Package ‘APCI’

November 11, 2022

Type Package

Title A New Age-Period-Cohort Model for Describing and Investigating Inter-Cohort Differences and Life Course Dynamics

Version 1.0.6

Maintainer Jiahui Xu <jpx5053@psu.edu>

Depends R (>= 3.6.0)

Description It implemented Age-Period-Interaction Model (APC-I Model) proposed in the paper of Liying Luo and James S. Hodges in 2019. A new age-period-cohort model for describing and investigating inter-cohort differences and life course dynamics.

Imports survey, magrittr, dplyr, ggplot2, data.table, ggpubr, stringr, gee

License GPL-2

Encoding UTF-8

LazyData true

NeedsCompilation no

Author Jiahui Xu [aut, cre], Liying Luo [aut]

Repository CRAN

Date/Publication 2022-11-11 08:00:02 UTC

R topics documented:

 ageperiod_group... 2
 apci ... 3
 apci.bar .. 5
 apci.plot .. 6
 apci.plot.heatmap 7
 apci.plot.hexagram 8
 apci.plot.raw .. 9
 blackmen .. 10
 blackwomen ... 11
Get the cohort index matrix for any age and period groups

Description
This function returns the cohort index matrix for any age and period groups. The cohort index matrix will then be used to extract the cohort effects.

Usage
```r
ageperiod_group(age_range, period_range,
                age_interval, period_interval,
                age_group = NULL, period_group = NULL)
```

Arguments
- `age_range`, `period_range`
 Numeric vector indicating the actual age and period range (e.g., 10 to 59 years old from 2000 to 2019).
- `age_interval`, `period_interval`, `age_group`, `period_group`
 Numeric values or character vectors indicating how age and period are grouped. `age_interval` and `period_interval` are numbers indicating the width of age and period groups respectively. `age_group` and `period_group` are character vectors explicitly listing all potential age and period groups. Either `age_interval` or `age_group` (and `period_interval` or `period_group`) have to be defined when `unequal_interval` is `TRUE`.

Value
It returns a matrix representing the relationship among age, period, and cohort groups under the current setting.
Examples

age and period groups have equal width

```r
ageperiod_group(age_range = 10:59, period_range = 2000:2019,
                   age_interval = 5, period_interval = 5)
```

```r
ageperiod_group(age_range = 10:59, period_range = 2000:2019,
                   age_group = c("10-14","15-19","20-24","25-29",
                                  "30-34","35-39","40-44","45-49",
                                  "50-54","55-59"),
```

age and period groups have unequal width

```r
ageperiod_group(age_range = 10:59, period_range = 2000:2019,
                   age_interval = 10, period_interval = 5)
```

```r
ageperiod_group(age_range = 10:59, period_range = 2000:2019,
                   age_group = c("10-19","20-29","30-39","40-49","50-59"),
```

Description

run APC-I model

Arguments

- **outcome**: An object of class character containing the name of the outcome variable. The outcome variable can be continuous, categorical, or count.
- **age**: An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
- **period**: An object of class character, similar to the argument of age, representing the time period index in the data.
- **cohort**: An optional object of class character representing cohort membership index in the data. Usually, the cohort index can be generated from the age group index and time period index in the data because of the intrinsic relationship among these three time-related indices.
- **weight**: An optional vector of sample weights to be used in the model fitting process. If non-NULL, the weights will be used in the first step to estimate the model. Observations with negative weights will be automatically dropped in modeling.
- **covariate**: An optional vector of characters, representing the name(s) of the user-specified covariate(s) to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the data again.
- **data**: A data frame containing the outcome variable, age group indicator, period group indicator, and covariates to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the input data again.
family Used to specify the statistical distribution of the error term and link function to be used in the model. Usually, it is a character string naming a family function. For example, family can be "binomial", "multinomial", or "gaussian". Users could also check R package glm for more details of family functions.

dev.test Logical, specifying if the global F test (step 1) should be implemented before running the APC-I model. If TRUE, apci will first run the global F test and report the test results; otherwise, apci will skip this step and return NULL. The default setting is TRUE. But users should be careful that the algorithm will not automatically stop even if there is no significant cohort average deviation.

print Logical, specifying if the intermediate results should be displayed on the screen in running the model. The default setting is TRUE in order to show the results explicitly although it can be too clumpy when the intermediate results are shown on the screen.

dee logical, indicating if the data is cross-sectional data or longitudinal/panel data. If TRUE, the generalized estimating equation will be used to correct the standard error estimates. The default is FALSE, indicating that the data are cross-sectional.

id A vector of character, specifying the cluster index in longitudinal data. It is required when gee is TRUE. The length of the vector should be the same as the number of observations.

corstr a character string, specifying a possible correlation structure in the error terms when gee is TRUE. The following are allowed: independence, fixed, stat_M_dep, non_stat_M_dep, exchangeable, AR-M and unstructured. The default value is exchangeable.

unequal_interval Logical, indicating if age and period groups are of the same width. The default is set as TRUE.

age_range, period_range Numeric vector indicating the actual age and period range (e.g., 10 to 59 years old from 2000 to 2019).

age_interval, period_interval, age_group, period_group Numeric values or character vectors indicating how age and period are grouped. age_interval and period_interval are numbers indicating the width of age and period groups respectively. age_group and period_group are character vectors explicitly listing all potential age and period groups. Either age_interval(period_interval) or age_group(period_group) have to be defined when unequal_interval is TRUE.

Value

model A summary of the fitted generalized linear regression. It displays the coefficients, standard errors, etc.

dev_global The results of the global F test. It shows that if the interaction terms are significant as a component of the generalized linear regression model.

intercept The overall intercept.

age_effect A vector, representing the estimated age effect for each age group.
period_effect A vector, representing the estimated period effect for each time period.

cohort_average A vector, representing the cohort average effects for comparing inter-cohort differences.

cohort_slope A vector, representing intra-cohort life-course changes.

Examples

library("APCI")
load data
test_data <- APCI::women9017
test_data$acc <- as.factor(test_data$acc)
test_data$pcc <- as.factor(test_data$pcc)
run APCI model
APC_I <- apci(outcome = "inlfc",
 age = "acc",
 period = "pcc",
 cohort = "ccc",
 weight = "wt",
 data = test_data, dev.test = FALSE,
 family = "gaussian")

check model results
summary(APC_I)

APC_I$model
APC_I$dev_global
APC_I$dev_local
APC_I$intercept
APC_I$age_effect
APC_I$period_effect
APC_I$cohort_average
APC_I$cohort_slope

Description

make bar plot for cohort effect

Usage

apci.bar(model, age, period, outcome_var,
 cohort_label = NULL, ...)
Arguments

- **model**: A list, inheriting the corresponding results generated by function `apci`.
- **age**: A vector, representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
- **period**: An object of class character, similar to the argument of age, representing the time period index in the data.
- **outcome_var**: An object of class character representing the name of the outcome variable used in APC-I model. The outcome variable itself can be numerical and categorical.
- **cohort_label**: A vector, representing the labels of cohort groups in the x axis.

Examples

```r
library("APCI")
## load data
test_data <- APCI::women9017
test_data$acc <- as.factor(test_data$acc)
test_data$pcc <- as.factor(test_data$pcc)

## run APCI model
APC_I <- apci(outcome = "inlfc",
              age = "acc",
              period = "pcc",
              cohort = "ccc",
              weight = "wt",
              data = test_data, dev.test=FALSE,
              family = "gaussian")

## plot the bar plot
apci.bar(model = APC_I, age = "acc", period = "pcc")
```

Description

plotting raw scores or APC-I model results

Usage

```r
apci.plot(model, age, period, outcome_var,
          type = "model", quantile = NULL, ...)
```
apci.plot.heatmap

Arguments

model A list, inheriting the corresponding results generated by function apci.
outcome_var An object of class character representing the name of the outcome variable used in APC-I model. The outcome variable itself can be numerical and categorical.
age An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
period An object of class character, similar to the argument of age, representing the time period index in the data.
type Character, "explore" or "model". If type is "explore", plots for age and period raw scores will be generated. If type is "model", model results will be plotted. The default setting is "model".
quantile A number between 0 and 1, representing the percentiles to be used in visualizing the data or model. If NULL, the original magnitude will be used.

Description

plot the heatmap to show cohort effects

Usage

apci.plot.heatmap(model, age, period, color_map = NULL, color_scale = NULL, quantile = NULL, ...

Arguments

model A list, inheriting the corresponding results generated by function apci.
age A vector, representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
period An object of class character, similar to the argument of age, representing the time period index in the data.
color_map A vector, representing the color palettes to be used in the figure. The default setting is greys if color_map is NULL. Alternations, for example, can be c("blue", "yellow"), blues, etc.
color_scale A vector including two numbers indicating the limit of the values to be plotted. The first number is the minimum value to be visualized and the second is the maximum value to be visualized. If NULL, the algorithm will automatically select the limits from the data (estimation results) to set up the scale.
quantile A number between 0 and 1, representing the percentiles to be used in visualizing the data or model. If NULL, the original magnitude will be used.

...
Examples

```r
library("APCI")
## load data
test_data <- APCI::women9017
test_data$acc <- as.factor(test_data$acc)
test_data$pcc <- as.factor(test_data$pcc)

## run APCI model
APC_I <- apci(outcome = "inlfc",
               age = "acc",
               period = "pcc",
               cohort = "ccc",
               weight = "wt",
               data = test_data, dev.test = FALSE,
               family = "gaussian")

## plot heatmap
apci.plot.heatmap(model = APC_I, age = "acc", period = "pcc",
                   color_map = c("blue", "yellow"))
```

Description

plot the cohort effect in the style of hexagram

Usage

```r
apci.plot.hexagram(model, age, period, first_age, first_period, interval, first_age_isoline = NULL, first_period_isoline = NULL, isoline_interval = NULL, color_scale = NULL, color_map = NULL, line_width = 0.5, line_color = "grey", label_size = 0.5, label_color = "black", scale_units = "Quintile", wrap_cohort_labels = TRUE, quantile = NULL)
```

Arguments

- **model**: A list, inheriting the corresponding results generated by function apci.
- **age**: An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
- **period**: An object of class character, similar to the argument of age, representing the time period index in the data.
apci.plot.raw plot the raw scores

Description
plot the raw scores in each age and period square

Usage
apci.plot.raw(data, outcome_var, age, period, ...)

Arguments

data A data frame containing the outcome variable, age group indicator, period group indicator, and covariates to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the input data again.

outcome_var An object of class character containing the name of the outcome variable. The outcome variable can be continuous, categorical, or count.
age An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").

period An object of class character, similar to the argument of age, representing the time period index in the data.

Examples

plot the raw scores
apci.plot.raw(data = simulation, outcome_var = "y",
 age = "age", period = "period")

blackmen Black Men

Description

the dataset for black men

Usage

data("blackmen")

Format

A data frame with 10000 observations on the following 7 variables.

asecwt weight
year a factor indicating period groups with levels 1 2 3 4 5 6
age a factor indicating age groups with levels 1 2 3 4 5 6 7 8 9
labforce labor Force participation rate
educ education level
educr education level
educcc education level
blackwomen

| blackwomen | Black Women |

Description

Dataset for black women

Usage

data("blackwomen")

Format

A data frame with 10000 observations on the following 7 variables.

- asecwt weight
- year a factor indicating period groups
- age a factor indicating age groups
- labforce labor Force participation rate
- educ education level
- educr education level
- educc education level

cohortdeviation

calculate cohort deviation

Description

calculate cohort deviation

Usage

cohortdeviation(A, P, C, model = temp6, weight = "wt", covariate, gee=FALSE, unequal_interval = FALSE, age_range = NULL, period_range = NULL, age_interval = NULL, period_interval = NULL, age_group = NULL, period_group = NULL, ...)
compute_xcoordinate

Arguments

- **A, P, C**
 The numbers of age groups, period groups, and cohort groups separately.
- **model**
 A generalized linear regression model generated from the internal function `temp_model`.
- **weight**
 An optional vector of sample weights to be used in the model fitting process. If non-NULL, the weights will be used in the first step to estimate the model. Observations with negative weights will be automatically dropped in modeling.
- **covariate**
 An optional vector of characters, representing the name(s) of the user-specified covariate(s) to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the data again.
- **gee**
 Logical, indicating if the data is cross-sectional data or longitudinal/panel data. If TRUE, the generalized estimating equation will be used to correct the standard error estimates. The default is FALSE, indicating that the data are cross-sectional.
- **unequal_interval**
 Logical, indicating if age and period groups are of the same width. The default is set as TRUE.
- **age_range, period_range**
 Numeric vector indicating the actual age and period range (e.g., 10 to 59 years old from 2000 to 2019).
- **age_interval, period_interval, age_group, period_group**
 Numeric values or character vectors indicating how age and period are grouped. `age_interval` and `period_interval` are numbers indicating the width of age and period groups respectively. `age_group` and `period_group` are character vectors explicitly listing all potential age and period groups. Either `age_interval(period_interval)` or `age_group(period_group)` have to be defined when unequal_interval is TRUE.

Description

Calculate x coordinate value for the hexagram. This is an intermediate function.

Usage

```r
compute_xcoordinate(p)
```

Arguments

- **p**
compute_ycoordinate

Description
Calculate y coordinate value for the hexagram. This is an intermediate function.

Usage
```
compute_ycoordinate(p, a)
```

Arguments
- `p`
- `a`

cpsmen
Labor force participation data for men from 1990 to 1979 in CPS

Description
the dataset for men

Usage
```
data("cpsmen")
```

Format
A data frame with 10000 observations on the following 7 variables.

- `asecwt` weight
- `year` a factor indicating period groups with levels 1 2 3 4 5 6
- `age` a factor indicating age groups with levels 1 2 3 4 5 6 7 8 9
- `labforce` labor Force participation rate
- `educ` education level
- `educr` education level
- `educc` education level
cpswomen Labor force participation data for women from 1990 to 1979 in CPS

Description
the dataset for women

Usage
data("cpswomen")

Format
A data frame with 10000 observations on the following 7 variables.

asecwt weight
year a factor indicating period groups with levels 1 2 3 4 5 6
age a factor indicating age groups with levels 1 2 3 4 5 6 7 8 9
labforce labor Force participation rate
educ education level
educr education level
educc education level

maineffect estimate age effect and period effect

Description
estimate age and period effect from APCI model

Usage
maineffect(A, P, C, model = temp6, data, gee=FALSE, ...

Arguments
A, P, C The numbers of age groups, period groups, and cohort groups separately.
model A generalized linear regression model generated from the internal function temp_model
data A data frame containing the outcome variable, age group indicator, period group indicator, and covariates to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the input data again.
Simulation

gee logical, indicating if the data is cross-sectional data or longitudinal/panel data. If TRUE, the generalized estimating equation will be used to correct the standard error estimates. The default is FALSE, indicating that the data are cross-sectional.

Simulation

Simulated Dataset

Description

A simulated dataset for APC-I analysis.

Usage

```r
data("simulation")
```

Format

A data frame with 10000 observations on the following 3 variables.

- `y` a numeric
- `age` a numeric
- `period` a numeric

temp_model

Estimate APC-I model

Description

Estimate the APCI original model. This is a generalized linear regression model.

Usage

```r
temp_model(data,
    outcome = "inlfc",
    age = "acc",
    period = "pcc",
    cohort = NULL,
    weight = NULL,
    covariate = NULL,
    family = "quasibinomial",
    gee = FALSE,
    id = NULL,
    corstr = "exchangeable",
    ...
)
```
Arguments

data A data frame containing the outcome variable, age group indicator, period group indicator, and covariates to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the input data again.

outcome An object of class character containing the name of the outcome variable. The outcome variable can be continuous, categorical, or count.

age An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").

period An object of class character, similar to the argument of age, representing the time period index in the data.

cohort An optional object of class character representing cohort membership index in the data. Usually, the cohort index can be generated from the age group index and time period index in the data because of the intrinsic relationship among these three time-related indices.

weight An optional vector of sample weights to be used in the model fitting process. If non-NULL, the weights will be used in the first step to estimate the model. Observations with negative weights will be automatically dropped in modeling.

covariate An optional vector of characters, representing the name(s) of the user-specified covariate(s) to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the data again.

family Used to specify the statistical distribution of the error term and link function to be used in the model. Usually, it is a character string naming a family function. For example, family can be "binomial", "multinomial"", or "gaussian". Users could also check R package glm for more details of family functions.

gee logical, indicating if the data is cross-sectional data or longitudinal/panel data. If TRUE, the generalized estimating equation will be used to correct the standard error estimates. The default is FALSE, indicating that the data are cross-sectional.

id A vector of character, specifying the cluster index in longitudinal data. It is required when gee is TRUE. The length of the vector should be the same as the number of observations.

corstr a character string, specifying a possible correlation structure in the error terms when gee is TRUE. The following are allowed: independence, fixed, stat_M_dep, non_stat_M_dep, exchangeable, AR-M and unstructured. The default value is exchangeable.

...
whitemen

Usage

tests(model, age = "acc", period = "pcc",
cohort = "ccc", A, P, C, data, weight = "wt",
family, outcome, ...)

Arguments

model A generalized linear regression model generated from the internal function temp_model
age An object of class character representing the age group index taking on a small number of distinct values in the data. Usually, the vector should be converted to a factor (or the terms of "category" and "enumerated type").
period An object of class character, similar to the argument of age, representing the time period index in the data.
cohort An optional object of class character representing cohort membership index in the data. Usually, the cohort index can be generated from the age group index and time period index in the data because of the intrinsic relationship among these three time-related indices.
A, P, C The numbers of age groups, period groups, and cohort groups separately.
data A data frame containing the outcome variable, age group indicator, period group indicator, and covariates to be used in the model. If the variable(s) are not found in data, there will be an error message reminding the users to check the input data again.
weight An optional vector of sample weights to be used in the model fitting process. If non-NULL, the weights will be used in the first step to estimate the model. Observations with negative weights will be automatically dropped in modeling.
family Used to specify the statistical distribution of the error term and link function to be used in the model. Usually, it is a character string naming a family function. For example, family can be "binomial", "multinomial", or "gaussian". Users could also check R package glm for more details of family functions.
outcome An object of class character containing the name of the outcome variable. The outcome variable can be continuous, categorical, or count.

whitemen White Men

Description

A dataset for white men.

Usage

data("whitemen")
Format

A data frame with 10000 observations on the following 7 variables.

- `asecw`t weight
- `year` a factor indicating period groups
- `age` a factor indicating age groups
- `labforce` labor Force participation rate
- `educ` education level
- `educr` education level
- `educc` education level

whitewomen

<table>
<thead>
<tr>
<th>whitewomen</th>
<th>White Women</th>
</tr>
</thead>
</table>

Description

A dataset for white women.

Usage

```r
data("whitewomen")
```

Format

A data frame with 10000 observations on the following 7 variables.

- `asecw`t weight
- `year` a factor indicating period groups
- `age` a factor indicating age groups
- `labforce` labor Force participation rate
- `educ` education level
- `educr` education level
- `educc` education level

Description

A sample dataset

Usage

women9017

Format

A data frame with 1000 observations on the following 23 variables.

ac a numeric vector
acc a numeric vector
age a numeric vector
c a numeric vector
ccc a numeric vector
ccc a numeric vector
cohort a numeric vector
educ a numeric vector
educc a numeric vector
educr a numeric vector
inlfc a numeric vector
labforce a numeric vector
lfc a numeric vector
marst a numeric vector
marstc a numeric vector
marstr a numeric vector
nc a numeric vector
ncc a numeric vector
nchild a numeric vector
pc a numeric vector
pcc a numeric vector
wt a numeric vector
wtsupp a numeric vector
year a numeric vector

Details

test
Source

CPS

References

Luo and Hodges (2019)
Index

* datasets
 - blackmen, 10
 - blackwomen, 11
 - cpsmen, 13
 - cpswomen, 14
 - simulation, 15
 - whitemen, 17
 - whitewomen, 18

 ageperiod_group, 2
 apci, 3
 apci.bar, 5
 apci.plot, 6
 apci.plot.heatmap, 7
 apci.plot.hexagram, 8
 apci.plot.raw, 9

 blackmen, 10
 blackwomen, 11

 cohortdeviation, 11
 compute_xcoordinate, 12
 compute_ycoordinate, 13
 cpsmen, 13
 cpswomen, 14

 maineffect, 14

 simulation, 15

 temp_model, 15
 tests, 16

 whitemen, 17
 whitewomen, 18
 women9017, 19