.
- `gender.na` Gender, female: 0 = less than 50%; 1 = more than 50%.
Details

This data frame corresponds to 51 clinical studies reporting the accuracy of computer tomography (CT) scans for the diagnosis of appendicities.

Source

The data were obtained from

References

Ectopic pregnancy vs. all other pregnancies data

Description

Ectopic pregnancy vs. all other pregnancies data Table III Mol et al. 1998

Format

A matrix with 21 rows and 8 columns. Each row represents study results, the columns are:

- **tp** number of true positives.
- **n1** number of patients with disease.
- **fp** number of false positives.
- **n2** number of patients without disease.
- **d1** Prospective vs. retrospective.
- **d2** Cohort vs. case-control
- **d3** Consecutive sampling patients series vs. non-consecutive.

Source

Table III Mol et al. 1998
Tumor markers in the diagnosis of primary bladder cancer.

Description

Outcome of individual studies evaluating urine markers

Format

A matrix with 46 rows and 7 columns. Each row represents study results, the columns are:

- **tp** number of true positives.
- **n1** number of patients with disease.
- **fp** number of false positives.
- **n2** number of patients without disease.
- **author** first author of the study.
- **cutoff** cutoff in U/ml.
- **marker** test method used in the study.

Source

The data were obtained from

References

Accuracy of Positron Emission Tomography for Diagnosis of Pulmonary Nodules and Mass Lesions

Description

Data from a Meta-Analysis of Studies Quality of FDG-PET for Diagnosis of SPNs and Mass Lesions
Format

A matrix with 31 rows and 6 columns. Each row represents study results, the columns are:

- **tp** number of true positives.
- **n1** number of patients with disease.
- **fp** number of false positives.
- **n2** number of patients without disease.
- **author** first author of the study.
- **year** publication date.

Source

The data were obtained from

metadiag

Bayesian Meta-Analysis of diagnostic test data

Description

This function performs a Bayesian meta-analysis of diagnostic test data by fitting a bivariate random effects model. The number of true positives and false positives are modeled with two conditional Binomial distributions and the random-effects are based on a bivariate scale mixture of Normals. Computations are done by calling JAGS (Just Another Gibbs Sampler) to perform MCMC (Markov Chain Monte Carlo) sampling and returning an object of the class `mcmc.list`.

Usage

```r
metadiag(data, re = "normal", re.model = "DS", link = "logit",
mean.mu.D = 0, mean.mu.S = 0, sd.mu.D = 1, sd.mu.S = 1,
sigma.D.upper = 10, sigma.S.upper = 10, mean.Fisher.rho = 0,
sd.Fisher.rho = 1/sqrt(2), df = 4, df.estimate = FALSE, df.lower = 3,
df.upper = 20, split.w = FALSE, n.1.new = 50, n.2.new = 50,
nc.chains = 2, nr.iterations = 10000, nr.adapt = 1000,
nr.burnin = 1000, nr.thin = 1, be.quiet = FALSE, r2jags = TRUE)
```

Arguments

- **data** Data frame with at least 4 columns containing the number of true positives (tp), number of patients with disease (n1), the number of false positives (fp), number of patients without disease (n2).
- **re** Random effects distribution for the resulting model. Possible values are `normal` for bivariate random effects and `sm` for scale mixtures.
re.model If re.model = "DS" indicates that the sum and differences of TPR and FPR are modeled as random effects and re.model = "SeSp" indicates that the Sensitivity and Specificity are modeled as random effects. The default value is re.model = "DS".

link The link function used in the model. Possible values are logit, cloglog probit.

mean.mu.D prior Mean of D, default value is 0.
mean.mu.S prior Mean of S, default value is 0.
sd.mu.D prior Standard deviation of D, default value is 1 (the prior of mu.D is a logistic distribution).
sd.mu.S prior Standard deviation of S, default value is 1 (the prior of mu.S is a logistic distribution).
sigma.D.upper Upper bound of the uniform prior of sigma.S, default value is 10.
sigma.S.upper Upper bound of the uniform prior of sigma.S, default value is 10.
mean.Fisher.rho Mean of rho in the Fisher scale default value is 0.
sd.Fisher.rho Standard deviation of rho in the Fisher scale, default value is 1/sqrt(2).
df If de.estimate = FALSE, then df is the degrees of freedom for the scale mixture distribution, default value is 4.
df.estimate Estimate the posterior of df. The default value is FALSE.
df.lower Lower bound of the prior of df. The defualt value is 3.
df.upper Upper bound of the prior of df. The defualt value is 30.
split.w Split the w parameter in two independent weights one for each random effect.

n.1.new Number of patients with disease in a predictive study default is 50.
n.2.new Number of patients with non-disease in a predictive study default is 50.
num.chains Number of chains for the MCMC computations, default 5.
num.iterations Number of iterations after adapting the MCMC, default is 10000. Some models may need more iterations.
num.adapt Number of iterations in the adaptation process, default is 1000. Some models may need more iterations during adaptation.
num.burnin Number of iteration discarded for burnin period, default is 1000. Some models may need a longer burnin period.
num.thin Thinning rate, it must be a positive integer, the default value 1.
be.quiet Do not print warning message if the model does not adapt default value is FALSE. If you are not sure about the adaptation period choose be.quiet=TRUE.
r2jags Which interface is used to link R to JAGS (rjags and R2jags) default value is R2jags TRUE.
Details

Installation of JAGS: It is important to note that R 3.3.0 introduced a major change in the use of toolchain for Windows. This new toolchain is incompatible with older packages written in C++. As a consequence, if the installed version of JAGS does not match the R installation, then the rjags package will spontaneously crash. Therefore, if a user works with R version >= 3.3.0, then JAGS must be installed with the installation program JAGS-4.2.0-Rtools33.exe. For users who continue using R 3.2.4 or an earlier version, the installation program for JAGS is the default installer JAGS-4.2.0.exe.

Value

This function returns an object of the class metadiag. This object contains the MCMC output of each parameter and hyper-parameter in the model, the data frame used for fitting the model, the link function, type of random effects distribution and the splitting information for conflict of evidence analysis.

The results of the object of the class metadiag can be extracted with R2jags or with rjags. In addition a summary, a print and a plot functions are implemented for this type of object.

References

Examples

```r
## Not run:

# Example: Glass .................................
library(bandit)
data("glas")
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.t <- glas[glas$marker == "Telomerase", 1:4]
plotdata(glas.t)
glas.m1 <- metadiag(glas.t,  # Data frame
                   re = "normal",  # Random effects distribution
                   re.model = "DS",  # Random effects on D and S
                   link = "logit",  # Link function
                   sd.Fisher.rho = 1.7,  # Prior standard deviation of correlation
                   nr.burnin = 1000,  # Iterations for burnin
                   nr.iterations = 10000,  # Total iterations
                   nr.chains = 2,  # Number of chains
                   r2jags = TRUE)  # Use r2jags as interface to jags

summary(glas.m1, digit=3)
```
plot(glas.m1, # Fitted model
 level = c(0.5, 0.75, 0.95), # Credibility levels
 parametric.smooth = TRUE) # Parametric curve

Plot results: based on a non-parametric smoother of the posterior predictive rates

plot(glas.m1, # Fitted model
 level = c(0.5, 0.75, 0.95), # Credibility levels
 parametric.smooth = FALSE) # Non-parametric curve

Using the pipe command in the package dplyr ..

library(dplyr)

glas.t %>%
 metadiag(re = "normal", re.model = "SeSp") %>%
 plot(parametric.smooth = FALSE, color.pred.points = "red")

Visualization of posteriors of hyper-parameters

library(ggplot2)
library(GGally)
library(R2jags)
attach.jags(glas.m1)
ggpairs(hyper.post, # Data frame
 title = "Hyper-Posteriors", # title of the graph
 lower = list(continuous = "density") # contour plots
)

#..

List of different statistical models:
1) Different link functions: logit, cloglog and probit

2) Different parametrization of random effects in the link scale:
 DS = "differences of TPR and FPR"
 SeSp = "Sensitivity and Specificity"

3) Different random effects distributions:
 "normal" or "sm = scale mixtures".

4) For the scale mixture random effects:
 split.w = TRUE => "split the weights".

5) For the scale mixture random effects:
 df.estimate = TRUE => "estimate the degrees of freedom".
6) For the scale mixture random effects:
 df.estimate = TRUE => "estimate the degrees of freedom”.

7) For the scale mixture random effects:
 df = 4 => "fix the degrees of freedom to a particular value”.
 Note that df = 1 fits a Cauchy bivariate distribution to the random effects.

logit-normal-DS
m <- metadiag(glas.t, re = "normal", re.model = "DS", link = "logit")
summary(m)
plot(m)

cloglog-normal-DS
summary(metadiag(glas.t, re = "normal", re.model = "DS", link = "cloglog"))

probit-normal-DS
summary(metadiag(glas.t, re = "normal", re.model = "DS", link = "probit"))
logit-normal-SeSp
summary(metadiag(glas.t, re = "normal", re.model = "SeSp", link = "logit"))

cloglog-normal-SeSp
summary(metadiag(glas.t, re = "normal", re.model = "SeSp", link = "cloglog"))
probit-normal-SeSp
summary(metadiag(glas.t, re = "normal", re.model = "SeSp", link = "probit"))

logit-sm-DS
summary(metadiag(glas.t, re = "sm", re.model = "DS", link = "logit", df = 1))

cloglog-sm-DS
summary(metadiag(glas.t, re = "sm", re.model = "DS", link = "cloglog", df = 1))
plot(m, parametric.smooth = FALSE)

probit-sm-DS
summary(metadiag(glas.t, re = "sm", re.model = "DS", link = "probit", df = 1))
plot(m, parametric.smooth = FALSE)

logit-sm-SoP
summary(metadiag(glas.t, re = "sm", re.model = "SoP", link = "logit", df = 1))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))

cloglog-sm-SoP
summary(metadiag(glas.t, re = "sm", re.model = "SoP", link = "cloglog", df = 1))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))

probit-sm-SoP
summary(metadiag(glas.t, re = "sm", re.model = "SoP", link = "probit", df = 1))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))

logit-sm-DS-df
summary(metadiag(glas.t, re = "sm", re.model = "DS", link = "logit", df.estimate = TRUE))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))
cloglog-sm-DS-df
summary(m<metadiag(glas.t, re = "sm", re.model = "DS", link = "cloglog", df.estimate = TRUE))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))

probit-sm-DS-df
summary(m<metadiag(glas.t, re = "sm", re.model = "DS", link = "probit", df.estimate = TRUE))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))

logit-sm-SeSp-df
summary(m<metadiag(glas.t, re = "sm", re.model = "SeSp", link = "probit", df.estimate = TRUE))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))

logit-sm-DS
summary(m <- metadiag(glas.t, re = "sm", re.model = "DS", link = "logit", split.w = TRUE, df = 10))
plot(m)

cloglog-sm-DS
summary(m<metadiag(glas.t, re = "sm", re.model = "DS", link = "cloglog", split.w = TRUE, df = 4))
plot(m)

probit-sm-DS
summary(m<metadiag(glas.t, re = "sm", re.model = "DS", link = "probit", split.w = TRUE, df = 4))
plot(m, parametric.smooth = FALSE)

logit-sm-SeSp
summary(m<metadiag(glas.t, re = "sm", re.model = "SeSp", link = "logit", split.w = TRUE, df = 1))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))
plotw(m)

cloglog-sm-SeSp
summary(m<metadiag(glas.t, re = "sm", re.model = "SeSp", link = "cloglog", split.w = TRUE, df = 1))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))
plotw(m)

probit-sm-SeSp
summary(m<metadiag(glas.t, re = "sm", re.model = "SeSp", link = "probit", split.w = TRUE, df = 1))
plot(m, parametric.smooth = FALSE, level = c(0.5, 0.9))
plotw(m)
mri

Diagnosis of lymph node metastasis with magnetic resonance imaging

Description

Diagnosis of lymph node metastasis with magnetic resonance imaging
Format

A matrix with 10 rows and 4 columns. Each row represents study results, the columns are:

- **tp** true positives
- **n1** number of patients with disease
- **fp** false positives
- **n2** number of patients without disease

Source

The data were obtained from

References

plot.metadiag

Generic plot function for metadiag object in bamdit

Description

This function plots the observe data in the ROC (Receiving Operating Characteristics) space with the posterior predictive contours. The predictive curves are approximated using a non-parametric smoother or with a parametric model. For the parametric model the current implementation supports only a logistic link function. The marginal posterior predictive distributions are plotted outside the ROC space.

Usage

```r
## S3 method for class 'metadiag'
plot(x, parametric.smooth = TRUE, level = c(0.5, 0.75, 0.95), limits.x = c(0, 1), limits.y = c(0, 1), kde2d.n = 25, color.line = "red", title = paste("Posterior Predictive Contours (50%, 75% and 95%)"), marginals = TRUE, bin.hist = 30, color.hist = "lightblue", S = 500, color.pred.points = "lightblue", color.data.points = "blue", ...)
```
Arguments

x The object generated by the metadiag function.

parametric.smooth Indicates if the predictive curve is a parametric or non-parametric.

level Credibility levels of the predictive curve. If parametric.smooth = FALSE, then the probability levels are estimated from the nonparametric surface.

limits.x Numeric vector of length 2 specifying the x-axis limits. The default value is c(0, 1).

limits.y Numeric vector of length 2 specifying the x-axis limits. The default value is c(0, 1).

kde2d.n The number of grid points in each direction for the non-parametric density estimation. Can be scalar or a length-2 inter vector.

color.line Color of the predictive contour line.

title Optional parameter for setting a title in the plot.

marginals Plot the posterior marginal predictive histograms.

bin.hist Number of bins of the marginal histograms.

color.hist Color of the histograms.

S Number of predictive rates to be plotted.

color.pred.points Color of the posterior predictive rates.

color.data.points Color of the data points.

See Also

metadiag.

Examples

Not run:
library(bamdit)
data("glas")
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.m1 <- metadiag(glas.t, # Data frame
 re = "normal", # Random effects distribution
 re.model = "DS", # Random effects on D and S
 link = "logit", # Link function
 sd.Fisher.rho = 1.7, # Prior standard deviation of correlation
 nr.burnin = 1000, # Iterations for burnin
 nr.iterations = 10000, # Total iterations
 nr.chains = 2, # Number of chains
 r2jags = TRUE) # Use r2jags as interface to jags
plotcompare

Description

This function compares the predictive posterior surfaces of two fitted models.

Usage

plotcompare(m1, m2, level = 0.95,
 title = paste("Comparative Predictive Posterior Contours"),
 m1.name = "Model.1", m2.name = "Model.2", group = NULL,
 limits.x = c(0, 1), limits.y = c(0, 1), group.colors = c("blue", "red"))

Arguments

m1 A model fitted to the data. This is an object generated by the metadiag function.
m2 A second model fitted to the data. This is an object generated by the metadiag function.
level Credibility level of the predictive curves.
title The title of the plot.
m1.name Label of the model 1.
m2.name Label of the model 2.
group A factor variable to display data of different groups. The length of group must be the same as the total number of studies used to fit model 1 and model 2. For example, if 10 studies are used to fit model m1 and 5 studies are used to fit model m2, then the length(group)=15.
limits.x A vector with the limits of the horizontal axis.
limits.y A vector with the limits of the vertical axis.
group.colors A character vector with two color names.

See Also
metadiag.

Examples

```r
## execute analysis
## Not run:

# Comparing results from two models same data

data(glas)
glas.t <- glas[glas$marker == "Telomerase", 1:4]
glas.m1 <- metadiag(glas.t)
glas.m2 <- metadiag(glas.t, re = "sm")
plotcompare(m1 = glas.m1, m2 = glas.m2)

# Comparing results from two models fitted to two subgroups of data:
# studies with retrospective design and studies with prospective design

data(ct)
gr <- with(ct, factor(design,
              labels = c("Retrospective study", "Prospective study")))

m1.ct <- metadiag(ct[ct$design==1, 1:4]) # Retrospective studies
m2.ct <- metadiag(ct[ct$design==2, 1:4]) # Prospective studies

plotcompare(m1.ct, m2.ct,
    m1.name = "Retrospective design",
    m2.name = "Prospective design",
    group = gr,
    limits.x = c(0, 0.75), limits.y = c(0.65, 1))

## End(Not run)
```
plotdata

Basic function to plot results of meta-analysis of diagnostic test data

Description

This function plots the true positive rates vs the false positive rates of each study included in the meta-analysis. Study results are displayed by circles, the diameter of each circle is proportional to the sample size of the study (or table). If subgroups are displayed each group is represented by different colours. This function use the package *ggplot2*.

Usage

```r
plotdata(data, group = 1, x.lo = 0, x.up = 1, y.lo = 0, y.up = 1, alpha.p = 0.7, max.size = 15)
```

Arguments

data: a data frame with at least 4 columns containing the true positives (tp), number of patients with disease (n1), false positives (fp), number of patients without disease (n2)
group: a variable indicating a group factor
x.lo: lower limit of the x-axis
x.up: upper limit of the x-axis
y.lo: lower limit of the y-axis
y.up: upper limit of the y-axis
alpha.p: transparency of the points
max.size: scale parameter of the maximum size

Examples

```r
## execute analysis
## Not run:

data(ct)
gr <- with(ct, factor(design,
                   labels = c("Retrospective study", "Prospective study"))

plotdata(ct,
         group = gr,         # Data frame
         y.lo = 0.75,        # Grouping variable
         x.up = 0.75,        # Lower limit of y-axis
         alpha.p = 0.5,      # Upper limit of x-axis
         max.size = 5)       # Transparency of the balls
```

```r
max.size = 5)       # Scale the circles
```
```
data(glas)
plotdata(glas, group = glas$marker, max.size = 5)
data(scheidler)
plotdata(scheidler, group = scheidler$test)
data(safdar05)
plotdata(safdar05, group = safdar05$technique)
library(dplyr)
safdar05 %>% plotdata(group = safdar05$duration)
data(ep)
ep.gr <- with(ep, factor(d1, labels = c("Prospective study", "Retrospective study")))
ep %>% plotdata(group = ep.gr)
ep %>% plotdata(group = factor(ep$nthres))
```

```r
# plotsesp

### plotsesp() plot the posterior densities for Se and Sp

#### Description

plotsesp() plot the posterior densities for Se and Sp

#### Usage

```
plotsesp(m, binwidth.p = 0.03, CI.level = 0.95)
```

#### Arguments

- **m**: The object generated by the metadiag function.
- **binwidth.p**: Histograms binwidth, default is 0.03.
- **CI.level**: Level of the posterior interval default is 0.95.
See Also

metadiag.

Examples

```r
execute analysis
Not run:
data(ep)
m1.ep <- metadiag(ep[,1:4])

plotw(m = m1.ep)
End(Not run)
```

plotw  

Plot for the conflict of evidence parameters \( w_1 \) and \( w_2 \)

Description

Conflict of evidence plot: this plot displays the posterior distribution of the study’s weights \( w_1 \) and \( w_1 \). These weights indicate potential conflict of evidence of the studies. The weight \( w_1 \) indicates deviations with respect to the specificity and \( w_2 \) to the sensitivity.

Usage

```r
plotw(m, group = NULL, group.colors = c("blue", "red"))
```

Arguments

- `m`  
  the object generated by metadiag. The model object must be fitted with the options: `re = "sm"` and `split.w = TRUE`.

- `group`  
  an optional argument which has to be a factor of the same length as the number of studies in the data. If set, then the plot is colored by groups.

- `group.colors`  
  a character vector with two color names.

See Also

metadiag.
Examples

```r
execute analysis
Not run:

data(ep)
m.ep <- metadiag(ep[,1:4],
 re = "sm",
 re.model = "SeSp",
 split.w = TRUE,
 df.estimate = TRUE)

plotw(m.ep)

Relationship between conflict and study design
plotw(m.ep, group = ep.gr)

End(Not run)
```

Description

Generic print function for metadiag object in bamdit

Usage

```r
S3 method for class 'metadiag'
print(x, digits = 3, ...)
```

Arguments

- `x` The object generated by the function metadiag.
- `digits` The number of significant digits printed. The default value is 3.
- `...`
**Description**

Outcome of individual studies evaluating intravascular device-related bloodstream infection

**Format**

A matrix with 78 rows and 8 columns. Each row represents study results, the columns are:

- **tp**: number of true positives.
- **n1**: number of patients with disease.
- **fp**: number of false positives.
- **n2**: number of patients without disease.
- **author**: first author of the study.
- **year**: publication date.
- **technique**: diagnostic technique used in the study.
- **duration**: duration of catheterization: short term or long term or both.

**Source**

The data were obtained from


---

**scheidler**

*Diagnosis of Intravascular Device-Related Bloodstream Infection*

---

**Description**

This data frame summarizes the tables 1-3 of Scheidler et al. 1997.

**Format**

A matrix with 46 rows and 7 columns. Each row represents study results, the columns are:

- **tp**: true positives.
- **n1**: number of patients with disease.
- **fp**: false positives.
- **n2**: number of patients without disease.
- **author**: first author of the study.
- **year**: publication date.
- **test**: test method used in the study.
Source

The data were obtained from

References


```
summary.metadiag
Generic summary function for metadiag object in bamdit

Description

Generic summary function for metadiag object in bamdit

Usage

S3 method for class 'metadiag'
summary(object, digits = 3, intervals = c(0.025, 0.5, 0.975), ...)

Arguments

object The object generated by the metadiag function.
digits The number of significant digits printed. The default value is 3.
intervals A numeric vector of probabilities with values in [0,1]. The default value is intervals = c(0.025, 0.5, 0.975).
... ...
```
Index

*Topic Bayesian
  bandit-package, 2
*Topic Conflict
  bandit-package, 2
*Topic Detection,
  bandit-package, 2
*Topic Evidence,
  bandit-package, 2
*Topic Hierarchical
  bandit-package, 2
*Topic Meta-Analysis,
  bandit-package, 2
*Topic Modeling,
  bandit-package, 2
*Topic Multiparameters
  bandit-package, 2
*Topic Outliers
  bandit-package, 2
*Topic datasets
  ct, 4
    ep, 5
    glas, 6
    gould, 6
    mri, 13
    safdar05, 22
    scheidler, 22
*Topic file
  bsroc, 3
    plotcompare, 16
    plotsesp, 19
    plotw, 20
*Topic of
  bandit-package, 2

bamdit (bandit-package), 2
bamdit-package, 2
bsroc, 3

cr, 4

ep, 5

glas, 6
gould, 6

metadiag, 3, 7, 15, 17, 20
mri, 13

plot.metadiag, 14
plotcompare, 16
plotdata, 18
plotsesp, 19
plotw, 20
print.metadiag, 21

safdar05, 22
scheidler, 22
summary.metadiag, 23

24