Package ‘metaLik’

May 29, 2018

Version 0.43.0
Priority optional
Title Likelihood Inference in Meta-Analysis and Meta-Regression Models
Author Annamaria Guolo and Cristiano Varin
Maintainer Cristiano Varin <sammy@unive.it>
Depends R (>= 3.4.0)
Description First- and higher-order likelihood inference in meta-analysis and meta-regression models.
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2018-05-29 10:15:04 UTC

R topics documented:

albumin ... 2
cholesterol .. 2
diuretics .. 3
education ... 4
metaLik .. 4
simulate.metaLik ... 7
summary.metaLik ... 8
test.metaLik ... 9
vaccine ... 10

Index 12
Albumin Data

Description

Data from four experiments about the percentage of albumin in the plasma protein of the normal human subjects.

Usage

```r
data(albumin)
```

Format

- `y` mean albumin percentage.
- `sigma2` estimated within-study variance.

Source

Examples

```r
data(albumin)
```

Cholesterol Data

Description

Data from 28 randomized trials about the effect of serum cholesterol reduction on the risk of ischaemic heart disease.

Usage

```r
data(cholesterol)
```

Format

- `heart_disease` log odds ratio of ischaemic heart disease.
- `cholesterol_reduction` average serum cholesterol reduction measured in mmol/l.
- `sigma2` estimated within-study variance.
diuretics

Source

Examples

data(cholesterol)

data(diuretics)

Description

Data from nine randomized trials on prevention of pre-eclampsia with diuretics.

Usage

data(diuretics)

Format

- `y` logarithm of the risk ratio in each study.
- `sigma2` estimated within-study variance.

Source

Examples

data(diuretics)
education

Open education data.

Description
Data from eleven studies on the effect of open versus traditional education on student attitude toward schools.

Usage
data(education)

Format
y standardized estimated mean difference in attitude according to the type of education.
sigma2 estimated within-study variance.

Source

Examples
data(education)

metaLik

First- and higher-order likelihood inference in meta-analysis and meta-regression models

Description
Implements first-order and higher-order likelihood methods for inference in meta-analysis and meta-regression models, as described in Guolo (2012). Higher-order asymptotics refer to the higher-order adjustment to the log-likelihood ratio statistic for inference on a scalar component of interest as proposed by Skovgaard (1996). See Guolo and Varin (2012) for illustrative examples about the usage of metaLik package.

Usage
metaLik(formula, data, subset, contrasts = NULL, offset, sigma2, weights=1/sigma2)
Arguments

- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under ‘Details’.
- **data**: an optional data frame, list or environment (or object coercible by `as.data.frame` to a data frame) containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which `metaLik` is called.
- **subset**: an optional vector specifying a subset of observations to be used in the fitting process.
- **contrasts**: an optional list. See the contrasts.arg of `model.matrix.default`.
- **offset**: this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length equal to the number of cases. One or more `offset` terms can be included in the formula instead or as well, and if more than one are specified their sum is used. See `model.offset`.
- **sigma2**: a vector of within-study estimated variances. The length of the vector must be the same of the number of studies.
- **weights**: a vector of the inverse of within-study estimated variances. The length of the vector must be the same of the number of studies. If `sigma2` is supplied, the value of `weights` is discarded.

Details

Models for `metaLik.fit` are specified symbolically. A typical model has the form \(y \sim x_1 + \ldots + x_J \), where \(y \) is the continuous response term and \(x_j \) is the j-th covariate available at the aggregated meta-analysis level for each study. The case of no covariates corresponds to the classical meta-analysis model specified as \(y \sim 1 \).

Within-study variances are specified through `sigma2`: the rare case of equal within-study variances implies Skovgaard’s adjustment reaching a third-order accuracy.

DerSimonian and Laird estimates (DerSimonian and Laird, 1986) are also supplied.

Value

An object of class "metaLik" with the following components:

- **y**: the y vector used.
- **X**: the model matrix used.
- **fitted.values**: the fitted values.
- **sigma2**: the within-study variances used.
- **K**: the number of studies.
- **mle**: the vector of the maximum likelihood parameter estimates.
- **vcov**: the variance-covariance matrix of the parameter estimates.
- **max.lik**: the maximum log-likelihood value.
beta.mle the vector of fixed-effects parameters estimated according to maximum likelihood.

tau2.mle the maximum likelihood estimate of τ^2.

DL the vector of fixed-effects parameters estimated according to DerSimonian and Laird’s approach.

tau2.DL the method of moments estimate of the heterogeneity parameter τ^2.

vcov.DL the variance-covariance matrix of the DL parameter estimates.
call the matched call.

formula the `formula` used.
terms the `terms` object used.
offset the offset used.

contrasts (only where relevant) the `contrasts` specified.
xlevels (only where relevant) a record of the levels of the factors used in fitting.

model the model frame used.

Generic functions `coefficients`, `vcov`, `logLik`, `fitted`, `residuals` can be used to extract fitted model quantities.

Author(s)
Annamaria Guolo and Cristiano Varin.

References

See Also
Function `summary.metaLik` for summaries.
Function `test.metaLik` for hypothesis testing.

Examples
```r
## meta-analysis
data(education)
m <- metalik(y~1, data=education, sigma2=sigma2)
summary(m)
## meta-analysis
data(albumin)
```
simulate.metaLik

```r
m <- metaLik(y~1, data=albumin, sigma2=sigma2)
summary(m)
## meta-regression
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
summary(m)
## meta-regression
data(cholesterol)
m <- metaLik(heart_disease~chol_reduction, data=cholesterol, weights=1/sigma2)
summary(m)
```

simulate.metaLik
Simulate meta-analysis outcomes

Description

Simulate one or more meta-analysis outcomes from a fitted `metaLik` object.

Usage

```r
## S3 method for class 'metaLik'
simulate(object, nsim=1, seed=NULL, ...)  
```

Arguments

- `object` an object of class "`metaLik`".
- `nsim` number of outcome vectors to simulate. Default is 1.
- `seed` an object specifying if and how the random number generator should be initialized, see `simulate` for details.
- `...` additional optional arguments.

Value

A dataframe containing the simulated meta-analysis outcomes.

Author(s)

Annamaria Guolo and Cristiano Varin.

References

Examples

```r
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
sim <- simulate(m, nsim=2)
sim
```
summary.metaLik

Summarizing meta-analysis and meta-regression model fits

Description

Summary method for class "metaLik".

Usage

```
## S3 method for class 'metaLik' 
summary(object, ...) 
```

Arguments

- **object**: an object of class "metaLik", usually a result of a call to "metaLik".
- **...**: additional arguments

Details

`summary.metaLik` prints summary information about within-study heterogeneity, parameter estimates, standard errors, first- and higher-order log-likelihood ratio statistics. See `test.metaLik` for more details about the first- and higher-order statistics.

Value

The function `summary.metaLik` returns the `metaLik` object from which `summary.metaLik` is called.

See Also

The generic functions `coefficients`, `confint` and `vcov`. Function `test.metaLik` allows for hypothesis testing.

Examples

```
## meta-analysis
data(education)
m <- metaLik(y~1, data=education, sigma2=sigma2)
summary(m)
## meta-analysis
data(albumin)
m <- metaLik(y~1, data=albumin, sigma2=sigma2)
summary(m)
## meta-regression
data(vaccine)
m <- metaLik(y~latitude, data=vaccine, sigma2=sigma2)
summary(m)
## meta-regression
data(cholesterol)
```
```
m <- metaLik(heart_disease~chol_reduction, data=cholesterol, weights=1/sigma2)
summary(m)
```

test.metaLik

Hypothesis testing on a scalar fixed-effect component in meta-analysis and meta-regression models

Description

Performs hypothesis testing on a scalar component of the fixed-effects vector in meta-analysis and meta-regression models, using the signed profile log-likelihood ratio test and its higher-order Skovgaard’s adjustment (Skovgaard, 1996), as described in Guolo (2012). See Guolo and Varin (2012) for illustrative examples about the usage of _metaLik_ package.

Usage

```
test.metaLik(object, param=1, value=0, alternative=c("two.sided", "less", "greater"), print=TRUE)
```

Arguments

- **object**: an object of class "metaLik".
- **param**: a specification of which parameter is to be given confidence interval, either a number or a name. Default is 1 corresponding to the intercept.
- **value**: a single number indicating the value of the fixed-effect parameter under the null hypothesis. Default is 0.
- **alternative**: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". Just the initial letter can be specified.
- **print**: logical, whether output information should be printed or not; default is _TRUE_.

Details

`test.metaLik` allows hypothesis testing on a scalar component of interest in the fixed-effects vector. The signed profile log-likelihood ratio statistic for inference on scalar component \(\beta \) of \(\theta \) is

\[
r(\beta) = \text{sign}(\hat{\beta} - \beta) \sqrt{2(l(\hat{\theta}) - l(\theta))},
\]

where \(l \) is the log-likelihood function and \(\hat{\theta} \) is the maximum likelihood estimate of \(\theta \). The Skovgaard’s adjustment is defined as

\[
\tau(\beta) = r(\beta) + \frac{1}{r(\beta)} \log \frac{u(\beta)}{u(\beta)},
\]

where \(u(\beta) \) is a correction term involving the observed and the expected information matrix and covariances of likelihood quantities, as described in Guolo (2012). Skovgaard’s statistic has a second-order accuracy in approximating the standard normal distribution. In the rare case of equal within-study variances, Skovgaard’s statistic reaches third-order accuracy.
Value

A list with the following components:

- \(r \) the value of the signed profile log-likelihood ratio statistic.
- \(p\text{value}.r \) the p-value of the signed profile log-likelihood ratio test.
- \(rskov \) the value of the Skovgaard’s statistic.
- \(p\text{value}.rskov \) the p-value of the Skovgaard’s test.

Author(s)

Annamaria Guolo and Cristiano Varin.

References

See Also

Function `metalik` for fitting meta-analysis and meta-regression models. Function `summary.metalik` for summaries.

Examples

```r
data(vaccine)
m <- metalik(y~latitude, data=vaccine, sigma2=sigma2)
## significance test for the intercept coefficient
test.metalik(m)
## significance test for the 'latitude' coefficient
test.metalik(m, param=2)
## testing for the 'latitude' coefficient less than 0
test.metalik(m, param=2, value=0, alternative='less')
```

vaccine

Data for Bacillus Calmette-Guerin (BCG) vaccine studies.

Description

Data from thirteen clinical studies evaluating the efficacy of the BCG vaccine for the prevention of tuberculosis.
Usage
data(vaccine)

Format

\(y \) log odds ratio in each study.

\(\text{latitude} \) latitude, distance of each study from the equator, surrogate for the presence of environmental mycobacteria providing a level of natural immunity against tuberculosis.

\(\text{year} \) year of the study.

\(\text{sigma2} \) estimated within-study variance.

Source

Examples

data(vaccine)
Index

*Topic **datasets**
 - albumin, 2
 - cholesterol, 2
 - diuretics, 3
 - education, 4
 - vaccine, 10

*Topic **htest**
 - metalik, 4
 - summary.metalik, 8
 - test.metalik, 9

*Topic **models**
 - simulate.metalik, 7

*Topic **regression**
 - metalik, 4
 - simulate.metalik, 7
 - summary.metalik, 8
 - test.metalik, 9

albumin, 2
as.data.frame, 5

cholesterol, 2
coefficients, 6, 8
confint, 8
contrasts, 6
diuretics, 3
education, 4
fitted, 6
formula, 5, 6
logLik, 6

metalik, 4, 7–10
model.matrix.default, 5
model.offset, 5
offset, 5
residuals, 6

simulate, 7
simulate.metalik, 7
summary.metalik, 6, 8, 10
terms, 6
test.metalik, 6, 8, 9
vaccine, 10
vcov, 6, 8