Package ‘ADPclust’

October 15, 2016

Type Package

Title Fast Clustering Using Adaptive Density Peak Detection

Version 0.7

Description An implementation of ADPclust clustering procedures (Fast Clustering Using Adaptive Density Peak Detection). The work is built and improved upon the idea of Rodriguez and Laio (2014)<DOI:10.1126/science.1242072>. ADPclust clusters data by finding density peaks in a density-distance plot generated from local multivariate Gaussian density estimation. It includes an automatic centroids selection and parameter optimization algorithm, which finds the number of clusters and cluster centroids by comparing average silhouettes on a grid of testing clustering results; It also includes a user interactive algorithm that allows the user to manually selects cluster centroids from a two dimensional “density-distance plot”. Here is the research article associated with this package: “Wang, Xiao-Feng, and Yifan Xu (2015)<DOI:10.1177/0962280215609948> Fast clustering using adaptive density peak detection.” Statistical methods in medical research", url: http://smm.sagepub.com/content/early/2015/10/15/0962280215609948.abstract.

Depends R (>= 3.0.0),

Imports dplyr, cluster, fields, knitr

URL https://github.com/ethanyxu/ADPclust

BugReports https://github.com/ethanyxu/ADPclust/issues

VignetteBuilder knitr

License GPL (>= 2)

LazyData true

Suggests rmarkdown, testthat

RoxygenNote 5.0.1

NeedsCompilation no

Author Yifan (Ethan) Xu [aut, cre],
Xiao-Feng Wang [aut]

Maintainer Yifan (Ethan) Xu <ethan.yifanxu@gmail.com>

Repository CRAN

Date/Publication 2016-10-15 11:37:01
R topics documented:

adpclust .. 2
AMISE .. 5
clust10 ... 6
clust3 .. 6
clust5 .. 6
clust5.1 ... 7
dat_gene ... 7
defCol .. 7
FindCentersAutoD ... 8
FindCentersAutoV ... 8
FindClustersAuto .. 9
FindClustersGivenCenters 10
FindClustersManual 11
FindDism ... 12
FindFD .. 12
FindH .. 13
plot.adpclust .. 14
ROT .. 14
summary.adpclust ... 15

Index 16

adpclust Fast Clustering Using Adaptive Density Peak Detection

Description

Clustering of data by finding cluster centers from estimated density peaks. ADPclust is a non-
iterative procedure that incorporates multivariate Gaussian density estimation. The number of clus-
ters as well as bandwidths can either be selected by the user or selected automatically through an
internal clustering criterion.

Usage

adpclust(x = NULL, distm = NULL, p = NULL, centroids = "auto",
h = NULL, htype = "amise", nclust = 2:10, ac = 1, f.cut = c(0.1,
0.2, 0.3), fdelta = "mnorm", dmethod = "euclidean", draw = FALSE)

Arguments

x numeric data frame where rows are observations and columns are variables. One of x and distm must be provided.
distm distance matrix of class 'dist'. distm is ignored if x is given.
p number of variables (ncol(x)). This is only needed if neither x nor h is given.
adpclust

centroids character string specifying how cluster centroids are selected. Valid options are
"user" and "auto".

h nonnegative number specifying the bandwidth in density estimation. If h is
NULL, the algorithm attempts to find h in a neighborhood centered at either
the AMISE bandwidth or ROT bandwidth (see htype).

htype character string specifying the method used to calculate a reference bandwidth
for the density estimation. htype is ignored if h is given. Valid options of are
"ROT" and "AMISE" (see details).

nclust integer, or a vector of integers specifying the pool of the number of clusters in
automatic variation. The default is 2:10.

ac integer indicating which automatic cut method is used. This is ignored if cen-
troids = 'user'. The valid options are:

 • ac = 1: centroids are chosen to be the data points x's with the largest delta
values such that f(x) >= a'th percentile of all f(x). The number of centroids
is given by the parameter nclust. The cutting percentile(s) is given by the
parameter f.cut.
 • ac = 2: let l denote the straight line connecting (min(f), max(delta)) and
(max(f), min(delta)). The centroids are selected to be data points above l
and farthest away from it. The number of centroids is given by the parame-
ter nclust.

f.cut number between (0, 1) or numeric vector of numbers between (0, 1). f.cut is used
when centroids = "auto" and ac = 1 to automatically select cluster centroids from
the decision plot (see ac). The default is c(0.1, 0.2, 0.3).

fdelta character string that specifies the method used to estimate local density f(x) at
each data point x. The default (recommended) is "mnorm" that uses a multivari-
ate Gaussian density estimation to calculate f. Other options are listed below.
Here 'distm' denotes the distance matrix.

 • unorm(f <- 1/(h * sqrt(2 * pi)) * rowSums(exp(-(distm/h)^2/2))); Univariate
 Gaussian smoother
 • weighted(f <- rowSums(exp(-(distm/h)^2))); Univariate weighted smoother
 • count(f <- rowSums(distm < h) - 1); Histogram estimator (used in Ro-
 driguez [2014])

dmethod character string that is passed to the 'method' argument in function dist(), which
is used to calculate the distance matrix if 'distm' is not given. The default is
"euclidean".

draw boolean. If draw = TRUE the clustering result is plotted after the algorithm fin-
ishes. The plot is produced by by plot.adpclust(ans), where 'ans' is the outcome
of 'adpclust()

Details

Given n data points x’s in p dimensions, adpclust() calculates f(x) and delta(x) for each data point
x, where f(x) is the local density at x, and delta(x) is the shortest distance between x and y for all
y such that f(x) <= f(y). Data points with large f and large delta values are labeled class centroids.
In other words, they appear as isolated points in the upper right corner of the f vs. delta plot (the
After cluster centroids are determined, other data points are clustered according to their distances to the closest centroids.

A bandwidth (smoothing parameter) h is used to calculate local density $f(x)$ in various ways. See parameter `fdelta` for details. If `centroids = 'user'`, then h must be explicitly provided. If `centroids = 'auto'` and h is not specified, then it is automatically selected from a range of testing values: First a reference bandwidth h_0 is calculated by one of the two methods: Scott’s Rule-of-Thumb value (htype = "ROT") or Wand’s Asymptotic-Mean-Integrated-Squared-Error value (htype = "AMISE"), then 10 values equally spread in the range $[1/3h_0, 3h_0]$ are tested. The value that yields the highest silhouette score is chosen as the final h.

Value

An `adpclust` object that contains the list of the following items.

- `clusters`: Cluster assignments. A vector of the same length as the number of observations.
- `centers`: Indices of the clustering centers.
- `silhouette`: Silhouette score from the final clustering result.
- `nclust`: Number of clusters.
- `h`: Final bandwidth.
- `f`: Final density vector $f(x)$.
- `delta`: Final delta vector $\delta(x)$.
- `selection.type`: ‘user’ or ‘auto’.

References

- [GitHub:](https://github.com/ethanyxu/ADPclust)

Examples

```r
# Load a data set with 3 clusters
data(clust3)

# Automatically select cluster centroids
ans <- adpclust(clust3, centroids = "auto", draw = FALSE)
summary(ans)
plot(ans)

# Specify distm instead of data
distm <- FindDistm(clust3, normalize = TRUE)
ans.distm <- adpclust(distm = distm, p = 2, centroids = "auto", draw = FALSE)
identical(ans, ans.distm)

# Specify the grid of h and nclust
ans <- adpclust(clust3, centroids = "auto", h = c(0.1, 0.2, 0.3), nclust = 2:6)
```
AMISE bandwidth

Description

Calculate the AMISE bandwidth from either a data frame, or from the number of observations and the dimension of the data.

Usage

AMISE(x, y = NULL)

Arguments

x the number of variables (if y is given), or a data frame or a matrix (if y is missing).

y the number of observations. If y is missing then x is interpreted as the data matrix.

Details

IMPORTANT NOTE: The standard deviation of each variable is omitted in this formula.
Value

AMISE bandwidth.

clust10 1000 5-dimensional data points that form ten clusters

Description

Generated from the genRandomClust() function of the "clusterGeneration" package with separation value 0.2.

Format

data frame

clust3 90 2-dimensional data points that form three clusters

Description

Randomly generated from three normal distributions.

Format

data frame

clust5 500 5-dimensional data points that form five clusters

Description

500 5-dim points in 5 clusters. Generated from the genRandomClust() function of the "clusterGeneration" package with separation value 0.1.

Format

data frame
clust5.1
500 5-dimensional data points that form five clusters

Description
Generated from the genRandomClust() function of the "clusterGeneration" package with separation value 0.01 (tightly clustered).

Format
data frame

dat_gene
243-dimensional gene expression data of 38 patients (243 genes)

Description
38 by 243 matrix. Each row represents a patient. Each column represents a gene.

Format
matrix

defCol
Default colors

Description
Returns 10 default colors

Usage
defCol()

Value
vector of colors
FindCentersAutoD \textit{Automatically finds centers with diagonal }f(x)\textit{ vs }\delta(x)\textit{ thresholds}

\textbf{Description}

Automatically finds centers with diagonal $f(x)$ vs $\delta(x)$ thresholds. This is used in \texttt{adpclust()} with ac = 2. It finds points that are above and farthest from the diagonal line in the f vs. δ plots, and label them to be centers.

\textbf{Usage}

\texttt{FindCentersAutoD(f, delta, nclust)}

\textbf{Arguments}

- \texttt{f} \quad \text{vector of local distance.}
- \texttt{delta} \quad \text{vector of minimal distances to higher ground.}
- \texttt{nclust} \quad \text{number of clusters. Can be a single integer or a vector of integers. Duplicates are silently removed.}

\textbf{Value}

a list of vectors. Each vector gives the locations of centers.

\textbf{Author(s)}

Ethan Xu

FindCentersAutoV \textit{Automatically find centers with vertical threshold}

\textbf{Description}

Automatically find centers with vertical threshold vertical $f(x)$ thresholds.

\textbf{Usage}

\texttt{FindCentersAutoV(f, delta, f.cut = c(0.1, 0.2, 0.3), nclust, rm.dup = TRUE)}
Arguments

- **f**: vector of local distance \(f(x) \). See the detail section of the help(adpclust).
- **delta**: vector of minimal distances to higher ground \(\delta(x) \). See the detail section of the help(adpclust).
- **f.cut**: number between \((0, 1)\) or numeric vector of numbers between \((0, 1)\). Data points whose \(f \) values are larger than \(f.cut \) with large \(\delta \) values are selected as centers. The default is \(c(0.1, 0.2, 0.3) \).
- **nclust**: number of clusters. It can be either a single integer or a vector of integers.
- **rm.dup**: boolean. If TRUE (default) duplicated centers vectors are removed from returned list.

Details

Given \(f \)'s and \(\delta \)'s, cluster centers are chosen to be the data points whose \(\delta \) values are high and \(f \) values are larger than a fixed threshold. To be more specific, let \(F \) denote the set of all \(f(x) \). centers are selected as points with the largest \(m \) \(\delta \) values in the set \(x \mid f(x) > a \)’th percentile of \(F \). The number of centers \(m \) is given by the parameter \(nclust \). The cutting percentile \(a \) is given by the parameter \(f.cut \). When at least one of these two parameters are vectors, centers are selected based all combinations of them, and returned in a list.

Value

- a list of vectors. Each vector contains the indices of selected centers.

Author(s)

Ethan Xu

Description

This is the subroutine that automatically finds cluster assignments from given \(f \) and \(\delta \) by testing various parameter settings and find the one that maximizes the silhouette.

Usage

```r
FindClustersAuto(distm, f, delta, ac = 1, nclust = 2:10, f.cut = c(0.1, 0.2, 0.3))
```
Arguments

- `distm`: the distance matrix
- `f`: vector of local distance $f(x)$. See the help of adpclust() for details.
- `delta`: vector of minimal distances to higher ground $\delta(x)$. See the help of adpclust() for details.
- `ac`: type of auto selection. The valid options are 1 and 2. See the help of adpclust() for details.
- `nclust`: number of clusters to test. Either a single integer or a vector of integers.
- `f.cut`: number between (0, 1) or numeric vector of numbers between (0, 1). Data points whose f values are larger than f.cut with large delta values are selected as centers. The default is c(0.1, 0.2, 0.3). See the help of FindCentersAutoV() for more details.

Value

list of four elements:

- clusters: Cluster assignments. A vector of the same length as the number of observations.
- centers: Indices of the clustering centers.
- silhouette: Silhouette score from the final clustering result.
- nclust: Number of clusters.

Author(s)

Ethan Xu
Value

Cluster assignments. A vector of the same length as the number of observations.

Description

Plot the f vs. delta plot, then wait for the user to select centers of clusters by left clicking the points. In general points with both large f and large delta are good candidates of cluster centroids. Selected centers are highlighted. Press ESC to end the selection.

Usage

FindClustersManual(distm, f, delta)

Arguments

distm distance matrix.
f vector of local densities f(x). Same length of the number of observations.
delta vector of distances to the closest high ground delta(x). Same length of the number of observations.

Value

a list of the following items:

- clusters Cluster assignments. A vector of the same length as the number of observations.
- centers: Indices of the clustering centers.
- silhouette: Silhouette score from the final clustering result.
- nclust: Number of clusters.

Examples

data(clust3)
distm <- FindDistm(clust3, normalize = TRUE)
Not run:
fd <- FindFD(distm, 2, "mnorm")
ans <- FindClustersManual(distm, fdf, fddelta)
names(ans)
ans$centers

End(Not run)
FindDistm

Find the distance matrix from data.

Description

A wrapper of the dist() method, with the option to rescale the data with standard deviation of each dimension before calculating the distance matrix. NOTE: If fdelta=`mnorm` is passed to adpclust(), then the distm is calculated from rescaled data internally, i.e. distm <- FindDistm(x, normalize = TRUE).

Usage

FindDistm(x, normalize = FALSE, method = "euclidean")

Arguments

- x: data
- normalize: boolean. Normalize data before calculating distance?
- method: passed to 'dist()'

Value

distance matrix of class dist.

Author(s)

Ethan Xu

FindFD

Find f and delta from distance matrix.

Description

Calculate f(x) and delta(x) from distm and h.

Usage

FindFD(distm, h, fdelta)
Arguments

distm distance matrix of class 'dist'.
h bandwidth.
fdelta character string that specifies the method used to estimate local density \(f(x) \) at each data point \(x \). The default is "mnorm" that uses a multivariate Gaussian density estimation to calculate \(f \). Other options are listed below. Here 'distm' denotes the distance matrix.

- unorm(f <- 1/(h * sqrt(2 * pi)) * rowSums(exp(-(distm/h)^2/2))); Univariate Gaussian smoother
- weighted(f <- rowSums(exp(-(distm/h)^2))); Univariate weighted smoother
- count(f <- rowSums(distm < h) - 1); Histogram estimator (used in Rodriguez [2014])

Value

list of two items: f and delta.

FindH

Find bandwidth \(h \).

Description

Find bandwidth \(h \) from the number of observations \(n \) and the dimension \(p \).

Usage

FindH(p, n, htype)

Arguments

p dimension of data. The number of variables.
n the number of observations.
htype methods to calculate \(h \). The valid options are (case insensitive) "amise" or "rot".

Value

bandwidth \(h \).
plot.adpclust

Visualize the result of adpclust()

Description
Plot the f vs. delta plot with selected centroids.

Usage
S3 method for class 'adpclust'
plot(x, cols = "default", to.plot = c("cluster.sil", "fd"), ...)

Arguments
- **x**: an object of class "adpclust". Result of adpclust().
- **cols**: vector of colors used to distinguish different clusters. Recycled if necessary.
- **to.plot**: string vector that indicate which plot(s) to show. The two options are 'cluster.sil' (nclus vs. silhouette) and 'fd' (f vs. delta).

Examples
Load a data set with 3 clusters
data(clust3)
Automatically select cluster centroids
ans <- adpclust(clust3, centroids = "auto")
plot(ans)
plot(ans, to.plot = "fd")
plot(ans, to.plot = "cluster.sil")
plot(ans, to.plot = c("cluster.sil", "fd")) #Default

rot

Calculate ROT bandwidth

Description
Calculate the ROT bandwidth either from a data frame, or from p and n.

Usage
ROT(x, y = NULL)
summary.adpclust

Arguments

x the number of variables (if y is missing), or a data frame or a matrix (if y is not missing).

y the number of observations. If y is missing, x should be the data matrix.

Details

IMPORTANT NOTE: The standard deviation of each variable is omitted in this formula.

Value

ROT bandwidth.

summary.adpclust Summary of adpclust

Description

Summarizes the result from the adpclust() function.

Usage

S3 method for class 'adpclust'
summary(object, ...)

Arguments

object object of class "adpclust" that is returned from adpclust().

... other arguments. NOT used.
Index

∗Topic datasets
 clust10, 6
 clust3, 6
 clust5, 6
 clust5.1, 7
 dat_gene, 7

adpclust, 2
AMISE, 5

clust10, 6
clust3, 6
clust5, 6
clust5.1, 7

dat_gene, 7
defCol, 7

FindCentersAutoD, 8
FindCentersAutoV, 8
FindClustersAuto, 9
FindClustersGivenCenters, 10
FindClustersManual, 11
FindDistm, 12
FindFD, 12
FindH, 13

plot.adpclust, 14

ROT, 14

summary.adpclust, 15