Package ‘metaLik’

October 13, 2022

Version 0.43.0
Priority optional
Title Likelihood Inference in Meta-Analysis and Meta-Regression Models
Author Annamaria Guolo and Cristiano Varin
Maintainer Cristiano Varin <sammy@unive.it>
Depends R (>= 3.4.0)
Description First- and higher-order likelihood inference in meta-analysis and meta-regression models.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-29 10:15:04 UTC

R topics documented:

albumin ... 2
cholesterol .. 2
diuretics ... 3
education ... 4
metaLik ... 4
simulate.metaLik ... 7
summary.metaLik ... 8
test.metaLik ... 9
vaccine ... 10

Index 12
Albumin data.

Description
Data from four experiments about the percentage of albumin in the plasma protein of the normal human subjects.

Usage
data(albumin)

Format
y mean albumin percentage.
sigma2 estimated within-study variance.

Source

Examples
data(albumin)

Serum cholesterol data.

Description
Data from 28 randomized trials about the effect of serum cholesterol reduction on the risk of ischaemic heart disease.

Usage
data(cholesterol)

Format
heart_disease log odds ratio of ischaemic heart disease.
chol_reduction average serum cholesterol reduction measured in mmol/l.
sigma2 estimated within-study variance.
Source

Examples

```r
data(diuretics)
```

Description

Data from nine randomized trials on prevention of pre-eclampsia with diuretics.

Usage

```r
data(diuretics)
```

Format

- `y` logarithm of the risk ratio in each study.
- `sigma2` estimated within-study variance.

Source

Examples

```r
data(diuretics)
```
education

Open education data.

Description

Data from eleven studies on the effect of open versus traditional education on student attitude toward schools.

Usage

```r
data(education)
```

Format

- `y`
 standardized estimated mean difference in attitude according to the type of education.
- `sigma2`
 estimated within-study variance.

Source

Examples

```r
data(education)
```

metaLik

First- and higher-order likelihood inference in meta-analysis and meta-regression models

Description

Implements first-order and higher-order likelihood methods for inference in meta-analysis and meta-regression models, as described in Guolo (2012). Higher-order asymptotics refer to the higher-order adjustment to the log-likelihood ratio statistic for inference on a scalar component of interest as proposed by Skovgaard (1996). See Guolo and Varin (2012) for illustrative examples about the usage of `metaLik` package.

Usage

```r
metaLik(formula, data, subset, contrasts = NULL, offset, sigma2, weights=1/sigma2)
```
Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which metaLik is called.

subset an optional vector specifying a subset of observations to be used in the fitting process.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if more than one are specified their sum is used. See model.offset.

sigma2 a vector of within-study estimated variances. The length of the vector must be the same of the number of studies.

weights a vector of the inverse of within-study estimated variances. The length of the vector must be the same of the number of studies. If sigma2 is supplied, the value of weights is discarded.

Details

Models for metaLik.fit are specified simbolically. A typical model has the form \(y \sim x_1 + \ldots + x_J \), where \(y \) is the continuous response term and \(x_j \) is the \(j \)-th covariate available at the aggregated meta-analysis level for each study. The case of no covariates corresponds to the classical meta-analysis model specified as \(y \sim 1 \).

Within-study variances are specified through sigma2: the rare case of equal within-study variances implies Skovgaard’s adjustment reaching a third-order accuracy.

DerSimonian and Laird estimates (DerSimonian and Laird, 1986) are also supplied.

Value

An object of class "metaLik" with the following components:

y the y vector used.
X the model matrix used.
fitted.values the fitted values.
sigma2 the within-study variances used.
K the number of studies.
mle the vector of the maximum likelihood parameter estimates.
vcov the variance-covariance matrix of the parameter estimates.
max.lik the maximum log-likelihood value.
metaLik

beta.mle the vector of fixed-effects parameters estimated according to maximum likelihood.

tau2.mle the maximum likelihood estimate of τ^2.

DL the vector of fixed-effects parameters estimated according to DerSimonian and Laird’s approach.

tau2.DL the method of moments estimate of the heterogeneity parameter τ^2.

vcov.DL the variance-covariance matrix of the DL parameter estimates.

call the matched call.

formula the formula used.

terms the terms object used.

offset the offset used.

contrasts (only where relevant) the contrasts specified.

xlevels (only where relevant) a record of the levels of the factors used in fitting.

model the model frame used.

Generic functions coefficients, vcov, logLik, fitted, residuals can be used to extract fitted model quantities.

Author(s)
Annamaria Guolo and Cristiano Varin.

References

See Also

Function summary.metaLik for summaries.

Function test.metaLik for hypothesis testing.

Examples

```r
## meta-analysis
data(education)
# meta-analysis
m <- metaLik(y~1, data=education, sigma2=sigma2)
summary(m)
```
m <- metaLik(y~1, data=albumin, sigma2=sigma2)
summary(m)
meta-regression
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
summary(m)
meta-regression
data(cholesterol)
m <- metaLik(heart_disease~chol_reduction, data=cholesterol, weights=1/sigma2)
summary(m)

simulate.metaLik
Simulate meta-analysis outcomes

Description

Simulate one or more meta-analysis outcomes from a fitted metaLik object.

Usage

S3 method for class 'metaLik'
simulate(object, nsim=1, seed=NULL, ...)

Arguments

 object
an object of class "metaLik".
 nsim
number of outcome vectors to simulate. Default is 1.
 seed
an object specifying if and how the random number generator should be initialized, see simulate for details.
 ...
additional optional arguments.

Value

A dataframe containing the simulated meta-analysis outcomes.

Author(s)

Annamaria Guolo and Cristiano Varin.

References

Examples

data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
sim <- simulate(m, nsim=2)
sim
summary.metaLik

Summary method for class "metaLik".

Usage

S3 method for class 'metaLik'
summary(object, ...)

Arguments

object an object of class "metaLik", usually a result of a call to "metaLik".

... additional arguments

Details

summary.metaLik prints summary information about within-study heterogeneity, parameter estimates, standard errors, first- and higher-order log-likelihood ratio statistics. See test.metaLik for more details about the first- and higher-order statistics.

Value

The function summary.metaLik returns the metaLik object from which summary.metaLik is called.

See Also

The generic functions coefficients, confint and vcov.
Function test.metaLik allows for hypothesis testing.

Examples

meta-analysis
data(education)
m <- metaLik(y~1, data=education, sigma2=sigma2)
summary(m)

meta-analysis
data(albumin)
m <- metaLik(y~1, data=albumin, sigma2=sigma2)
summary(m)

meta-regression
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
summary(m)

meta-regression
data(cholesterol)
m <- metaLik(heart_disease~chol_reduction, data=cholesterol, weights=1/sigma2)
summary(m)

test.metaLik Hypothesis testing on a scalar fixed-effect component in meta-analysis
 and meta-regression models

Description
Performs hypothesis testing on a scalar component of the fixed-effects vector in meta-analysis and
meta-regression models, using the signed profile log-likelihood ratio test and its higher-order Skov-
gaard's adjustment (Skovgaard, 1996), as described in Guolo (2012). See Guolo and Varin (2012)
for illustrative examples about the usage of metaLik package.

Usage

 test.metaLik(object, param=1, value=0, alternative=c("two.sided", "less", "greater"),
 print=TRUE)

Arguments

 object an object of class "metaLik".
 param a specification of which parameter is to be given confidence interval, either a
 number or a name. Default is 1 corresponding to the intercept.
 value a single number indicating the value of the fixed-effect parameter under the null
 hypothesis. Default is 0.
 alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
 (default), "greater" or "less". Just the initial letter can be specified.
 print logical, whether output information should be printed or not; default is TRUE.

Details

 test.metaLik allows hypothesis testing on a scalar component of interest in the fixed-effects vec-
 tor. The signed profile log-likelihood ratio statistic for inference on scalar component β of θ
 is

 $$ r(\beta) = \text{sign}(\hat{\beta} - \beta) \sqrt{2\{l(\hat{\theta}) - l(\theta)\}}, $$

 where l is the log-likelihood function and $\hat{\theta}$ is the maximum likelihood estimate of θ. The Skov-
gaard's adjustment is defined as

 $$ \tau(\beta) = r(\beta) + \frac{1}{r(\beta)} \log \frac{u(\beta)}{r(\beta)}, $$

 where $u(\beta)$ is a correction term involving the observed and the expected information matrix and
 covariances of likelihood quantities, as described in Guolo (2012). Skovgaard's statistic has a
 second-order accuracy in approximating the standard normal distribution. In the rare case of equal
 within-study variances, Skovgaard's statistic reaches third-order accuracy.
Value

A list with the following components:

- `r` the value of the signed profile log-likelihood ratio statistic.
- `pvalue.r` the p-value of the signed profile log-likelihood ratio test.
- `rskov` the value of Skovgaard’s statistic.
- `pvalue.rskov` the p-value of Skovgaard’s test.

Author(s)

Annamaria Guolo and Cristiano Varin.

References

See Also

Function `metaLik` for fitting meta-analysis and meta-regression models. Function `summary.metaLik` for summaries.

Examples

```r
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
## significance test for the intercept coefficient
test.metaLik(m)
## significance test for the 'latitude' coefficient
test.metaLik(m, param=2)
## testing for the 'latitude' coefficient less than 0
test.metaLik(m, param=2, value=0, alternative='less')
```

vaccine

Data for Bacillus Calmette-Guerin (BCG) vaccine studies.

Description

Data from thirteen clinical studies evaluating the efficacy of the BCG vaccine for the prevention of tuberculosis.
vaccine

Usage

data(vaccine)

Format

 y log odds ratio in each study.
 latitude latitude, distance of each study from the equator, surrogate for the presence of environmental mycobacteria providing a level of natural immunity against tuberculosis.
 year year of the study.
 sigma2 estimated within-study variance.

Source

Examples

 data(vaccine)
Index

* datasets
 albumin, 2
 cholesterol, 2
 diuretics, 3
 education, 4
 vaccine, 10
* htest
 metaLik, 4
 summary.metaLik, 8
 test.metaLik, 9
* models
 simulate.metaLik, 7
* regression
 metaLik, 4
 simulate.metaLik, 7
 summary.metaLik, 8
 test.metaLik, 9

albumin, 2
as.data.frame, 5
cholesterol, 2
coefficients, 6, 8
confint, 8
contrasts, 6
diuretics, 3
education, 4
fitted, 6
formula, 5, 6
logLik, 6
metaLik, 4, 7–10
model.matrix.default, 5
model.offset, 5
offset, 5
residuals, 6
simulate, 7
simulate.metaLik, 7
summary.metaLik, 6, 8, 10
terms, 6
test.metaLik, 6, 8, 9
vaccine, 10
vcov, 6, 8