Package ‘ADMM’

September 28, 2018

Type Package

Title Algorithms using Alternating Direction Method of Multipliers

Version 0.3.1

Description Provides algorithms to solve popular optimization problems in statistics such as regression or denoising based on Alternating Direction Method of Multipliers (ADMM).

License GPL (>= 3)

Encoding UTF-8

LazyData true

Imports Rcpp, Matrix, Rdpack, stats, doParallel, foreach, parallel

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.0

RdMacros Rdpack

NeedsCompilation yes

Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>), Xiaozhi Zhu [aut]

Maintainer Kisung You <kyou@nd.edu>

Repository CRAN

Date/Publication 2018-09-28 18:00:52 UTC

R topics documented:

ADMM .. 2
admm.bp .. 2
admm.enet .. 4
admm.genlasso 5
admm.lad .. 7
admm.lasso .. 9
admm.rpca .. 11
admm.spca .. 12
admm.tv .. 14
ADMM : Algorithms using Alternating Direction Method of Multipliers

Description

An introduction of Alternating Direction Method of Multipliers (ADMM) method has been a breakthrough in solving complex and non-convex optimization problems in a reasonably stable as well as scalable fashion. Our package aims at providing handy tools for fast computation on well-known problems using the method. For interested users/readers, please visit Prof. Stephen Boyd’s website entirely devoted to the topic. Below is the list of functions supported,

FUNCTION Algorithm
admm.bp Basis Pursuit
admm.enet Elastic Net Regularization
admm.genlasso Generalized LASSO
admm.lad Least Absolute Deviations
admm.lasso Least Absolute Shrinkage and Selection Operator
admm.rpca Robust Principal Component Analysis
admm.spca Sparse Principal Component Analysis
admm.tv Total Variation Minimization

Usage
admm.bp(A, b, xinit = NA, rho = 1, alpha = 1, abstol = 1e-04,
reitol = 0.01, maxiter = 1000)

Arguments
A an \((m \times n)\) regressor matrix
b a length-\(m\) response vector
xinit a length-\(n\) vector for initial value
rho an augmented Lagrangian parameter
alpha an overrelaxation parameter in [1,2]
abstol absolute tolerance stopping criterion
reltol relative tolerance stopping criterion
maxiter maximum number of iterations

Value
a named list containing
x a length-\(n\) solution vector
history dataframe recording iteration numerics. See the section for more details.

Iteration History
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

objval object (cost) function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \(r_{\text{norm}}\) and \(s_{\text{norm}}\) values become smaller than \(\text{eps}_{\text{pri}}\) and \(\text{eps}_{\text{dual}}\), respectively.

Examples

```r
## generate sample data
n = 30;
m = 10;
A = matrix(rnorm(n*m), nrow=m);

x = matrix(rep(0,n), ncol=m)
x[c(3,6,21),] = rnorm(3)
b = A%*%x

## run example
output = admm.bp(A, b)

## report convergence plot
niter = length(output$history$s_norm)
par(mfrow=c(1,3))
plot(1:niter, output$history$objval, "b", main="cost function")
plot(1:niter, output$history$r_norm, "b", main="primal residual")
plot(1:niter, output$history$s_norm, "b", main="dual residual")
```
Description

Elastic Net regularization is a combination of \(\ell_2 \) stability and \(\ell_1 \) sparsity constraint simultaneously solving the following,

\[
\min_x \frac{1}{2} \|Ax - b\|_2^2 + \lambda_1 \|x\|_1 + \lambda_2 \|x\|_2^2
\]

with nonnegative constraints \(\lambda_1 \) and \(\lambda_2 \). Note that if both lambda values are 0, it reduces to least-squares solution.

Usage

\[
\text{admm.net}(A, b, \text{lambda1} = 1, \text{lambda2} = 1, \text{rho} = 1, \text{abstol} = 1e-04, \\
\text{reltol} = 0.01, \text{maxiter} = 1000)
\]

Arguments

- \(A \): an \((m \times n)\) regressor matrix
- \(b \): a length-\(m \) response vector
- \(\text{lambda1} \): a regularization parameter for \(\ell_1 \) term
- \(\text{lambda2} \): a regularization parameter for \(\ell_2 \) term
- \(\text{rho} \): an augmented Lagrangian parameter
- \(\text{abstol} \): absolute tolerance stopping criterion
- \(\text{reltol} \): relative tolerance stopping criterion
- \(\text{maxiter} \): maximum number of iterations

Value

- a named list containing
 - \(x \): a length-\(n \) solution vector
 - \text{history}: dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- \text{objval}: object (cost) function value
- \text{r_norm}: norm of primal residual
- \text{s_norm}: norm of dual residual
- \text{eps_pri}: feasibility tolerance for primal feasibility condition
- \text{eps_dual}: feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \text{r_norm} and \text{s_norm} values become smaller than \text{eps_pri} and \text{eps_dual}, respectively.
Author(s)
Xiaozhi Zhu

References

See Also
admm.lasso

Examples
```r
## generate underdetermined design matrix
m = 50
n = 100
p = 0.1  # percentage of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n, 1, p))
A = matrix(rnorm(m * n), nrow = m)
for (i in 1:ncol(A)){
  A[,i] = A[,i] / sqrt(sum(A[,i] * A[,i]))
}
b = A %*% x0 + sqrt(0.001) * matrix(rnorm(m))

## run example with both regularization values = 1
output = admm.enet(A, b, lambda1=1, lambda2=1)

## report convergence plot
niter = length(output$history$s_norm)
par(mfrow=c(1,3))
plot(1:niter, output$history$objval, "b", main="cost function")
plot(1:niter, output$history$r_norm, "b", main="primal residual")
plot(1:niter, output$history$s_norm, "b", main="dual residual")
```

Description
Generalized LASSO is solving the following equation,

$$\min x \frac{1}{2} \|Ax - b\|^2_2 + \lambda \|Dx\|_1$$

where the choice of regularization matrix D leads to different problem formulations.
Usage

```r
admm.genlasso(A, b, D = diag(length(b)), lambda = 1, rho = 1,
alpha = 1, abstol = 1e-04, reltol = 0.01, maxiter = 1000)
```

Arguments

- `A`: an \((m \times n)\) regressor matrix
- `b`: a length-\(m\) response vector
- `D`: a regularization matrix of \(n\) columns
- `lambda`: a regularization parameter
- `rho`: an augmented Lagrangian parameter
- `alpha`: an overrelaxation parameter in \([1,2]\)
- `abstol`: absolute tolerance stopping criterion
- `reltol`: relative tolerance stopping criterion
- `maxiter`: maximum number of iterations

Value

- A named list containing
 - `x`: a length-\(n\) solution vector
 - `history`: dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- `objval`: object (cost) function value
- `r_norm`: norm of primal residual
- `s_norm`: norm of dual residual
- `eps_pri`: feasibility tolerance for primal feasibility condition
- `eps_dual`: feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \(r_norm\) and \(s_norm\) values become smaller than \(eps_pri\) and \(eps_dual\), respectively.

Author(s)

Xiaozhi Zhu

References

Examples

```r
## generate sample data
m = 100
n = 200
p = 0.1  # percentage of non-zero elements

x0 = matrix(Matrix::rsparsematrix(n, 1, p))
A = matrix(rnorm(m * n), nrow = m)
for (i in 1:ncol(A)) {
    A[, i] = A[, i] / sqrt(sum(A[, i] * A[, i]))
}

b = A%*%x0 + sqrt(0.001) * matrix(rnorm(m))
D = diag(n);

## set regularization lambda value
regval = 0.1 * Matrix::norm(t(A)%*%b, 'I')

## solve LASSO via reducing from Generalized LASSO
output = admm.genlasso(A, b, D, lambda = regval)  # set D as identity matrix

## visualize
## report convergence plot
niter = length(output$history$s_norm)
par(mfrow = c(1, 3))
plot(1:niter, output$history$objval, "b", main = "cost function")
plot(1:niter, output$history$r_norm, "b", main = "primal residual")
plot(1:niter, output$history$s_norm, "b", main = "dual residual")
```

admm.lad

Least Absolute Deviations

Description

Least Absolute Deviations (LAD) is an alternative to traditional Least Squares by using cost function

\[
\min_x \| Ax - b \|_1
\]

to use \(\ell_1 \) norm instead of square loss for robust estimation of coefficient.

Usage

```r
admm.lad(A, b, xinit = NA, rho = 1, alpha = 1, abstol = 1e-04,
          reltol = 0.01, maxiter = 1000)
```

Arguments

- `A`: an \((m \times n)\) regressor matrix
- `b`: a length-\(m\) response vector
xinit a length-\(n\) vector for initial value
rho an augmented Lagrangian parameter
alpha an overrelaxation parameter in \([1,2]\)
abstol absolute tolerance stopping criterion
reltol relative tolerance stopping criterion
maxiter maximum number of iterations

Value

a named list containing

\(x\) a length-\(n\) solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

objval object (cost) function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \(r_norm\) and \(s_norm\) values become smaller than \(eps_pri\) and \(eps_dual\), respectively.

Examples

```r
## Not run:
## generate data
m = 1000
n = 100
A = matrix(rnorm(m*n),nrow=m)
x = 10*matrix(rnorm(n))
b = A*x

## add impulsive noise to 10% of positions
idx = sample(1:m, round(m/10))
b[idx] = b[idx] + 100*rnorm(length(idx))

## run the code
output = admm.lad(A,b)

## report convergence plot
niter = length(output$history$s_norm)
par(mfrow=c(1,3))
plot(1:niter, output$history$objval, "b", main="cost function")
```
admm.lasso

plot(1:niter, output$history$r_norm, "b", main="primal residual")
plot(1:niter, output$history$s_norm, "b", main="dual residual")

End(Not run)

admm.lasso

Least Absolute Shrinkage and Selection Operator

Description

LASSO, or L1-regularized regression, is an optimization problem to solve

\[
\min_x \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1
\]

for sparsifying the coefficient vector \(x \). The implementation is borrowed from Stephen Boyd’s MATLAB code.

Usage

admm.lasso(A, b, lambda = 1, rho = 1, alpha = 1, abstol = 1e-04, reltol = 0.01, maxiter = 1000)

Arguments

- \(A \): an \((m \times n)\) regressor matrix
- \(b \): a length-\(m \) response vector
- \(\lambda \): a regularization parameter
- \(\rho \): an augmented Lagrangian parameter
- \(\alpha \): an overrelaxation parameter in \([1,2]\)
- \(\text{abstol} \): absolute tolerance stopping criterion
- \(\text{reltol} \): relative tolerance stopping criterion
- \(\text{maxiter} \): maximum number of iterations

Value

A named list containing

- \(x \): a length-\(n \) solution vector
- \(\text{history} \): dataframe recording iteration numerics. See the section for more details.
Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over itterates,

- **objval** object (cost) function value
- **r_norm** norm of primal residual
- **s_norm** norm of dual residual
- **eps_pri** feasibility tolerance for primal feasibility condition
- **eps_dual** feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \(r_{\text{norm}} \) and \(s_{\text{norm}} \) values become smaller than \(\text{eps}_\text{pri} \) and \(\text{eps}_\text{dual} \), respectively.

References

Examples

```r
## Not run:
## generate sample data
m = 50
n = 100
p = 0.1  # percentage of non-zero elements

x0 = matrix(Matrix::rsparsematrix(n, 1, p))
A = matrix(rnorm(m*n), nrow=m)
for (i in 1:ncol(A)){
    A[, i] = A[, i]/sqrt(sum(A[, i]*A[, i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))

## set regularization lambda value
lambda = 0.1*Matrix::norm(t(A)%*%b, 'I')

## run example
output = admm.lasso(A, b, lambda)

## report convergence plot
niter = length(output$history$s_norm)
par(mfrow=c(1,3))
plot(1:niter, output$history$objval, "b", main="cost function")
plot(1:niter, output$history$r_norm, "b", main="primal residual")
plot(1:niter, output$history$s_norm, "b", main="dual residual")

## End(Not run)
```
Robust Principal Component Analysis

Description

Given a data matrix M, it finds a decomposition

$$\min \|L\|_* + \lambda \|S\|_1 \quad \text{s.t.} \quad L + S = M$$

where $\|L\|_*$ represents a nuclear norm for a matrix L and $\|S\|_1 = \sum |S_{i,j}|$, and λ a balancing/regularization parameter. The choice of such norms leads to impose low-rank property for L and sparsity on S.

Usage

```
admm.rpca(M, lambda = 1/sqrt(max(nrow(M), ncol(M))), mu = 1, tol = 1e-07, maxiter = 1000)
```

Arguments

- `M` an $(m \times n)$ data matrix
- `lambda` a regularization parameter
- `mu` an augmented Lagrangian parameter
- `tol` relative tolerance stopping criterion
- `maxiter` maximum number of iterations

Value

a named list containing

- `L` an $(m \times n)$ low-rank matrix
- `S` an $(m \times n)$ sparse matrix
- `history` dataframe recording iteration numerics. See the section for more details.

Iteration History

For RPCA implementation, we chose a very simple stopping criterion

$$\|M - (L_k + S_k)\|_F \leq tol * \|M\|_F$$

for each iteration step k. So for this method, we provide a vector of only relative errors, `error` relative error computed

References

Examples

```r
## generate data matrix from standard normal
X = matrix(rnorm(20*5), nrow=5)

## try different regularization values
out1 = admm.rpca(X, lambda=0.01)
out2 = admm.rpca(X, lambda=0.1)
out3 = admm.rpca(X, lambda=1)

## visualize sparsity
par(mfrow=c(1,3))
image(out1$S, main="lambda=0.01")
image(out2$S, main="lambda=0.1")
image(out3$S, main="lambda=1")
```

Description

Sparse Principal Component Analysis aims at finding a sparse vector by solving

$$\max_x x^T \Sigma x \quad \text{s.t.} \quad \|x\|_2 \leq 1, \|x\|_0 \leq K$$

where $\|x\|_0$ is the number of non-zero elements in a vector x. A convex relaxation of this problem was proposed to solve the following problem,

$$\max_X <\Sigma, X> \quad \text{s.t.} \quad \text{Tr}(X) = 1, \|X\|_0 \leq K^2, X \geq 0, \text{rank}(X) = 1$$

where $X = xx^T$ is a $(p \times p)$ matrix that is outer product of a vector x by itself, and $X \geq 0$ means the matrix X is positive semidefinite. With the rank condition dropped, it can be restated as

$$\max_X <\Sigma, X> - \rho \|X\|_1 \quad \text{s.t.} \quad \text{Tr}(X) = 1, X \geq 0.$$

After acquiring each principal component vector, an iterative step based on Schur complement deflation method is applied to regress out the impact of previously-computed projection vectors. It should be noted that those sparse basis may not be orthonormal.

Usage

```r
admm.spca(Sigma, numpc, mu = 1, rho = 1, abstol = 1e-04, reltol = 0.01, maxiter = 1000)
```

Arguments

- `Sigma`: a $(p \times p)$ (sample) covariance matrix.
- `numpc`: number of principal components to be extracted.
- `mu`: an augmented Lagrangian parameter.
rho a regularization parameter for sparsity.
abstol absolute tolerance stopping criterion.
reltol relative tolerance stopping criterion.
maxiter maximum number of iterations.

Value

a named list containing

- **basis** a $(p \times \text{numpc})$ matrix whose columns are sparse principal components.
- **history** a length-numpc list of dataframes recording iteration numerics. See the section for more details.

Iteration History

For SPCA implementation, main computation is sequentially performed for each projection vector. The history field is a list of length numpc, where each element is a data frame containing iteration history recording following fields over iterates,

- **r_norm** norm of primal residual
- **s_norm** norm of dual residual
- **eps_pri** feasibility tolerance for primal feasibility condition
- **eps_dual** feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

References

Examples

```r
## generate a random matrix and compute its sample covariance
X = matrix(rnorm(1000*5), nrow=1000)
covX = cov(X)

## compute 3 sparse basis
output = admm.spca(covX, 3)
```
Total Variation Minimization

1-dimensional total variation minimization - also known as signal denoising - is to solve the following

$$\min_x \frac{1}{2} \|x - b\|^2_2 + \lambda \sum_i |x_{i+1} - x_i|$$

for a given signal b. The implementation is borrowed from Stephen Boyd’s MATLAB code.

Usage

```r
admm.tv(b, lambda = 1, xinit = NA, rho = 1, alpha = 1,
        abstol = 1e-04, reltol = 0.01, maxiter = 1000)
```

Arguments

- `b`: a length-m response vector
- `lambda`: regularization parameter
- `xinit`: a length-m vector for initial value
- `rho`: an augmented Lagrangian parameter
- `alpha`: an overrelaxation parameter in [1, 2]
- `abstol`: absolute tolerance stopping criterion
- `reltol`: relative tolerance stopping criterion
- `maxiter`: maximum number of iterations

Value

- a named list containing
 - `x`: a length-m solution vector
 - `history`: dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- `objval`: object (cost) function value
- `r_norm`: norm of primal residual
- `s_norm`: norm of dual residual
- `eps_pri`: feasibility tolerance for primal feasibility condition
- `eps_dual`: feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both `r_norm` and `s_norm` values become smaller than `eps_pri` and `eps_dual`, respectively.
Examples

```r
## generate sample data
x1 = as.vector(sin(1:100)+0.1*runif(100))
x2 = as.vector(cos(1:100)+0.1*runif(100)+5)
x3 = as.vector(sin(1:100)+0.1*runif(100)+2.5)
xsignal = c(x1,x2,x3)

## run example
output = admm.tv(xsignal)

## visualize
par(mfrow=c(1,2))
plot(1:300,xsignal,"l",main="original signal")
plot(1:300,output$x,"l",main="denoised signal")
```
Index

ADMM, 2
ADMM-package (ADMM), 2
admm.bp, 2, 2
admm.enet, 2, 4
admm.genlasso, 2, 5
admm.lad, 2, 7
admm.lasso, 2, 5, 9
admm.rpca, 2, 11
admm.spca, 2, 12
admm.tv, 2, 14