Package ‘AHM’

October 12, 2022

Type Package

Title Additive Heredity Model: Method for the Mixture-of-Mixtures Experiments

Version 1.0.1

Maintainer Sumin Shen <sumin@vt.edu>

Description An implementation of the additive heredity model for the mixture-of-mixtures experiments of Shen et al. (2019) in Technometrics <doi:10.1080/00401706.2019.1630010>. The additive heredity model considers an additive structure to inherently connect the major components with the minor components. The additive heredity model has a meaningful interpretation for the estimated model because of the hierarchical and heredity principles applied and the nonnegative garrote technique used for variable selection.

License GPL-3

Encoding UTF-8

LazyData true

Imports mixexp, plgp, devtools, dplyr, tibble, tidyr, Matrix

Depends R (>= 2.10), quadprog, glmnet

Suggests knitr, rmarkdown, partitions

VignetteBuilder knitr

BuildVignettes yes

RoxygenNote 6.0.1

NeedsCompilation no

Author Sumin Shen [aut, cre],
Lulu Kang [aut],
Xinwei Deng [aut]

Repository CRAN

Date/Publication 2019-07-28 09:00:05 UTC
ahm

Description

This is one of the main functions. The function `ahm` computes the proposed additive heredity model.

Usage

`ahm(y, x, num_major = 3, dist_minor = c(2, 2, 1), type = "weak", alpha = 0, lambda_seq = seq(0, 5, 0.01), nfolds = NULL, mapping_type = c("power"), powerh = 0, rep_gcv = 100)`

Arguments

- `y` numeric vector
- `x` data.frame Note the column names of the `x` should be in the order of major components, minor components, and no interactions are needed.
- `num_major` number of major components
- `dist_minor` the allocation of number of minor components nested under major components
- `type` heredity type, weak heredity is the current support type
- `alpha` 0 is for the ridge in glmnet https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
check_col_correlation

lambda_seq a numeric vector for the options of lambda used in ridge regression for estimating the initials

nfolds used in cv.glmnet for initial value of parameters in the non-negative garrote method

mapping_type the form of the coefficient function of major components in front of corresponding minor terms. Currently only support "power"

powerh the power parameter used for the power function

rep_gcv the number of choices of tuning parameter used in the GCV selection

Value

Return a list

Examples

data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
out = ahm (y, x, num_major = 3, dist_minor = c(2,2,1),
 type = "weak", alpha=0, lambda_seq=seq(0,5,0.01), nfold = NULL,
 mapping_type = c("power"), powerh = h_tmp,
 rep_gcv=100)
summary(out)

check_col_correlation

Description

Check column correlations

Usage

check_col_correlation(dat)

Arguments

dat data.frame

Examples

data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
check_col_correlation (dat=x)
coating

Photoresist-coating experiment data

Description

Photoresist-coating experiment data

Usage

data(coating)

Format

data.frame

References

Examples

data(coating)
print(coating)

coef.ahm

Coefficient method for the fitted ahm object

Description

Coefficient method for the fitted ahm object

Usage

S3 method for class 'ahm'
coef(object, ...)

Arguments

object ahm object

... not used

Value

a numerical vector
Examples

```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
out = ahm (y, x, num_major = 3, dist_minor = c(2,2,1),
        type = "weak", alpha=0, lambda_seq=seq(0,5,0.01), nfold = NULL,
        mapping_type = c("power"), powerh = h_tmp,
        rep_gcv=100)
coef(out)
```

Description

Coefficient method for the fitted cv.ahm object

Usage

```r
## S3 method for class 'cv.ahm'
coef(object, metric = "mse", ...)
```

Arguments

- `object`: cv.ahm object
- `metric`: "mse" or "aicc"
- `...`: not used

Value

A numerical vector

Examples

```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
powerh_path = round(seq(0.001,2,length.out =15),3)
num_major = 3; dist_minor = c(2,2,1)
res = cv.ahm (y, x, powerh_path=powerh_path, metric = "mse", num_major, dist_minor, type = "weak"
        , alpha=0, lambda_seq=seq(0,5,0.01), nfolds=NULL, mapping_type = c("power"), rep_gcv=100)
coefficients = coef(res)
```
compute_aicc

compute AICc

Description

compute AICc

Usage

```r
compute_aicc(rss, n, p, type = "AICc")
```

Arguments

- `rss`: residual sum of squares
- `n`: number of observation
- `p`: number of nonzero parameters
- `type`: character "AICc"

References

Calculating AIC “by hand” in R in Stack Overflow

Examples

```r
compute_aicc (rss=10, n=30, p=6, type = "AICc")
```

cv.ahm

This is one of the main functions. It perform the cross validation on ahm models to select the optimal setting of hyper parameter h

Description

This is one of the main functions. It perform the cross validation on ahm models to select the optimal setting of hyper parameter h

Usage

```r
cv.ahm(y, x, powerh_path = NULL, metric = c("mse", "AICc"), num_major = 3, dist_minor = c(2, 2, 1), type = "weak", alpha = 0, lambda_seq = seq(0, 5, 0.01), nfolds = NULL, mapping_type = c("power"), rep_gcv = 100)
```

Examples

```r
cv.ahm(y, x, powerh_path = NULL, metric = c("mse", "AICc"), num_major = 3, dist_minor = c(2, 2, 1), type = "weak", alpha = 0, lambda_seq = seq(0, 5, 0.01), nfolds = NULL, mapping_type = c("power"), rep_gcv = 100)
```
Arguments

\(y \) numeric vector
\(x \) data.frame Note the column names of the \(x \) should be in the order of major components, minor components, and no interactions between major or minor components are needed.

\(\text{powerh_path} \) if NULL, then the default is the vector: \(\text{round(seq(0.001,2,length.out =15),3)} \)
\(\text{metric} \) "mse" or "AICc" the metric used in cross validation where the minimum is selected as the optimal
\(\text{num_major} \) number of major components
\(\text{dist_minor} \) the allocation of number of minor components nested under major components
\(\text{type} \) heredity type, weak heredity is the current support type
\(\text{alpha} \) 0 is for the ridge in glmnet https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html
\(\text{lambda_seq} \) a numeric vector for the options of lambda used in ridge regression for estimating the initials
\(\text{n_folds} \) used in cv.glmnet for initial value of parameters in the non-negative garrote method
\(\text{mapping_type} \) the form of the coefficient function of major components in front of corresponding minor terms. Currently only support "power"
\(\text{rep_gcv} \) the number of choices of tuning parameter used in the GCV selection

Value

Return a list

Examples

data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
\(\text{powerh_path} = \text{round(seq(0.001,2,length.out =15),3)} \)
num_major = 3; dist_minor = c(2,2,1)
res = cv.ahm (y, x, powerh_path=powerh_path, metric = "mse", num_major, dist_minor, type = "weak", alpha=0, lambda_seq=seq(0,5,0.01), nfolds=NULL, mapping_type = c("power"), rep_gcv=100)
object = res\$metric_mse
design_simplex_centroid_design_3_major_component

Design points for the simplex centroid design with 3 components

Description

Design points for the simplex centroid design with 3 components

Usage

```
data(design_simplex_centroid_design_3_major_component)
```

Format

```
data.frame
```

Examples

```
data(design_simplex_centroid_design_3_major_component)
print(design_simplex_centroid_design_3_major_component)
```

enlist

Create a list

Description

Create a list

Usage

```
enlist(...)```

**Arguments**

```
... object to be included as elements in the list
```

**Examples**

```
item = c(1:10)
enlist(item)
```
expand_interactions

Expand the interaction terms for each subset group, say x11, x12, or c1, c2, c3

Description
Expand the interaction terms for each subset group, say x11, x12, or c1, c2, c3

Usage

```r
expand_interactions(dat, sel_names)
```

Arguments

- `dat`: data frame
- `sel_names`: characters

Examples

```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
expand_interactions (dat=x, sel_names=c("c1", "c2", "c3"))
```

find_condition_num

Compute the conditional number of design matrix

Description
Compute the conditional number of design matrix

Usage

```r
find_condition_num(x)
```

Arguments

- `x`: matrix to be used in svd

Examples

```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
find_condition_num (x)
```
mymaximin

mapping_function  

Mapping_function is a function to add the functional coefficients of major components in front of minor components terms

Description

Mapping_function is a function to add the functional coefficients of major components in front of minor components terms

Usage

```r
mapping_function(x, num_major = 3, dist_minor = c(2, 2, 1),
 mapping_type = c("power"), powerh = 0)
```

Arguments

- `x`  
data.frame Note the column names of the x should be in the order of major components, minor components, and no interactions are needed.

- `num_major`  
number of major components

- `dist_minor`  
the allocation of number of minor components nested under major components

- `mapping_type`  
the form of the coefficient function of major components in front of corresponding minor terms. Currently only support "power"

- `powerh`  
the power parameter used for the power function

Value

data frame

Examples

```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
mapping_function(x=x, num_major=3, dist_minor=c(2,2,1), mapping_type = c("power"), powerh=0)
```

mymaximin

The mymaximin function generates the matrix of maximin design points. It uses the simplex centroid design as the base design, then in a stochastics way sample the candidate design points generated by the function partition.

Description

This method is modified based on Prof. Bobby Gramacy’s Computer Experiment lecture at Virginia Tech. Prof. Gramacy’s lecture website
mymaximin

Usage

mymaximin(pool, n = 50, m = 3, iter = 1e+05, Xorig = NULL)

Arguments

pool, partition the base design points provided to the function
n numeric, sample size
m numeric, 3 stands for 3 components, i.e. c1, c2, and c3
iter numeric, iterations used in the stochastic sampling
Xorig matrix, initial design points

Value

Return a matrix of the design points for the major components

Examples

# The case of unconstrained experiments
library(mixexp)
num_size = 8 # num points in the design for the major component
Xorig = as.matrix(SCD(3))
# all possible combinations sum to 1
pool_3d =partitions::compositions(1000, 3,include.zero = TRUE)/1000
res_C = mymaximin(pool=pool_3d, n=num_size, m=3, iter=1e5, Xorig=Xorig)
DesignPoints(res_C,cornerlabs = c("c3","c2","c1"),axislabs=c("c1","c2","c3"))

# The case of constrained experiments
library(mixexp)
um_size = 8 # num points in the design for the major component
# all possible combinations sum to 1
pool_3d =partitions::compositions(1000, 3,include.zero = TRUE)/1000
c1_min=0.2
c2_min=0.3
c2_max=0.6
c3_min=0.1
c3_max=0.25
tmp = Xvert(nfac=3,lc=c(c1_min,c2_min,c3_min),uc =c(c1_max,c2_max,c3_max),ndm=1,pseudo=FALSE)
Xorig=tmp[c(1:6,13),c(1:3)]
colnames(Xorig)=c("V1","V2","V3")

pool_3d = t(dplyr::filter(as.data.frame(t(as.matrix(pool_3d))),t(pool_3d)[,1] > c1_min &
                          t(pool_3d)[,2] > c2_min &
                          t(pool_3d)[,3] > c3_min &
                          t(pool_3d)[,2] <= c2_max &
                          t(pool_3d)[,3] <= c3_max)
)
res_C = mymaximin(pool=pool_3d, n=num_size, m=3, iter=1e5, Xorig=Xorig)
DesignPoints(res_C, cornerlabs = c("c3","c2","c1"), axislabs=c("c1","c2","c3"),
x1lower=c1_min, x2lower=c2_min, x3lower=c3_min,
x1upper=c1_max, x2upper=c2_max, x3upper=c3_max, pseudo=FALSE)

---

**predict.ahm**  
*Predict method for the fitted ahm object*

**Description**  
Predict method for the fitted ahm object

**Usage**  
```r
S3 method for class 'ahm'
predict(object, newx, ...)
```

**Arguments**  
- `object` ahm object  
- `newx` Matrix of new values for x at which predictions are to be made.  
- `...` not used

**Value**  
predicted value(s) at newx

**Examples**
```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
out = ahm(y, x, num_major = 3, dist_minor = c(2,2,1),
 type = "weak", alpha=0, lambda_seq=seq(0,5,0.01), nfold = NULL,
 mapping_type = c("power"), powerh = h_tmp,
 rep_gcv=100)
predict(out)
```
predict.cv.ahm

Predict method for the fitted cv.ahm object

Description

Predict method for the fitted cv.ahm object

Usage

## S3 method for class 'cv.ahm'
predict(object, newx, metric = "mse", ...)

Arguments

object cv.ahm object
newx Matrix of new values for x at which predictions are to be made.
metric "mse" or "aicc"
... not used

Value

Return a list

Examples

data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
powerh_path = round(seq(0.001,2,length.out =15),3)
num_major = 3; dist_minor = c(2,2,1)
res = cv.ahm(y, x, powerh_path=powerh_path, metric = "mse", num_major, dist_minor, type = "weak",
, alpha=0, lambda_seq=seq(0.5,0.01), nfolds=NULL, mapping_type = c("power"), rep_gcv=100)
pred = predict(res)
pringles_candidates2search

*The candidate search points in the nonlinear optimization for the optimal value in the Pringles experiment*

**Description**

The candidate search points in the nonlinear optimization for the optimal value in the Pringles experiment

**Usage**

data(pringles_candidates2search)

**Format**

matrix

**Examples**

data(pringles_candidates2search)
print(pringles_candidates2search)

pringles_fat

*Pringles experiment data set with the percent of Fat as the response*

**Description**

Pringles experiment data set with the percent of Fat as the response

**Usage**

data(pringles_fat)

**Format**

data.frame

**References**


**Examples**

data(pringles_fat)
print(pringles_fat)
**pringles_hardness**

**Pringles experiment data set with the Hardness as the response**

**Description**

Pringles experiment data set with the Hardness as the response

**Usage**

```r
data(pringles_hardness)
```

**Format**

data.frame

**References**


**Examples**

```r
data(pringles_hardness)
print(pringles_hardness)
```

---

**summary.ahm**

*Summary method for the fitted ahm object*

**Description**

Summary method for the fitted ahm object

**Usage**

```r
S3 method for class 'ahm'
summary(object, ...)
```

**Arguments**

- `object` : fitted ahm object
- `...` : not used
Examples

```r
data("pringles_fat")
data_fat = pringles_fat
h_tmp = 1.3
x = data_fat[,c("c1","c2","c3","x11","x12","x21","x22")]
y = data_fat[,1]
out = ahm (y, x, num_major = 3, dist_minor = c(2,2,1),
 type = "weak", alpha=0, lambda_seq=seq(0,5,0.01), nfold = NULL,
 mapping_type = c("power"), powerh = h_tmp,
 rep_gcv=100)
summary(out)
```
Index

* datasets
  coating, 4
  design_simplex_centroid_design_3_major_component, 8
  pringles_candidates2search, 14
  pringles_fat, 14
  pringles_hardness, 15

ahm, 2

check_col_correlation, 3
coating, 4
coef.ahm, 4
coef.cv.ahm, 5
compute_aicc, 6
cv.ahm, 6

design_simplex_centroid_design_3_major_component, 8

enlist, 8
expand_interactions, 9

find_condition_num, 9

mapping_function, 10
mymaximin, 10

predict.ahm, 12
predict.cv.ahm, 13
pringles_candidates2search, 14
pringles_fat, 14
pringles_hardness, 15

summary.ahm, 15