Package ‘ANN2’

December 1, 2020

Type Package
Title Artificial Neural Networks for Anomaly Detection
Version 2.3.4
Date 2020-11-29
Author Bart Lammers
Maintainer Bart Lammers <bart.f.lammers@gmail.com>
Description Training of neural networks for classification and regression tasks using mini-batch gradient descent. Special features include a function for training autoencoders, which can be used to detect anomalies, and some related plotting functions. Multiple activation functions are supported, including tanh, relu, step and ramp. For the use of the step and ramp activation functions in detecting anomalies using autoencoders, see Hawkins et al. (2002) <doi:10.1007/3-540-46145-0_17>. Furthermore, several loss functions are supported, including robust ones such as Huber and pseudo-Huber loss, as well as L1 and L2 regularization. The possible options for optimization algorithms are RMSprop, Adam and SGD with momentum. The package contains a vectorized C++ implementation that facilitates fast training through mini-batch learning.
License GPL (>= 3) | file LICENSE
URL https://github.com/bflammers/ANN2
Encoding UTF-8
LazyData true
SystemRequirements C++11
Imports Rcpp (>= 0.12.18), reshape2 (>= 1.4.3), ggplot2 (>= 3.0.0), viridisLite (>= 0.3.0), methods
LinkingTo Rcpp, RcppArmadillo, testthat
Suggests testthat
RoxygenNote 7.1.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-12-01 10:00:02 UTC
R topics documented:

ANN .. 2
autoencoder 2
compression_plot 5
decode ... 6
encode ... 6
neuralnetwork 7
plot.ANN ... 10
predict.ANN 11
print.ANN .. 11
read.ANN .. 12
reconstruct .. 12
reconstruction_plot 13
train .. 13
write.ANN .. 15

Index 16

ANN

Rcpp module exposing C++ class ANN

Description

C++ class ANN is the work horse of this package

autoencoder

Train an Autoencoding Neural Network

Description

Construct and train an Autoencoder by setting the target variables equal to the input variables. The number of nodes in the middle layer should be smaller than the number of input variables in X in order to create a bottleneck layer.

Usage

autoencoder(
 X,
 hidden.layers,
 standardize = TRUE,
 loss.type = "squared",
 huber.delta = 1,
 activ.functions = "tanh",
 step.H = 5,
 step.k = 100,
)
optim.type = "sgd",
learn.rates = 1e-04,
L1 = 0,
L2 = 0,
sgd.momentum = 0.9,
rmsprop.decay = 0.9,
adam.beta1 = 0.9,
adam.beta2 = 0.999,
n.epochs = 100,
batch.size = 32,
drop.last = TRUE,
val.prop = 0.1,
verbose = TRUE,
random.seed = NULL
)

Arguments

X matrix with explanatory variables
hidden.layers vector specifying the number of nodes in each layer. The number of hidden
layers in the network is implicitly defined by the length of this vector. Set
hidden.layers to NA for a network with no hidden layers
standardize logical indicating if X and Y should be standardized before training the network.
Recommended to leave at TRUE for faster convergence.
loss.type which loss function should be used. Options are "squared", "absolute", "huber"
and "pseudo-huber"
huber.delta used only in case of loss functions "huber" and "pseudo-huber". This parameter
controls the cut-off point between quadratic and absolute loss.
activ.functions character vector of activation functions to be used in each hidden layer. Possible
options are 'tanh', 'sigmoid', 'relu', 'linear', 'ramp' and 'step'. Should be either
the size of the number of hidden layers or equal to one. If a single activation
type is specified, this type will be broadcasted across the hidden layers.
step.H number of steps of the step activation function. Only applicable if activ.functions
includes 'step'
step.k parameter controlling the smoothness of the step activation function. Larger
values lead to a less smooth step function. Only applicable if activ.functions
includes 'step'.
optim.type type of optimizer to use for updating the parameters. Options are 'sgd', 'rm-
prop' and 'adam'. SGD is implemented with momentum.
learn.rates the size of the steps to make in gradient descent. If set too large, the optimization
might not converge to optimal values. If set too small, convergence will be slow.
Should be either the size of the number of hidden layers plus one or equal to
one. If a single learn rate is specified, this learn rate will be broadcasted across
the layers.
L1 L1 regularization. Non-negative number. Set to zero for no regularization.
autoencoder

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L2</td>
<td>L2 regularization. Non-negative number. Set to zero for no regularization.</td>
</tr>
<tr>
<td>sgd.momentum</td>
<td>numeric value specifying how much momentum should be used. Set to zero for no momentum, otherwise a value between zero and one.</td>
</tr>
<tr>
<td>rmsprop.decay</td>
<td>level of decay in the rms term. Controls the strength of the exponential decay of the squared gradients in the term that scales the gradient before the parameter update. Common values are 0.9, 0.99 and 0.999</td>
</tr>
<tr>
<td>adam.beta1</td>
<td>level of decay in the first moment estimate (the mean). The recommended value is 0.9</td>
</tr>
<tr>
<td>adam.beta2</td>
<td>level of decay in the second moment estimate (the uncentered variance). The recommended value is 0.999</td>
</tr>
<tr>
<td>n.epochs</td>
<td>the number of epochs to train. One epoch is a single iteration through the training data.</td>
</tr>
<tr>
<td>batch.size</td>
<td>the number of observations to use in each batch. Batch learning is computationally faster than stochastic gradient descent. However, large batches might not result in optimal learning, see Efficient Backprop by LeCun for details.</td>
</tr>
<tr>
<td>drop.last</td>
<td>logical. Only applicable if the size of the training set is not perfectly divisible by the batch size. Determines if the last chosen observations should be discarded (in the current epoch) or should constitute a smaller batch. Note that a smaller batch leads to a noisier approximation of the gradient.</td>
</tr>
<tr>
<td>val.prop</td>
<td>proportion of training data to use for tracking the loss on a validation set during training. Useful for assessing the training process and identifying possible overfitting. Set to zero for only tracking the loss on the training data.</td>
</tr>
<tr>
<td>verbose</td>
<td>logical indicating if additional information should be printed</td>
</tr>
<tr>
<td>random.seed</td>
<td>optional seed for the random number generator</td>
</tr>
</tbody>
</table>

Details

A function for training Autoencoders. During training, the network will learn a generalised representation of the data (generalised since the middle layer acts as a bottleneck, resulting in reproduction of only the most important features of the data). As such, the network models the normal state of the data and therefore has a denoising property. This property can be exploited to detect anomalies by comparing input to reconstruction. If the difference (the reconstruction error) is large, the observation is a possible anomaly.

Value

An ANN object. Use function `plot(<object>)` to assess loss on training and optionally validation data during training process. Use function `predict(<object>,<newdata>)` for prediction.

Examples

```r
# Autoencoder example
X <- USArrests
AE <- autoencoder(X, c(10,2,10), loss.type = 'pseudo-huber',
                  activ.functions = c('tanh','linear','tanh'),
                  batch.size = 8, optim.type = 'adam',
```
n.epochs = 1000, val.prop = 0)

Plot loss during training
plot(AE)

Make reconstruction and compression plots
reconstruction_plot(AE, X)
compression_plot(AE, X)

Reconstruct data and show states with highest anomaly scores
recX <- reconstruct(AE, X)
sort(recX$anomaly_scores, decreasing = TRUE)[1:5]

compression_plot
Compression plot

Description

plot compressed observation in pairwise dimensions

Usage

```r
compression_plot(object, ...)
```

S3 method for class 'ANN'
```r
compression_plot(object, X, colors = NULL, jitter = FALSE, ...)
```

Arguments

- **object**: autoencoder object of class ANN
- **...**: arguments to be passed to `jitter()`
- **X**: data matrix with original values to be compressed and plotted
- **colors**: optional vector of discrete colors
- **jitter**: logical specifying whether to apply jitter to the compressed values. Especially useful with step activation function that clusters the compressions and reconstructions.

Details

Matrix plot of pairwise dimensions

Value

Plots
decode

Decoding step

Decompress low-dimensional representation resulting from the nodes of the middle layer. Output are the reconstructed inputs to function `encode()`

Usage

```r
decode(object, ...)  
```

```r
## S3 method for class 'ANN'
decode(object, compressed, compression.layer = NULL, ...)
```

Arguments

- `object`: Object of class `ANN`
- `...`: arguments to be passed down
- `compressed`: Compressed data
- `compression.layer`: Integer specifying which hidden layer is the compression layer. If NULL this parameter is inferred from the structure of the network (hidden layer with smallest number of nodes)

encode

Encoding step

Compress data according to trained replicator or autoencoder. Outputs are the activations of the nodes in the middle layer for each observation in `newdata`

Usage

```r
encode(object, ...)  
```

```r
## S3 method for class 'ANN'
encode(object, newdata, compression.layer = NULL, ...)
```
Arguments

object Object of class ANN
... arguments to be passed down
newdata Data to compress
compression.layer Integer specifying which hidden layer is the compression layer. If NULL this parameter is inferred from the structure of the network (hidden layer with smallest number of nodes)

Description

Construct and train a Multilayer Neural Network for regression or classification

Usage

neuralnetwork(
 X,
 y,
 hidden.layers,
 regression = FALSE,
 standardize = TRUE,
 loss.type = "log",
 huber.delta = 1,
 activ.functions = "tanh",
 step.H = 5,
 step.k = 100,
 optim.type = "sgd",
 learn.rates = 1e-04,
 L1 = 0,
 L2 = 0,
 sgd.momentum = 0.9,
 rmsprop.decay = 0.9,
 adam.beta1 = 0.9,
 adam.beta2 = 0.999,
 n.epoachs = 100,
 batch.size = 32,
 drop.last = TRUE,
 val.prop = 0.1,
 verbose = TRUE,
 random.seed = NULL
)
Arguments

X matrix with explanatory variables
y matrix with dependent variables. For classification this should be a one-columns
 matrix containing the classes - classes will be one-hot encoded.
hidden.layers vector specifying the number of nodes in each layer. The number of hidden
 layers in the network is implicitly defined by the length of this vector. Set
 hidden.layers to NA for a network with no hidden layers
regression logical indicating regression or classification. In case of TRUE (regression), the
 activation function in the last hidden layer will be the linear activation function
 (identity function). In case of FALSE (classification), the activation function in
 the last hidden layer will be the softmax, and the log loss function should be
 used.
standardize logical indicating if X and Y should be standardized before training the network.
 Recommended to leave at TRUE for faster convergence.
loss.type which loss function should be used. Options are "log", "squared", "absolute",
 "huber" and "pseudo-huber". The log loss function should be used for classifi-
 cation (regression = FALSE), and ONLY for classification.
huber.delta used only in case of loss functions "huber" and "pseudo-huber". This parameter
 controls the cut-off point between quadratic and absolute loss.
activ.functions character vector of activation functions to be used in each hidden layer. Possible
 options are 'tanh', 'sigmoid', 'relu', 'linear', 'ramp' and 'step'. Should be either
 the size of the number of hidden layers or equal to one. If a single activation
 type is specified, this type will be broadcasted across the hidden layers.
step.H number of steps of the step activation function. Only applicable if activ.functions
 includes 'step'.
step.k parameter controlling the smoothness of the step activation function. Larger
 values lead to a less smooth step function. Only applicable if activ.functions
 includes 'step'.
optim.type type of optimizer to use for updating the parameters. Options are 'sgd', 'rm-
 sprop' and 'adam'. SGD is implemented with momentum.
learn.rates the size of the steps to make in gradient descent. If set too large, the optimization
 might not converge to optimal values. If set too small, convergence will be slow.
 Should be either the size of the number of hidden layers plus one or equal to
 one. If a single learn rate is specified, this learn rate will be broadcasted across
 the layers.
L1 L1 regularization. Non-negative number. Set to zero for no regularization.
L2 L2 regularization. Non-negative number. Set to zero for no regularization.
sgd.momentum numeric value specifying how much momentum should be used. Set to zero for
 no momentum, otherwise a value between zero and one.
rmsprop.decay level of decay in the rms term. Controls the strength of the exponential decay
 of the squared gradients in the term that scales the gradient before the parameter
 update. Common values are 0.9, 0.99 and 0.999.
adam.beta1 level of decay in the first moment estimate (the mean). The recommended value is 0.9.
adam.beta2 level of decay in the second moment estimate (the uncentered variance). The recommended value is 0.999.
n.epochs the number of epochs to train. One epoch is a single iteration through the training data.
batch.size the number of observations to use in each batch. Batch learning is computationally faster than stochastic gradient descent. However, large batches might not result in optimal learning, see Efficient Backprop by LeCun for details.
drop.last logical. Only applicable if the size of the training set is not perfectly divisible by the batch size. Determines if the last chosen observations should be discarded (in the current epoch) or should constitute a smaller batch. Note that a smaller batch leads to a noisier approximation of the gradient.
val.prop proportion of training data to use for tracking the loss on a validation set during training. Useful for assessing the training process and identifying possible overfitting. Set to zero for only tracking the loss on the training data.
verbose logical indicating if additional information should be printed
random.seed optional seed for the random number generator

Details
A generic function for training Neural Networks for classification and regression problems. Various types of activation and loss functions are supported, as well as L1 and L2 regularization. Possible optimizer include SGD (with or without momentum), RMSprop and Adam.

Value
An ANN object. Use function plot(<object>) to assess loss on training and optionally validation data during training process. Use function predict(<object>,<newdata>) for prediction.

References

Examples
Example on iris dataset
Prepare test and train sets
random_draw <- sample(1:nrow(iris), size = 100)
X_train <- iris[random_draw, 1:4]
y_train <- iris[random_draw, 5]
X_test <- iris[setdiff(1:nrow(iris), random_draw), 1:4]
y_test <- iris[setdiff(1:nrow(iris), random_draw), 5]

Train neural network on classification task
NN <- neuralnetwork(X = X_train, y = y_train, hidden.layers = c(5, 5),
optim.type = 'adam', learn.rates = 0.01, val.prop = 0)
Plot the loss during training
plot(NN)

Make predictions
y_pred <- predict(NN, newdata = X_test)

Plot predictions
correct <- (y_test == y_pred$predictions)
plot(X_test, pch = as.numeric(y_test), col = correct + 2)

plot.ANN

Plot training and validation loss

Description

plot Generate plots of the loss against epochs

Usage

```r
## S3 method for class 'ANN'
plot(x, max.points = 1000, ...)
```

Arguments

- `x` Object of class `ANN`
- `max.points` Maximum number of points to plot, set to NA, NULL or Inf to include all points in the plot
- `...` further arguments to be passed to plot

Details

A generic function for plot loss of neural net

Value

Plots
predict.ANN
Make predictions for new data

Description
`predict` Predict class or value for new data

Usage
```r  
## S3 method for class 'ANN'  
predict(object, newdata, ...)  
```

Arguments
- `object` Object of class `ANN`
- `newdata` Data to make predictions on
- `...` further arguments (not in use)

Details
A generic function for training neural nets

Value
A list with predicted classes for classification and fitted probabilities

print.ANN
Print ANN

Description
Print info on trained Neural Network

Usage
```r  
## S3 method for class 'ANN'  
print(x, ...)  
```

Arguments
- `x` Object of class `ANN`
- `...` Further arguments
read_ANN

Description
Deserialize ANN object from binary file

Usage
read_ANN(file)

Arguments
- **file**: character specifying file path

Value
Object of class ANN

reconstruct

Description
reconstruct takes new data as input and reconstructs the observations using a trained replicator or autoencoder object.

Usage
reconstruct(object, X)

Arguments
- **object**: Object of class ANN created with autoencoder()
- **X**: data matrix to reconstruct

Details
A generic function for training neural nets

Value
Reconstructed observations and anomaly scores (reconstruction errors)
reconstruction_plot Reconstruction plot

Description
plots original and reconstructed data points in a single plot with connecting lines between original value and corresponding reconstruction

Usage
reconstruction_plot(object, ...)

S3 method for class 'ANN'
reconstruction_plot(object, X, colors = NULL, ...)

Arguments

object autoencoder object of class ANN
...
arguments to be passed down
X data matrix with original values to be reconstructed and plotted
colors optional vector of discrete colors. The reconstruction errors are used as color if this argument is not specified

Details
Matrix plot of pairwise dimensions

Value
Plots

train Continue training of a Neural Network

Description
Continue training of a neural network object returned by neuralnetwork() or autoencoder()
Usage

\[
\text{train(}
\text{object,}
\text{X,}
\text{y = NULL,}
\text{n.epochs = 100,}
\text{batch.size = 32,}
\text{drop.last = TRUE,}
\text{val.prop = 0.1,}
\text{random.seed = NULL}
\})
\]

Arguments

- **object**: object of class ANN produced by \text{neuralnetwork()} or \text{autoencoder()}
- **X**: matrix with explanatory variables
- **y**: matrix with dependent variables. Not required if object is an autoencoder
- **n.epochs**: the number of epochs to train. This parameter largely determines the training time (one epoch is a single iteration through the training data).
- **batch.size**: the number of observations to use in each batch. Batch learning is computationally faster than stochastic gradient descent. However, large batches might not result in optimal learning, see Efficient Backprop by Le Cun for details.
- **drop.last**: logical. Only applicable if the size of the training set is not perfectly divisible by the batch size. Determines if the last chosen observations should be discarded (in the current epoch) or should constitute a smaller batch. Note that a smaller batch leads to a noisier approximation of the gradient.
- **val.prop**: proportion of training data to use for tracking the loss on a validation set during training. Useful for assessing the training process and identifying possible overfitting. Set to zero for only tracking the loss on the training data.
- **random.seed**: optional seed for the random number generator

Details

A new validation set is randomly chosen. This can result in irregular jumps in the plot given by \text{plot.ANN()}.

Value

An ANN object. Use function \text{plot(<object>)} to assess loss on training and optionally validation data during training process. Use function \text{predict(<object>,<newdata>)} for prediction.

References

Examples

```r
# Train a neural network on the iris dataset
X <- iris[,1:4]
y <- iris$Species
NN <- neuralnetwork(X, y, hidden.layers = 10, sgd.momentum = 0.9,
                    learn.rates = 0.01, val.prop = 0.3, n.epochs = 100)

# Plot training and validation loss during training
plot(NN)

# Continue training for 1000 epochs
train(NN, X, y, n.epochs = 200, val.prop = 0.3)

# Again plot the loss - note the jump in the validation loss at the 100th epoch
# This is due to the random selection of a new validation set
plot(NN)
```

write_ANN

Write ANN object to file

Description

Serialize ANN object to binary file

Usage

```r
write_ANN(object, file)
```

Arguments

- **object**: Object of class `ANN`
- **file**: character specifying file path
Index

ANN, 2
autoencoder, 2

compression_plot, 5
decode, 6
encode, 6

neuralnetwork, 7
plot.ANN, 10
predict.ANN, 11
print.ANN, 11

Rcpp_ANN-class (ANN), 2
read_ANN, 12
reconstruct, 12
reconstruction_plot, 13

train, 13

write_ANN, 15