Package ‘AID’

March 31, 2023

Type Package

Title Box-Cox Power Transformation

Version 2.8

Date 2023-03-31

Depends R (>= 3.2.0)

Imports MASS, tseries, nortest, ggplot2, graphics, psych, stats, meta, stringr

Suggests onewaytests

Author Osman Dag [aut, cre], Ozgur Asar [aut], Ozlem Ilk [aut], Muhammed Ali Yilmaz [aut]

Maintainer Osman Dag <osman.dag@outlook.com>

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2023-03-31 18:30:11 UTC

R topics documented:

AID-package .. 2
AADT .. 2
boxcoxf ... 3
boxcoxlm ... 6
boxcoxmeta ... 8
boxcoxnc ... 10
Description
Performs Box-Cox power transformation for a single non-normal variable, ANOVA and Linear Models via different estimation techniques: maximum likelihood estimation, least square estimation, goodness-of-fit tests, artificial covariate, meta analysis. It also performs graphical approaches, assesses the success of the transformation via tests and plots, computes mean and confidence interval for back transformed data.

Details
Package: AID
Type: Package
License: GPL (>=2)

AADT
Average Annual Daily Traffic Data

Description
Average annual daily traffic data collected from the Minnesota Department of Transportation data base.

Usage
data(AADT)

Format
A data frame with 121 observations on the following 8 variables.

aadt average annual daily traffic for a section of road
cotypop population of county
boxcoxf

lanes number of lanes in the section of road
width width of the section of road (in feet)
control a factor with levels: access control; no access control
class a factor with levels: rural interstate; rural noninterstate; urban interstate; urban noninterstate
truck availability situation of road section to trucks
locale a factor with levels: rural; urban, population <= 50,000; urban, population > 50,000

References

Examples

library(AID)
data(AADT)
attach(AADT)
hist(aadt)
out <- boxcoxf(aadt, class)
confInt(out)

boxcoxf

Box-Cox Transformation for One-Way ANOVA

Description

boxcoxf performs Box-Cox transformation for one-way ANOVA. It is useful to use if the normality or/and the homogeneity of variance is/are not satisfied while comparing two or more groups.

Usage

boxcoxf(y, x, option = "both", lambda = seq(-3, 3, 0.01), lambda2 = NULL, tau = 0.05, alpha = 0.05, verbose = TRUE)

Arguments

y a numeric vector of data values.
x a vector or factor object which gives the group for the corresponding elements of y.
option

a character string to select the desired option for the objective of transformation.
"nor" and "var" are the options which search for a transformation to satisfy the normality of groups and the homogenity of variances, respectively. "both" is the option which searches for a transformation to satisfy both the normality of groups and the homogenity of variances. Default is set to "both".

lambda

a vector which includes the sequence of feasible lambda values. Default is set to (-3, 3) with increment 0.01.

lambda2

a numeric for an additional shifting parameter. Default is set to lambda2 = 0.

tau

the feasible region parameter for the construction of feasible region. Default is set to 0.05. If tau = 0, it returns the MLE of transformation parameter.

alpha

the level of significance to check the normality and variance homogenity after transformation. Default is set to alpha = 0.05.

verbose

a logical for printing output to R console.

Details

Denote \(y \) the variable at the original scale and \(y' \) the transformed variable. The Box-Cox power transformation is defined by:

\[
y' = \begin{cases}
 \frac{y^\lambda - 1}{\lambda}, & \text{if } \lambda \neq 0 \\
 \log(y), & \text{if } \lambda = 0
\end{cases}
\]

If the data include any nonpositive observations, a shifting parameter \(\lambda_2 \) can be included in the transformation given by:

\[
y' = \begin{cases}
 \frac{(y + \lambda_2)^\lambda - 1}{\lambda}, & \text{if } \lambda \neq 0 \\
 \log(y + \lambda_2), & \text{if } \lambda = 0
\end{cases}
\]

Maximum likelihood estimation in feasible region (MLEFR) is used while estimating transformation parameter. MLEFR maximizes the likelihood function in feasible region constructed by Shapiro-Wilk test and Bartlett’s test. After transformation, normality of the data in each group and homogeneity of variance are assessed by Shapiro-Wilk test and Bartlett’s test, respectively.

Value

A list with class "boxcoxfr" containing the following elements:

- method: method applied in the algorithm
- lambda.hat: the estimated lambda
- lambda2: additional shifting parameter
- shapiro: a data frame which gives the test results for the normality of groups via Shapiro-Wilk test
- bartlett: a matrix which returns the test result for the homogeneity of variance via Bartlett’s test
- alpha: the level of significance to assess the assumptions.
tf.data transformed data set
x a factor object which gives the group for the corresponding elements of y
y.name variable name of y
x.name variable name of x

Author(s)

Osman Dag, Ozlem Ilk

References

Examples

```
# Communication between AID and onewaytests packages
library(AID)
library(onewaytests)

# Average Annual Daily Traffic Data (AID)
data(AADT)

# to obtain descriptive statistics by groups (onewaytests)
describe(aadt ~ class, data = AADT)

# to check normality of data in each group (onewaytests)
nor.test(aadt ~ class, data = AADT)

# to check variance homogeneity (onewaytests)
homog.test(aadt ~ class, data = AADT, method = "Bartlett")

# to apply Box-Cox transformation (AID)
out <- boxcoxfr(AADT$aadt, AADT$class)

# to obtain transformed data
AADT$tf.aadt <- out$tf.data

# to conduct one-way ANOVA with transformed data (onewaytests)
result<-aov.test(tf.aadt ~ class, data = AADT)

# to make pairwise comparison (onewaytests)
paircomp(result)

# to convert the statistics into the original scale (AID)
confInt(out, level = 0.95)
```
library(AID)

data <- rnorm(120, 10, 1)
factor <- factor(rep(c("X", "Y", "Z"), each = 40))
out <- boxcoxfr(data, factor, lambda = seq(-5, 5, 0.01), tau = 0.01, alpha = 0.01)
confInt(out, level = 0.95)

boxcoxlm

Box-Cox Transformation for Linear Models

Description

boxcoxlm performs Box-Cox transformation for linear models and provides graphical analysis of residuals after transformation.

Usage

boxcoxlm(x, y, method = "lse", lambda = seq(-3, 3, 0.01), lambda2 = NULL, plot = TRUE, alpha = 0.05, verbose = TRUE)

Arguments

x a n x p matrix, n is the number of observations and p is the number of variables.
y a vector of response variable.
method a character string to select the desired method to be used to estimate Box-Cox transformation parameter. To use Shapiro-Wilk test method should be set to "sw". For method = "ad", boxcoxnc function uses Anderson-Darling test to estimate Box-Cox transformation parameter. Similarly, method should be set to "cvm", "pt", "sf", "lt", "jb", "mle", "lse" to use Cramer-von Mises, Pearson Chi-square, Shapiro-Francia, Lilliefors and Jarque-Bera tests, maximum likelihood estimation and least square estimation, respectively. Default is set to method = "lse".
lambda a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01.
lambda2 a numeric for an additional shifting parameter. Default is set to lambda2 = 0.
plot a logical to plot histogram with its density line and qqplot of residuals before and after transformation. Defaults plot = TRUE.
boxcoxlm

alpha the level of significance to assess the normality of residuals after transformation. Default is set to alpha = 0.05.

verbose a logical for printing output to R console.

Details
Denote y the variable at the original scale and y' the transformed variable. The Box-Cox power transformation is defined by:

\[y' = \begin{cases}
 \frac{y^\lambda - 1}{\lambda} = \beta_0 + \beta_1 x_1 + \ldots + \epsilon, & \text{if } \lambda \neq 0 \\
 \log(y) = \beta_0 + \beta_1 x_1 + \ldots + \epsilon, & \text{if } \lambda = 0
\end{cases} \]

If the data include any nonpositive observations, a shifting parameter \(\lambda_2 \) can be included in the transformation given by:

\[y' = \begin{cases}
 \frac{(y + \lambda_2)^\lambda - 1}{\lambda} = \beta_0 + \beta_1 x_1 + \ldots + \epsilon, & \text{if } \lambda \neq 0 \\
 \log(y + \lambda_2) = \beta_0 + \beta_1 x_1 + \ldots + \epsilon, & \text{if } \lambda = 0
\end{cases} \]

Maximum likelihood estimation and least square estimation are equivalent while estimating Box-Cox power transformation parameter (Kutner et al., 2005). Therefore, these two methods return the same result.

Value
A list with class "boxcoxlm" containing the following elements:

- method method preferred to estimate Box-Cox transformation parameter
- lambda.hat estimate of Box-Cox Power transformation parameter based on corresponding method
- lambda2 additional shifting parameter
- statistic statistic of normality test for residuals after transformation based on specified normality test in method. For mle and lse, statistic is obtained by Shapiro-Wilk test for residuals after transformation
- p.value p.value of normality test for residuals after transformation based on specified normality test in method. For mle and lse, p.value is obtained by Shapiro-Wilk test for residuals after transformation
- alpha the level of significance to assess normality of residuals
- tf.y transformed response variable
- tf.residuals residuals after transformation
- y.name response name
- x.name x matrix name

Author(s)
Osman Dag, Ozlem Ilk
References

Examples

```r
library(AID)
trees=as.matrix(trees)
boxcoxlm(x = trees[,1:2], y = trees[,3])
```

boxcoxmeta
Ensemble Based Box-Cox Transformation via Meta Analysis for Normality of a Variable

Description

boxcoxmeta performs ensemble based Box-Cox transformation via meta analysis for normality of a variable and provides graphical analysis.

Usage

```r
boxcoxmeta(data, lambda = seq(-3,3,0.01), nboot = 100, lambda2 = NULL, plot = TRUE, alpha = 0.05, verbose = TRUE)
```

Arguments

data
a numeric vector of data values.

lambda
a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01.

nboot
a number of Bootstrap samples to estimate standard errors of lambda estimates.

lambda2
a numeric for an additional shifting parameter. Default is set to lambda2 = 0.

plot
a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE.

alpha
the level of significance to check the normality after transformation. Default is set to alpha = 0.05.

verbose
a logical for printing output to R console.
Details

Denote \(y \) the variable at the original scale and \(y' \) the transformed variable. The Box-Cox power transformation is defined by:

\[
y' = \begin{cases}
 y^{\lambda-1} / \lambda, & \text{if } \lambda \neq 0 \\
 \log(y), & \text{if } \lambda = 0
\end{cases}
\]

If the data include any nonpositive observations, a shifting parameter \(\lambda_2 \) can be included in the transformation given by:

\[
y' = \begin{cases}
 (y + \lambda_2)^{\lambda-1} / \lambda, & \text{if } \lambda \neq 0 \\
 \log(y + \lambda_2), & \text{if } \lambda = 0
\end{cases}
\]

Value

A list with class "boxcoxmeta" containing the following elements:

- **method**: name of method
- **lambda.hat**: estimate of Box-Cox Power transformation parameter
- **lambda2**: additional shifting parameter
- **result**: a data frame containing the result
- **alpha**: the level of significance to assess normality.
- **tf.data**: transformed data set
- **var.name**: variable name

Author(s)

Muhammed Ali Yilmaz, Osman Dag

References

Examples

```r
library(AID)
data(textile)
out <- boxcoxmeta(textile[,1])
out$lambda.hat # the estimate of Box-Cox parameter
out$tf.data # transformed data set
```
Description

boxcoxnc performs Box-Cox transformation for normality of a variable and provides graphical analysis.

Usage

```r
boxcoxnc(data, method = "sw", lambda = seq(-3,3,0.01), lambda2 = NULL, plot = TRUE, alpha = 0.05, verbose = TRUE)
```

Arguments

- `data` a numeric vector of data values.
- `method` a character string to select the desired method to be used to estimate Box-Cox transformation parameter. To use Shapiro-Wilk test method should be set to "sw". For method = "ad", boxcoxnc function uses Anderson-Darling test to estimate Box-Cox transformation parameter. Similarly, method should be set to "cvm", "pt", "sf", "lt", "jb", "ac", "mle" to use Cramer-von Mises, Pearson Chi-square, Shapiro-Francia, Lilliefors, Jarque-Bera tests, artificial covariate method and maximum likelihood estimation, respectively. Default is set to method = "sw".
- `lambda` a vector which includes the sequence of candidate lambda values. Default is set to (-3,3) with increment 0.01.
- `lambda2` a numeric for an additional shifting parameter. Default is set to lambda2 = 0.
- `plot` a logical to plot histogram with its density line and qqplot of raw and transformed data. Defaults plot = TRUE.
- `alpha` the level of significance to check the normality after transformation. Default is set to alpha = 0.05.
- `verbose` a logical for printing output to R console.

Details

Denote y the variable at the original scale and y' the transformed variable. The Box-Cox power transformation is defined by:

$$
y' = \begin{cases}
\frac{y^\lambda - 1}{\lambda}, & \text{if } \lambda \neq 0 \\
\log(y), & \text{if } \lambda = 0
\end{cases}
$$

If the data include any nonpositive observations, a shifting parameter λ_2 can be included in the transformation given by:

$$
y' = \begin{cases}
\frac{(y+\lambda_2)^\lambda - 1}{\lambda}, & \text{if } \lambda \neq 0 \\
\log(y + \lambda_2), & \text{if } \lambda = 0
\end{cases}
$$
Value

A list with class "boxcoxnc" containing the following elements:

- **method**
 method preferred to estimate Box-Cox transformation parameter

- **lambda.hat**
 estimate of Box-Cox Power transformation parameter based on corresponding method

- **lambda2**
 additional shifting parameter

- **statistic**
 statistic of normality test for transformed data based on specified normality test in method. For artificial covariate method, statistic is obtained by Shapiro-Wilk test for transformed data

- **p.value**
 p.value of normality test for transformed data based on specified normality test in method. For artificial covariate method, p.value is obtained by Shapiro-Wilk test for transformed data

- **alpha**
 the level of significance to assess normality.

- **tf.data**
 transformed data set

- **var.name**
 variable name

Author(s)

Osman Dag, Ozgur Asar, Ozlem Ilk

References

Examples

```r
library(AID)
data(textile)

out <- boxcoxnc(textile[,1], method = "sw")
out$lambda.hat # the estimate of Box-Cox parameter based on Shapiro-Wilk test statistic
out$p.value # p.value of Shapiro-Wilk test for transformed data
out$tf.data # transformed data set
confInt(out) # mean and confidence interval for back transformed data

out2 <- boxcoxnc(textile[,1], method = "sf")
out2$lambda.hat # the estimate of Box-Cox parameter based on Shapiro-Francia test statistic
out2$p.value # p.value of Shapiro-Francia test for transformed data
out2$tf.data
confInt(out2)
```
confInt.boxcoxfr

Mean and Asymmetric Confidence Interval for Back Transformed Data

Description

confInt.boxcoxfr calculates mean and asymmetric confidence interval for back transformed data in each group and plots their error bars with confidence intervals.

Usage

S3 method for class 'boxcoxfr'
confInt(x, level = 0.95, plot = TRUE, xlab = NULL, ylab = NULL, title = NULL, width = NULL, verbose = TRUE, ...)

Arguments

x
a boxcoxfr object.

level
the confidence level.

plot
a logical to plot error bars with confidence intervals.

xlab
a label for the x axis, defaults to a description of x.

ylab
a label for the y axis, defaults to a description of y.

title
a main title for the plot.

width
a numeric giving the width of the little lines at the tops and bottoms of the error bars (defaults to 0.15).

verbose
a logical for printing output to R console.

...
additional argument(s) for methods.

Details

Confidence interval in each group is constructed separately.

Value

A matrix with columns giving mean, lower and upper confidence limits for back transformed data. These will be labelled as (1 - level)/2 and 1 - (1 - level)/2 in % (by default 2.5% and 97.5%).

Author(s)

Osman Dag
Examples

```r
library(AID)

data(AADT)
attach(AADT)
out <- boxcoxfr(aadt, class)
confInt(out, level = 0.95)
```

confInt.boxcoxmeta

Mean and Asymmetric Confidence Interval for Back Transformed Data

Description

`confInt.boxcoxmeta` calculates mean and asymmetric confidence interval for back transformed data.

Usage

```r
## S3 method for class 'boxcoxmeta'
confInt(x, level = 0.95, verbose = TRUE, ...)
```

Arguments

- `x`
a boxcoxmeta object.
- `level`
the confidence level.
- `verbose`
a logical for printing output to R console.
- `...`
additional argument(s) for methods.

Value

A matrix with columns giving mean, lower and upper confidence limits for back transformed data. These will be labelled as (1 - level)/2 and 1 - (1 - level)/2 in % (by default 2.5% and 97.5%).

Author(s)

Osman Dag, Muhammed Ali Yilmaz

Examples

```r
library(AID)
data(textile)

textile_data <- boxcoxmeta(textile[,1])
confInt(textile_data) # mean and confidence interval for back transformed data
```
confInt.boxcoxnc

Mean and Asymmetric Confidence Interval for Back Transformed Data

Description

confInt is a generic function to calculate mean and asymmetric confidence interval for back transformed data.

Usage

S3 method for class 'boxcoxnc'
confInt(x, level = 0.95, verbose = TRUE, ...)

Arguments

x
 a boxcoxnc object.
level
 the confidence level.
verbose
 a logical for printing output to R console.
...
 additional argument(s) for methods.

Value

A matrix with columns giving mean, lower and upper confidence limits for back transformed data. These will be labelled as (1 - level)/2 and 1 - (1 - level)/2 in % (by default 2.5% and 97.5%).

Author(s)

Osman Dag

Examples

library(AID)
data(textile)
out <- boxcoxnc(textile[,1])
confInt(out) # mean and confidence interval for back transformed data
grades

Student Grades Data

Description

Overall student grades for a class taught by Dr. Ozlem Ilk

Usage

data(grades)

Format

A data frame with 42 observations on the following variable.

grades a numeric vector for the student grades

Examples

library(AID)

data(grades)
hist(grades[,1])
out <- boxcoxnc(grades[,1])
confInt(out, level = 0.95)

textile

Textile Data

Description

Number of Cycles to Failure of Worsted Yarn

Usage

data(textile)

Format

A data frame with 27 observations on the following variable.

textile a numeric vector for the number of cycles
References

Examples

```r
library(AID)

data(textile)
hist(textile[,1])
out <- boxcoxnc(textile[,1])
confint(out)
```
Index

* datasets
 - AADT, 2
 - grades, 15
 - textile, 15

* functions
 - boxcoxfr, 3
 - boxcoxlm, 6
 - boxcoxmeta, 8
 - boxcoxnc, 10
 - confInt.boxcoxfr, 12
 - confInt.boxcoxmeta, 13
 - confInt.boxcoxnc, 14

AADT, 2
AID-package, 2

boxcoxfr, 3
boxcoxlm, 6
boxcoxmeta, 8
boxcoxnc, 10

confInt (confInt.boxcoxnc), 14
confInt.boxcoxfr, 12
confInt.boxcoxmeta, 13
confInt.boxcoxnc, 14

grades, 15

textile, 15